第三代新维甲类化合物R_(9158)的癌分化诱导作用及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Differentiation of Cancer Cells by a New Retinoid R_(9158) and Its Mechanisms of Action
  • 作者:何小庆
  • 论文级别:博士
  • 学科专业名称:肿瘤药理学
  • 学位年度:1994
  • 导师:韩锐
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:1994-05-01
摘要
3’、5’-二叔丁基-4’-甲氧基-4-羧基查尔酮(R_(9158))是我所研制的第三代维甲类化合物。本文就R_(9158)对癌细胞的分化诱导作用、分子药理学作用特点、作用机制及毒性进行了系统的研究。
     研究结果表明:R_(9158)对人急性早幼粒白血病HL-60细胞具有明显的分化诱导作用。R_(9158) 10~(-6)mol/L可明显抑制HL-60细胞的生长及克隆形成率,并使成熟分化指标:NBT还原能力明显升高,10~(-6)mol/L作用6天可使NBT阳性细胞数达90%以上。细胞形态向成熟方向分化,镜下可见大量中晚幼粒细胞及一些杆状及分叶核细胞。电镜下细胞膜系统完整、核浆比例变小、胞浆中有特异性颗粒出现。流式细胞分析表明R_(9158) 10~(-7)mol/L处理HL-60细胞48小时就可阻断细胞由G1向S期移行。96小时可使G1期细胞数达78.2%。
     研究还发现R_(9158)同样可使另一株人急性早幼粒白血病NB_4细胞生长抑制,NBT还原能力增强。R_(9158)与RA诱导NB_4细胞分化的ED_(50)分别为3.9×10~(-9)及2.8×10~(-9)mol/L。R_(9158)对NB_4细胞形态的影响出现较早,诱导2天就可见核缩小,核浆比例变小,但形态分化不完全,10~(-6)mol/L处理6天,大部分细胞仍集中在中幼或晚幼粒阶段,无杆状及分叶核细胞。NB_4细胞染色体呈亚四倍体型,染色体数分布在71-99之间,G显带表明它具有明显急性早幼粒白血病(APL)病人的t(15;17)移位特征。给R_(9158)及RA 10~(-6)mol/L处理细胞3-6天后可使染色体非整倍体数目有所下降。从对照细胞的80.85±7.11降至RA:68.5±7.01(P<0.01),R_(9158) 72.96±6.9(P<0.01)。但t(15;17)移位未见消失。
     R_(9158)对体外培养的人肝癌Bel-7402细胞也有良好分化诱导作用。R_(9158)处理后可使生长抑制,克隆形成率下降。其作用强于RA。R_(9158)及RA10~(-5)mol/L处理Bel_(7402)细胞不同时间,可见肝癌的增殖指标甲胎蛋白(AFP)分泌及γ-谷胺酰转肽酶(γ-GT)活性下降,而肝癌分化指标白蛋白(Alb)分泌明显升高。R_(9158)10~(-6)及10~(-5)mol/L处理48小时,形态上就可见核浆比例变小,继续处理可使核明显缩小,核固缩甚至碎裂,胞浆空泡化。但膜系统仍完整。利用[~3H]TdR、[~3H]Leu前体参入实验发现R_(9158)对Bel-7402细胞DNA及蛋白质的合成均有一定抑制作用,但对蛋白质的抑制作用出现早且作用强,RA与之相比对Bel-7402细胞前体参入的影响较小。
     R_(9158)对大鼠软骨肉瘤具有非常强的抑制作用,1.2mg/kg给药4次抑制率达99.3%。R_(9158)对维甲类不敏感的动物移植性肿瘤也有一定抗肿瘤作用。其中R_(9158)5mg/kg给药3次可使B_(16)黑色素瘤抑制率达58.9%(P<0.01);6mg/kg给药5次对Lewis肺癌的抑制率达65%(P<0.01)。肉瘤S_(180),R_(9158)11.8mg/kg给药3次也可使抑制率达36.5%(P<0.01)。在体外用MTT方法观察了R_(9158)对培养的人卵巢癌A_(2780),大食管癌CaEs-17,人肝癌Bel-7402,人巨细胞肺癌PLA-801C及PLA-801D,人口腔癌KB及人结肠癌HCT-8等细胞生长的影响。发现R_(9158)对上述细胞作用的ED_(50)均在2-6.45×10~(-6)mol/L范围之间,说明R_(9158)有较强的细胞毒作用,而RA对上述细胞无明显细胞毒作用。以上说明R_(9158)具有较强的抗肿瘤作用。
     为了研究R_(9158)作用的选择性,我们用MTT法比较了R_(9158)对体外培养的正常细胞的作用。发现R_(9158)对小鼠成纤维Balb/3T3,中国仓鼠肺细胞CHL及人胚肺2BS细胞无明显细胞毒作用。R_(9158)在明显抑制HL-60细胞克隆形成率的剂量下对小鼠骨髓细胞CFU-GM形成影响很小。用淋巴母细胞体外转化实验发现R_(9158)对淋转无抑制作用。这说明R_(9158)对正常组织毒性小,对免疫及造血组织无明显抑制作用,其抗肿瘤作用具有一定选择性。
     耐药与多药耐药是肿瘤化疗的一大难点。研究发现,R_(9158)对多药耐药细胞KB/VCR 200及HCT-8/VCR 2000与其亲本细胞KB,HCT-8具有同样敏感性。ED_(50)分别为4.36×10~(-6)mol/L与1.05×10~(-6)mol/L,说明R_(9158)与常规化疗药无交叉耐药。R_(9158)10~(-5)mol/L处理24小时可使上述耐药细胞中高表达的mdrl多药耐药基因表达下降。但R_(9158)对维甲酸耐药的HL-60/RA及维甲酸不敏感的K_(562)细胞与维甲酸具有交叉抗性。
     初步的毒性观察结果表明:R_(9158)对小鼠的LD_(50)为118.3mg/kg,大鼠LD_(50)为19.36mg/kg。R_(9158)在治疗剂量下对荷软骨肉瘤的大鼠,除使体重增加较慢外,血常规,肝、肾功能及各脏病理检查均未见异常。狗的初步亚急性实验发现R_(9158)3mg/kg,口服15-21天可引起维A类过多症(如脱毛、体重下降等),但对血常规,心电图,肝肾功,在给药前中后无明显变化。病理报告除有肝脏充血,一条雄性狗睾丸曲细精管生精不良外,其它脏器均未见异常。
     运用基因重组技术研究发现,给维甲类不敏感的人髓样红白血病K_(562)细胞转入维甲酸受体基因hRAR_α,可大大增加其对RA及R_(9158)的敏感性。用RA或R_(9158)处理可使K_(562)-RAR_α细胞生长明显抑制,并使血红蛋白(Hb)的生成量增加。这提示R_(9158)的作用机理与RA相似,通过维甲酸受体诱导肿瘤细胞分化。进一步用Dot blot技术研究发现R_(9158)可在转录水平上调控某些基因的表达。R_(9158)10~(-6)mol/L作用24小时,先于形态及生长速率变化就可使癌基因c-myc表达明显下降,而c-fos表达增高。在Bel-7402细胞,R_(9158)10~(-5)mol/L处理24小时可见c-myc及N-ras癌基因表达下降,而诱导c-fos表达升高。这说明R_(9158)的分子机制与RA相似,直接通过细胞核维甲酸受体,在转录水平上调控参与细胞增殖分化的癌基因,如c-myc,N-ras,c-fos等来完成其癌分化诱导作用。
3', 5"—ditertiary—butyl—4'—methoxy—4'—carboxyl chalcone (R9158), a new retinoid, was developed by our institute. Through a routine screening program with human promyelocytic leukemia HL-60 cell line, it was found that R9158 has very strong inducing activity on differentiation of cancer cells. Systematic studies on the molecular pharmacology of R9158 were undertaken in this thesis.Results showed that R9158 significantly inhibits the growth and colony formation of promyelocytic leukemia HL-60 cells, while NBT-reduction (a functional differentiation marker of granulocytes) was dramatically augmented when the cells were exposed to R9158 at 10~(-9)-10~(-6) mol/L, and the NBT positive cells reached about 90% at 10~(-6) mol/L after 6 day exposure. Morphologically, HL-60 cells induced by R9158 matured along the granulocytic lineage. Flow cytometry demonstrated that R9158 as well as RA resulted in the arrest of cells in Gl phase and that the cell population in S and G2/M phase decreased significantly.NB4 cells, another promyelocytic leukemia cell line with a specific chromosome translocation t(15,17) was also studied. When the cells were exposed to R9158 or RA at a concentration of 10~(-6) mol/L, cell proliferation was inhibited and NBT positive cells increased to 94% after 6 day exposure. The ED_(50) of NBT-reduction was achieved at concentrations of 3.9×10~(-9) mol/L and 2.8×10~(-9) mol/L for R9158 and RA, respectively. Morphologically, most of the cells induced by R9158 or RA at 10~(-6) mol/L were in the myelocytic or metamyelocytic stage and few cells were in the banded or segmented stage. Cytogenetic analysis revealed that the karyotype of NB4 cells was subtetraploid, and the chromosome numbers were in the range of 71-99. When NB4 cells were treated by R9158 or RA for 3-6 days, the abnormal poryploid chromosome numbers decreased to 72.9±6.9 (P<0.01) or 68.5±7.01 (P<0.01), but the t(15,17) translocation did not disappear.
     Cell proliferation and colony forming efficiency of the human hepatocarcinoma, Bel-7402 cell line were significantly inhibited when R9158 or RA were added at concentrations of 10~(-6)-10~(-5) mol/L for 2-6 days. However, R9158 was more efficient. Secretion of alpha-fetoprotein (AFP) and the activity ofγ-glutamyl transpeptidase (γ-GT), the hepatoma proliferation marker, were decreased, while the secretion of albumin (ALB), the hepatoma differentiation marker, was enhanced dramatically. These results suggest that R9158 induced Bel-7402 cell differentiation. It was also found that the ratio of nucleus to cytoplasm decreased when cells were exposed to R9158 (10~(-6)-10~(-5) mol/L) for 2-4 days. If the cells were treated continuously for 8 days, the nucleus became pyknotic or fragmented and the cytoplasm became vacuolated. [~3H]-TdR and [~3H]-Leu incorporation into DNA and protein was also inhibited by R9158. The inhibition of protein synthesis appeared earlier and was more effective than DNA synthesis inhibition.
     When R9158 was given orally to rats bearing chondrosarcoma, at the dosage of 1.2mg/kg or 0.6 mg/kg for 4 times over the entire course of the experiment, this compound significantly inhibited the growth of the tumor and the inhibition rate reached 99.3%or 95.6%, respectively. It is interesting to note that R9158 also inhibited the growth of other transplantable tumors, such as Lewis lung carcinoma, sarcoma 180, and melanoma B16, in mice. In vitro studies demonstrated that R9158 elicited moderate cytotoxic effects on various human cancer cell fines. The EC_(50) for ovarian cancer A2780, hepatoma Bel-7402, esophageal carcinoma CaES-17, lung giant cell carcinoma PLA-801C and PLA-801D, oral carcinoma KB, and colon carcinoma HCT-8 were all in the range of 2-6(?)10~(-6) mol/L, while in some normal human and mice cell lines, the EC_(50) for human embryo lung 2BS cell line is 1.70×10~(-5) mol/L, for Chinese hamster lung CHL cell line is 3.24×10~(-5) mol/L, and for mouse fibroblast balB/3T3 cell fine is 1.98×10~(-5) mol/L. R9158 can also dramatically inhibit the colony formation efficiency of HL-60 cells. In contrast, R9158 has little effect on the CFU-GM of bone marrow cells in mice at the same concentration. The results demonstrate that R9158 has a higher selectivity for cancer cells.
     Cross resistance studies showed that RA resistant cell line (HL-60/RA) is cross resistant to R9158; however, in multidrug resistant cell lines of KB/_(VCR200) or HCT-8/_(VCR2000), the results showed that they had the same sensitivity as parent KB or HCT-8 cells. Dot blot analysis showed that the expression of multidrug resistant gene, mdrl, was decreased when cells were exposed to R9158 orRA at 10~(-6) mol/L for 24 hours.
     Toxicity studies demonstrated that the LD_(50) of R9158 for mice is 118.3 mg/kg and 19.36 mg/kg for rats. The preliminary subacute toxicity studies on dogs suggested that 3 mg/kg of R9158 once daily for 15-21 days caused side effects which were similar to hypervitaminosis A, such as hair and body weight loss. However, no myelosuppression, hepatic damage, or nephrotoxicity was found.
     Retinoids are thought to act through nuclear retinoic acid receptors which in turn act on some target genes. Dot blot analysis of total RNA with cDNA probes specific to hRARα, hRARβ, and hRARγindicated that HL-60 or HL-60/RA cells all have a basal expression level of RARα, which change little even when treated with RA or R9158. However, RARβand RARγexpression was enhanced in Bel-7402 cells when they were treated by R9158 or RA at 10~(-5) mol/L for 24 hours. Further studies revealed that RA resistant K562 cells showed cross resistance to R9158. but when RARαcDNA was transfected into K562 cells by a retroviral vector, the two drugs could significantly decrease the cell proliferation. Additional dot blot analysis indicated that R9158 inhibited c-myc expression in HL-60 cells and inhibited both c-myc and N-ras expression in Bel-7402 cells. The expression of c-los in both of these cell lines were enhanced by R9158. In summary, the results clearly, demonstrated that R9158 modulates oncogene expression and induces cell differentiation through retinoic acid receptors.
引文
1. Pierce GB. Differentiation and cancer. In Vitro. 7:110;1971.
    2. Friend C. et al. Hemoglobin synthesis in murine virus-induced leukemic cell's in vitro:stimulation of erythroid differentiation by dimethyl sulfoxide. Pro Natl Acad Sci USA. 68:378; 1971.
    3. Sporn MB. et al. Role of retinoids in differentiation and carcinogenesis. Cancer Res. 43: 3043-3040; 1983.
    4. Warrell RP, Jr, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (All-trans-retinoic Acid). N. Engl. J. Med. 324: 1385-1393; 1991.
    5. Petkovich M. et al. A human retinoic acid receptor which belongs to the family of nuclear receptors, Nature 330: 440-450; 1987.
    6. Giguere V, et al. Identification of a receptor for the morphogen retinoic acid. Nature. 330: 624-629; 1987.
    7. de The H. et al. A novel steroid/thyroid homore receptor-related gene inappropriately expressed in human hepatocellular carcinoma. Nature. 330:667-670; 1987.
    8. Green S, et al, Nuclear receptors enhance our understanding of transcription regulation. Treads in Genetics. 4:309-314; 1988.
    9. Ham J. et al, Regulation of gene expression by nuclear hormone receptors. Current Opinion in Cell Biology. 1:503-511; 1989.
    10. Hofmann B. et al. A retinoic acid receptor-specific element controls the retinoic acid receptor-B promoter. Mol. Endocrinol. 4: 1727-1736; 1990.
    11. Munoz-Canoves P. et al. Mapping of a retinoic acid-responsive element in the promoter region of the complement factor H gene. J. Biol. Chem, 265:20065-20068; 1990.
    12. Vasios GW. et al, The late retinoic acid induction of laminin B1 gene transcription involves RAR binding to the responsive element. EMBO J. 10:1149-1158; 1991.
    13. Vasios GW. et al. A retinoic acid-responsive element is present in the 5' flanking region of the laminin B1 gene. Proc Natl Acad Sci USA. 86:9099-9103; 1989.
    14. de The H. et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocyere leukemia encodes a functional altered RAR, Cell. 66: 675-684; 1991,.
    15. Kakizuka A, et al. Chromosomal translocation t(15; 17) in novel putative transcription factor, PML. Cell, 66: 663-674; 1991,
    16. Robertson KA. et al. Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-hinding domain that confers dominant negative activity. Blood. 80(8): 1885-9; 1992.
    17. Collins SJ. Retinoic acid-induced granulocytic differentiation of HL -60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-α). Mol. Cell. Biol. 10(5): 2154-2163; 1990.
    18. Robertson KA. et al. Multiple members of the retinoic acid receptor family are capable of mediating the granulocytic differentiation of HL -60 cells. Mol, Cell. Biol. 12(9): 3743-9; 1992.
    19. Robertson KA. et al. Retinoic acid receptors in myeloid leukemia: characterization of receptors in retinoic acid resistant K-562 cells. Blood. 77(2): 340-347; 1991
    20.鄂征.主编.组织培养技术(第二版).人民卫生出版社.1986.
    21. Collins SJ. et al. Normal functional characteristies of cultured human promyelocytic leukemia cell ( HL-60) after induction of differentiation by dimethy sufoxide, J. Exp. Med. 149: 969-974; 1979.
    22.韩锐.主编.肿瘤化学预及药物治疗.北京医科大学中国协和医科大学联合出版社.1991.
    23. Mauer Alvin M. edt. The biology of human leukemia. The Johns Hopkins University press. 1990,
    24.张鸿卿.连慕兰.主编.细胞生物学实验方法与技术.北京师范大学出版社.1992
    25.左连富.主编.流式细胞术样品制备技术.华夏出版社.1991.
    26. Pike BL. Robinson WA. Human bone marrow clony growth in agar gel. J Cell Physiol. 76: 77-84; 1970.
    27. Carmichaes J. et al. Chemosensitivity testing of human lung cancer lines using the MTT assay. Br. J. Cancer. 57: 540-574; 1988.
    28.艾兆伟 等.视黄酸对人肝癌细胞浆中某些表现逆转作用.生物化学与生物物理学报.22(2):135-140;1990.
    29. Husby NE. et al. Practical points regarding routine determination of γ-GT in serum with a kinetic method at 37℃, Scand. J. Chin. Lab. Invest. 34; 357: 1974.
    30.王淋芳,潘华珍 主编.分子生物学基本技术.北京生理科学会.p.1.1991.
    31.上海市医学化验所 主编.临床生化检验.上海科学技术出版社.1979.
    32. J. Sambrook. EF. Fritsch, T. Maniatis. edt. Molecular Cloning. a laboratory manual. second edition. Cold Spring Harbor Laboratory press. 1989.
    33. Chomczynski P. et al. Single-step method of RNA isolation by acid guanidinium thiocyanate phenol-chloroform extraction. Anal. Biochem. 162: 156-159; 1987.
    34. Karger B D. et al. Evaluation of procedures for transfection using lipofectin reagent. Focus. 12: 25-6; 1990.
    35. Wong PMC, et al. Retrovirus-mediated transfer and expression of the interleukin- 3 gent in mouse hematopoietic cells result in a myeloproliferative disorder. Mol. Cell. Biol. 9: 798-808; 1989.
    36.崔明珍.毒理学常用实验方法.p74.纪云晶主编.实用毒理学手册.中国环境科学出版社.1991
    37. Collins SJ. et al. Continuous growth and differentiation of human myoloid leukemia cells in suspension culture. Nature. 270: 347-449; 1977.
    38. Gallaghar R. et al. Characterization of the continous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 54(3): 713-733; 1979.
    39. Breitman ER. et al. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA. 77: 2930-2940; 1980.
    40. Dalton WT. et al. HL-60 cell line was derived from a patient with FAB -M_2 and not FAB-M_3. Blood. 71: 242; 1988.
    41. Lanotte M. et al. NB_4 a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood, 77: 1080-1086; 1991.
    42.陈瑞铭等.人体肝癌体外细胞系BEL-7402的建立及其特征.实验生物学报.11(1):37-45:1978.
    43. Smith JA. et al. Immunofluorescence location of human alpha fetoprotein in fetal and neonatei livers and cultured cells from hepatoceilular carcinoma. Br. J. Cancer. 25: 343; 1971.
    44. Weinhous S. Isozyme paterns of hepatomas and tumor progression. Neoplasms. 1973: 20; 559.
    45. Pang A. et al, In vitro differential effects of sodium selenite on the growth of human hepatoma cells and human embryonic liver cells. Bio Trace Element Res. 14: 1-17; 1987.
    46. Pung A. et al. Some differentiating effects of selenium on the cultured human hepatoma cells and human pulmonary adenocarcinoma cells in vitro. Bio Trace Element Res. 14: 19-27; 1987.
    47. Smith CG. et al. An improved tissue culture assay I. Methodology and cytotoxicity of antitumor agents. Cancer Res 19: 843-6; 1959.
    48. Bollag W. et al. From vitamin A to retinoids in experimental and clinical oncology. Achievements, failures and outlook. Ann NY Acad Sci. 359: 1-23; 1981.
    49. Edwards ML. et al. Chalcones: a new class of antimitotic agents. J. Med. Chem. 33: 1948-1954; 1990.
    50. Degos L. All-trans retinoic acid (ATRA) therapeutical effect in acute promyelocytic leukemia. Biomed & Pharmacother. 46: 201-209; 1992.
    51.徐大为 等.肿瘤细胞多向性抗药的研究进展.国外医学.肿瘤分册 (3):139-141,1989.
    52. Back WT. et al. Altered surface membrane glycoproteins in vinca alkaloid resistant human leukemic lymphoblasts. Cancer Res. 39: 2070; 1979.
    53. Gill DR. et al. Separation of drug transport and chloride channel functions of the human multidrug resistant P-glycoprotein. Cell. 71: 23 -32; 1992.
    54.张小红 等.多药耐药的机制及逆转药物的研究进展.国外医学药学分册.19(5):272-275;1992.
    55. Blazsek. I. Innate chaos: I. The origin and genesis of complex morphologies and homeotic regulation. Biomed Pharmacother. 46: 219-235; 1992.
    56. Baserga R. et al. Oncogenes, growth factors and control of the cell cycles. Cancer Surveys. 16: 201-212; 1993.
    57. Lebovitz RM. et al. Oncogenes as mediators of cell growth and differentiation. Lab Invest. 55: 249-251; 1986.
    58. Studzinski G. et al. Participation of c-myc protein in DNA synthesis of human cells. Science. 234: 467-470; 1986.
    59. Campisi J. et al. Cell- cycle control of c- myc but not c- ras expression is lost following chemical transformation. Cell. 36: 241-247; 1984.
    60. Studzinski, et al. Oncogenes, growth and the cell cycle, an overview. Cell Tissue Kinct. 22: 405-424; 1989.
    61. Bishop JM. The molecular genetics of cancer. Science. 235: 305; 1987.
    62. Collins SJ. The HL-60 promyelocytic leukemia cell line proliferation differentiation and cellular oncogene expression. Blood. 70: 1233-1244; 1987.
    63. Gu JR. et al. Oncogenes in human primary hepatic cancer. J. Cellu Physiol. 4: 13; 1986, suppl.
    64.李仕勇 等.BEL7402人肝癌细胞中癌基因表达及丁酸钠对基因表达的影响.中国医学科学院报.12:227:1990.
    65. Imaizumi M. et al. Changes in c-myc, c-fms and N-ras proto- oncogene expression associated with retinoic acid- induced monocytic differentiation of human leukemia HL-60/MRI cells. Cancer Res. 48: 6733-6738; 1988.
    66. David L. et al. Block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL-60 cells. Nature. 321: 702-706; 1986.
    67. Motoo H. Induced differentiation of cancer cells and therapy of cancer. Chemother Cancer (Japan) 14: 1349; 1987.
    68. Muller R. et al. Differentiation of F(?) teratocarcinoma stem cells after transfer of c-fos proto-oncogenes. Nature. 311: 438-442; 1984.
    69.李林:全反式维甲酸诱导HL-60细胞分化的作用机理研究.中国医学科学院博士研究生论文.1992.
    70. Anderson LC. et al. K_((?)62): a human erythroleukemic cell line. Int J. Cancer 23: 143; 1979.
    71. Tetteroo P. et al. Megakaryoblastic differentiation of proerythroblastic K-562 cell line cells. Leuk Res. 8: 197; 1984.
    72. Lozzio CB. et al. Human chronic myelogenous leukemic cell line with positive philadelphia chromosome. Blood. 45: 321; 975.
    73.马先勇 等.逆转录病毒载体介导的基因转移技术研究进展.国外医学分子生物学分册.15(4):170-173;1993.
    1.韩锐.癌的化学预防及治疗药维生素甲类化合物.P64.肿瘤化学预防及药物治疗.韩锐主编,北京医科大学中国协和医科大学联合出版社.1991
    2. Brockes J. Reading the retinoids signals. Nature 345: 766-768; 1990
    3. Tabin H. et al. Retinoids homeoboxes and growth factors towards molecular molds for limb development, cell. 66: 199-217; 1991
    4. Durston A J et al. Retinoic Acid causes an antero posterior transformation in the developing central nervous system. Nature 340: 140-144; 1989
    5. Wagner M. et al. Polarizing activity in the floor plate of the neural tube. Nature 345: 819-822; 1990
    6. Morriss-Kay G et al. Retinoic acid receptors in normsl growth and development. Cancer Surveys. 14: 181-192; 1992
    7. Mitranond V et al, Cytological changes in the testes of vitamin A-deficient rats Ⅰ. Quantitation of genminal cells in the seminiferous tubules. Acts Anta. 103: 159-168; 1979
    8. Unni E et al. Histological & ultrastructural studies on the effects of vitamin A depletion & subsequent repletion with vitamin A on germ cells and Sertoli's cells in rat testis. Indian J. Exp, Biol. 21: 180-192; 1983.
    9. Van Beek MEAB et al. A method for quantifying synchrony in testes of rats treated with vitamin A deprivation and readministration. Biol Reprod. 42: 424-431; 1990.
    10. Van Pelt AMM et al. The origia of the synchronization of the seminiferous epithelium in vitamin A-deficient rats after vitamin A replacement Biol Reprod. 42: 677-682; 1990
    11. Van Pelt AMM. Changes in retinoic acid receptor messanger ribonucleic acid levels in the vitamin A deficient rat testis after administration of retinoids. Endocrinolog 131(1): 344-350; 1992
    12. Jacques Ghysdael et al. The leudaemia oncogene v-erbA: a dominant, negative version of ligand dependent transcription factors that regulates red cell differentiation? Cancer Surveys. 14: 169-180; 1992
    13. Raza A, Preisler H. et, al. Effects of retinoic acid, interferon and granulocyte-macrophage colony stimulatting factor on human leukemic cells and the hematopoietic microenvironment in vivo. Biomed & Pharmacother 46: 298; 1992
    14. Blazsek I et al. Roles for the heliodynamic hormones 1 α, 25-dihydroxyvitamin D3 and retinoids, in control of normal and malignous hematoiopesis. Biomed & Pharmacother 46: 313; 1992
    15. Shapiro SS. Retinoids and epithelial differentiation. In Sherman MI(ed) Retinoids and cell differentiation. CRC, press. Boca Rator pp 29-60;1986
    16. Liew Foo-Min et al. Regulation of transglutaminase 1 gene expression by 12-0-teirade canoylphorbol-13-acetate, dexamethasone, and retinoic acid in cultured human keratinocytes. Exp Cell Res 202: 310-315; 1992
    17. Tahmina choudhuri Islam et al. The long terminal repeat of VL30 retrotransposons contains sequences that determine retinoic acid-induced transcription in cultured keratinocytes. J. Biol chem 268(5):3251-3259; 1993
    18. Lotan R. et al. Discovery of new secreted protein marker of squamous differentiation (sqD), establishment of its relation to preprorelaxin and its requlation by retinoids in rabbit tracheal epithelial (RbTE) cells. Biomed & Phamacother 46: 244; 1992
    19. Wolback SB, Howe PR. Tissue change following deprivation of fat soluble A vitamin J. Exp. Med 42:753-777; 1925
    20. Chu MW. et al. An inhibitory effect of vitamin A on the induction of tumors of forestomach and cervix in the syrian hamster by carcinogenic polyclic hydrocarbons Cancer Res 25:884-895;1965
    21. Sporn M.B et al. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 35:1332-1338; 1976
    22. Chytil F et al. Mediation of retinoic acid induced growth and antitumor activity. Nature 260:49-51;1976
    23. Greenwald P. Current status of chemoprevention in humans accoplishments in cancer research 1987 prize year JG Fortnew & JE Rhoads(Eds) 226, 1988 Lippincott company, philadelphia
    24. Hinds MW et al. Dietary vitamin A, carotene, vitamin C and risk of lung cancer in hawaii. Am J Eqidemiol 119(2):227-230;1984
    25. Lippman SM et al. Retinoids as preventive and therapeutic anticancer agents (part 1). Cancer Treat Rep 71:391-405; 1987
    26. Huang ME. et al. Use of all-trans retinoic acid in treatment of acute promyclocytic leukemia. Blood 72: 567-572; 1988
    27.林培中等.食管癌的二级预防——食管癌前病变的阻断性治疗,中华肿瘤杂志10:161;1988
    28. Dawson MI et al. Effect of structural modification in the C7- C11 Region of the retionid skelefon on biological activity in a series of aromatic retinoids. J. Med chem 32: 1504-1517; 1989
    29. Jetten AM et al. New benzoic acid derivative with retinoid activity: lack of diect correlation between biological activity and binding to cellular retinoic acid binding protein. Cancer Res 47: 3523-3527, 1987
    30. He XQ, Han Rui Induction of cancer cell differentiation by a third generation Retinoid R9158. International Symposium on Retinoids in Hematologic Malignancies. Shanghai, China. 1993
    31. Strickland S et al. Structure-activity relationships of a new series of retinoidal benzoic acid derivatives as measured by induction of differentiation of F9 terato carcinoma cells and human HL60 promyelocytic leukomia cells. Cancer Res, 43: 5068-5272; 1983
    32. Siegfried Keidel et al. In vivo biological activity of retinoids partially correlates to their affinity to recombinant retinoic acid receptor α and recombinant cellular retinoic acid-binding protein Ⅰ. Eur. J. Biochem 212: 13-26; 1993
    33. Kagechica H et al. Retinobenzoic acids structure- activity relationships of aromatic amides with retinoidal acitity. J, Med. Chem 31(12): 2182-2192; 1988
    34. Han J et al. Evaluation of N-4(hydroxycarbophenyl) retinamide as a preventive agent and as a cancer chemtherapeutic agents. In Vivo 4: 151; 1990
    35. Chen RD et al. Chemoprevention of cancer of uterine cervixi preliminary study on inter vention of cervical precancerous lesion by retinamide RⅡ. Chin. J. Oncol. 9(5): 348-350; 1987
    36. Lu Ying & Han Jui, Effect of N-4(arboxyphenyl)retinamide and S86019 and cell differentiation and c- myc gene expression of HL-60 cells. Current Medicine in China, 1991
    37.宋争平,刘友华,韩锐.维胺酯及维胺酸对人早幼粒细胞HL—60的分化诱导作用.药学学报 19(8):576,1984
    38.孙士勇:第三代维甲类R8605的癌化学预防研究,中国医科院博士研究生毕业论文, 1990
    39.郭昌月:第三代维甲类R8922的癌化学预防作用研究,中国医学科学院博士研究生毕业论文,1992
    40.何小庆:第三代维甲类R9158的癌分化诱导作用及作用机理研究,中国医学科学院博士研究生毕业论文,1994
    41.郭宗儒,抗癌药物的化学结构与活性关系,P409.肿瘤化学预防及药物治疗,韩锐主编,北京医科大学中国协和医科大学联合出版社,1991
    42. Fujimaki Y. Formation of carcinoma in albino rats fed on deficient diets, J. Cancer Res. 10: 469-477; 1926
    43. Rowe N A. & Gorlin RJ. The effect of vitamin A deficiency upon experimental oral carcinogenesis. J. Dent, Res 38: 72-83; 1959
    44. Davies RE et al. Effect of vitamin A on 7, 12- dimethylbenz(α) anthrancene-induced papillomas in Rhino mouse skin. Cancer Res 27: 237-241; 1967
    45. Saffiotti UR et al. Exprimental cancer of the lung. inhibition by vitamin A of the induction of tracheobronchial squamous metaplasia and squamous cell tumors. Cancer. 20: 857-864; 1967
    46. Grubbs CJ. Inhibition of mammay cancer by retinyl methyl ether, Cancer Res. 37: 599-602; 1977
    47. Moon RC et al, Inhibition of 7. 12- dimotbyl- benz(α)- anthracene-induced mammary carcinogenesis by retinyl acetate. Cancer Res. 36: 2626-2630; 1976
    48. Sporn M.B. R. A. 13- cis- retinoic acid: inhibition of bladder carcinogenesis in the rat. Science 195: 487-489; 1977
    49. Newberne PM et al. Preventive role of vitamin A in colon carcinogenesis in rats. Cancer 40: 2553-2556; 1977
    50. Frankel JW et al. Inhibition of viral tumorigenesis by a retinoic acid anolog. Ⅺ Internal Congress of Chemotherapy. Boston. Abstract No. 850, 1979
    51. Trown PW et al. Inhibition of growth and regression of a transplantable rat chondrosarcoma by three retinoids. Cancer Treat. Rep. 60: 1647-1653; 1976
    52.蔡海英等,新维生素甲酸衍生物抑制小鼠前胃鳞状上皮癌变的研究.药学学报16:648:1981
    53. Han Jui et al. Highlights of the cancer chemoprevention studies in China. Preventive Med 22:712-722;1993
    54. Bollag W & Matler A. Form vitamin A to retinoids in experimental and clinical oncology achievements, failures, and outlook. Ann NY Aca Sci, 359: 9-23; 1981
    55. Jetten AM et al. Stimulation of differentiation of several murine embryonal carcinoma cell lines by retinoic acid. Exp cell Res. 124:381-391; 1979
    56. Strickland S et al. Mouse teratocarcinoma cells: prospects for the study of embryogenesis and neoplasia, cell. 24:277-278; 1981
    57. Strickland S et al. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 15:393-403; 1978
    58. Michael I et al. Studies on the mechanism of induction of embryonal carcinoma cell differentiation by retinoic acid. Ann. NY. Acid Sci. 359:192-199; 1981
    59. Lebel S et al. Laminin A and C appear during retinoic acid- induced differentiation of mouse embryonal carcinoma cells. J. Cell. Biol. 105:1099-1104; 1987
    60. Lotan R et al. Characterization of retinoic acid- induced alterations in the proliferation and differentiation of a murine and a human melanoma cell line in culture. Ann NY Acad Sci. 359: 150-170;1981
    61. Lotan R et al. Enhancement of melanotic expression in cultured mouse melanoma cells by retinoids. J. cell physiol 106:179-189; 1981
    62. Lotan R et al. Identification and characterization of specific changes induced by retinoic acid in cell surface glycoconjugates of S91 murine melanoma cells. Cancer Res 43:303-312; 1983
    63. Breitman TR et al. Induction of differentiation of the human promyelocytic leukemia cell line(HL-60) by retinoic acid. Proc, Natl, Acad Sci USA, 77:2936-2940; 1980
    64. Collins S.J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation and cellular oncogene expression. Blood. 70: 1233-1244; 1987
    65. Tohda S et al. Comparison of the effects of all-trans and cis-retinoic acid on the blast cells of acute myeloblastic leukemia in culture. Leukemia 6(7): 656-661; 1992
    66. Loanotte M et al. NB4, a maturation inducible cell line with (15; 17) marker isolated from a human acute promgolocytic leukemia (M3). Blood 77 : 1080-1086; 1991
    67. Abita JP et al. Binding of ~(125)Ⅰ- insulin to the human histocytic lymphoma cell line U937: effect of differentiation with retinoic acid. Leuk Res. 8: 213: 221; 1984
    68. Sidell N et al. Retinoic acid induced inhibition and morphological differentiation of human neuroblastoma cells in vitro, J. NCI, 68: 589-593; 1982
    69.艾兆伟等.维甲酸对人肝癌细胞一些表型的逆转作用,中华肿瘤杂志,13:9,1991
    70.艾兆伟等,视黄酸对人肝癌细胞浆中某些表型的逆转作用,生物化学与生物物理学报.22:135,1990
    71. Wan YJ et al. Expression of retiooic acid receptor genes in developing rat livers and hepatoma cells. Lab invest 66: 646-651; 1992
    72. Fontana JA et al, Inhibition of mammary carcinoma growth by retinoidal benzoic acid derivatives, Exp Cell Biol. 56: 254-263; 1988
    73. Fontana JA et al. Retinoid modulation of estradiol-stimulated growth and protein synthesis and secretion in human breast carcinoma cells. Cancer Res, 50: 1997-2002; 1990
    74. Koga M et al. Retinoic acid acts synergistically with 1. 25 -dihydroxyvitamin D3 or antiestrogen to inhibit human breast cancer cell proliferation. J Steroid Biochem Mol Biol 39: 455-460; 1991
    75. Fontana JA et al. Retinoid antagonism of estrogen-responsive transforming growth factor α and PS2 gene expression in breast carcinoma cells. Cancer Res 52: 3938-3945; 1992
    76. Mark Ribin et al. 9-cis retinoic acid inhibits growth of breast cancer cells and down- regulates estrogen receptor RNA and protein. Molecular and Cellular Differentiation 1(4): 413; 1994
    77. Ross H et al. All trans-retinoic acid inhibits the growth of human lung cancer cells and alters cytokine production. Biomed & Pharmacother 46: 332; 1992
    78. Lotan R et al. Modulation of differentiation and growth of squamous carcinoma cells in vitro by retinoids. Biomed & Pharmacother 46: 330; 1992
    79.孙月霞等.维甲酸对人胃癌细胞的诱导分化研究.中华肿瘤杂志 16(1):15-17;1994
    80. Pastorino U et al. European chemoprevention trials in patients with lung cancer of head and neck cancer, using high dose retiol palmitate (RP) and N-acetyl-cysteinc (NAC). Biomed & Pharmacother 46:331; 1992
    81. Lin Peizhong et al, Studies on medicamentous inhibitory therapy for esophageal precancerous lesions-3 and 5 Year inhibitory effects of antitumory-B. retinamide and riboflavin. Proc CAMS and PUMC, 5: 121; 1990.
    82. Larson RA. et al, Evidence for a 15; 17 translocation in every patient with acute promyelocytic leukemia. Am J. Med. 76: 827; 1984
    83. Doges L et al. Treatment of first relapse in acute promyelocytic leukemia with all trans retinoic acid. Lancet 336: 1440; 1990
    84. Warrel PM et al. Differentiation therapy of acute promyelocytic leukemia with tetrinoin (all trans retinoic acid). New Engl J Med 324 :1388; 1991
    85. Castaigne S, et al, All trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I clinical results. Blood 76:1740; 1990
    86. Scrobohaci ML et al. Disseminated interavascular coagulation(DIC) and/or primary fibrinolysis in acute promyelocytic leukemia, effect of all trans retinoic acid treatment. Blood (ASH Abstract) Abst No, 183, 48a.
    87. Conley B et al. Phase I trial of trans-retinoic acid (tra) in solid tumor patients. Biomed & Pharmacother 46: 328; 1992
    88. Lippman SM et al. Phase-II trial of 13-cis retinoic acid (BCRA) plus interferon-α (IFN) in locally-advanced squamous cell carcinona(SCC) of the cervix. Biomed & Pharmacother. 46:329; 1992
    89. John Jet al. 13-cis-retinoic acid and interferon- α combination therapy in advanced squamous cell carcinoma. Molecular and Cellular Differentiation I(4):396;1994
    90. Emmons Ret al. An arotinoid (Re 40-8757) in clinical development with novel nuclear binding activity and activity against solid tumors. Molecular Cellular Differentiation 1(4):412;1993
    91. Basher MM et al, In vitro binding of retinol to rat-tissue components. Proc. Natl. Acad, Sci. USA 70:3483-3487; 1973
    92. Ong DE et al. Retinoic acid-binding protein in rat tissue (partial purification and comparision to rat tissue retinol-binding protein). J. Biol Chem 250: 6113-6117; 1975
    93. Shubelta H et al. Molecular cloning of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Nal Acad Sci. USA 84:5645-5649; 1987
    94. Nilsson M et al. Human cellular retinol binding protein gene organization and chromosome location. Eur. J. Biochem 173:35-44; 1988
    95. Giguere V et al. Identification of a receptor for the morphogen retinoic acid, Nature 330:624-629; 1987
    96. Petkovitch M et al. A human retinoic acid receptor which belongs to the family of nuclear receptor, Nature 330:444-450; 1987
    97. de The H et al, A novel streroid / thyroid hormone receptor- related gene inappropriately expressed in human hepatocellular carcinoma. Nature 330: 667-670; 1987
    98. Brand N et al. Identification of a second human retinoic acid receptor Nature 332:850-853; 1988
    99. Zelent A et al. Cloning of murine α and β retinoic acid receptors and a novel receptor Y predominantly expressed in skin. Nature 339:714-717; 1989
    100. Krust A et al. A third human retinoic acid receptor, hRARγ. Proc Natl Acad Sci USA 86:5310-5314; 1989
    101. Mangelsdorf DJ et al. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224-229; 1990
    102. Leroy P et al. Multiple isoforms of the mouse retinoic acid receptor are generated by alternative splicing and differential by retinaic acid. EMBO J. 10:59-69; 1991
    103. Zelent A et al. Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing. EMBO. J. 10:71-81; 1991
    104. Kastner P et al. Murine isoforms of retinoic acid receptor γ with specific patterns of expression. Proc Natl Acad Sci. USA. 86:5310-5314;1990
    105. Mangelsdorf DJ et al. Characterization of three RXR genes that mediate the action of 9-cis-retinoic acid. Genes and Development 6:329-344; 1992
    106. Rowley JD et al. 15; 17 translocation, a consistent chromosomal change in acute promylocytic leukemia. Lancet 1:549;1977
    107. Mattei MG. et al. Mapping the human retinoic acid receptor to the q~(21) band of chromosomal 17. Hum Genet 80:186;1988
    108. Chomienne C et al. The retinoic acid receptor α gene is rearranged in retinoic acid-sensitive promyelocytic leukemias. Leukemia 4:802-807;1990
    109. de The H et al. The PML/RARα fusion mRNA generated by t(15; 17) translocation encodes a functionally altered retinoic acid receptor. Cell 66:675-684;1991
    110. de The H et al. Retinoic acid receptor α in acute promyelocytic leukemia. Cancer Surveys 14:195-203; 1992
    111. Grignani F et al. The acute promyelocytic leukemiaspecific PML-RAR(?) fusion protien inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74:423-431; 1993
    112. Tsai S et al. A mutated retinoic acid receptor α exhibiting dominant- negative activity alteres the lineage development of multipotent hematopoietic cell line. Genes Dev. 6(12): 2258-69; 1992
    113. Kent A Retinoic acid-resistant HL-60 cells harbor a point mutation in retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood 80:1885-1889;1992
    114. Collins SJ et al. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RARα). Mol Cell Biol 10:2154-2163;1990
    115. Robertson KA et al. Multiple members of the retinoic acid receptor family are capable of mediating the granulocytic differentiation of HL-60 cells. Mol Cell Biol 12(9): 3743-3749; 1992
    116. Kent A et al. Retinoic acid receptors in myeloid leukemia: characterization of receptors in retionic acid resistant K- 562 cells. Blood 77:340-347;1991
    117. Houle B et al. Tumor-suppersive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci. USA 90(3):985-9; 1993
    118. Bartsch D et al. Retinoic acid- mediated repression of human papilloma virus 18 transcription and different ligand regulation of the retinoic acid receptor β gene in nontumorigentic and tumorigenic HeLa hybrid cells. EMBO J 11(6): 2283-91; 1992
    119. Van der Burg B et al. Retinoic acid resistance of estradiol-independent breast cancer cells coincides with diminished retinoic acid receptor function. Mol cell Endocrinol 91:149-57; 1993
    120. Mangelsdorf DJ et al. A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66:555-561;1991
    121. Heyman RA et al. 9-cis retinic avcid is a high affinity ligand for the retinoid X receptor. Cell 68:397-406;992
    122. Leid M. Purification cloning and RXR identity of the HeLa cell factor with which RAR of TR heterodimerizes to bind target sequences efficiently, Cell 68:377-395, 1992
    123. Bugge TH et al. RXRα, a promiscuous partner of retinoic acid and thyroid homone receptors. EMBO J.11:1409-1418;1992
    124. Marks MS et al H- 2RIIBP(RXR β ) heterodimerization provides a mechanism for combination diversity in the regulution of retinoic acid and thyroid homone responsive genes. EMBO J. 11:1419-1435;1992
    125. Allenby G et al. Retionic acid receptors and retinoid X receptors :interactions with endogenous retinoic acids, Proc Natl Acad Sci, USA 90:30-34;1993
    126. Durand B et al. All-trans and 9-cis retinoic acid induction of CRABP II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73-85;1992
    127. Green S et al. Nuclear receptors enhance our understanding of transcription regulation. Trends in Genetics 4:309-314; 1988
    128. Ham Jet al. Regulation of gene expression by nuclear hormone receptors. Current Opinion in Cell Biology 1:503-511; 1989
    129. Gudas LJ et al. Retinoids, retinoid- responsive genes cell differentiation, and cancer. Growth & Differentiation 3:655-662;1992
    130. de The H et al. Identification of a retinoic acid respensive element in the retinoic acid receptor β gene. Nature 343:117- 180; 1990 131. Sucov HM et al. Characterization of an autoregulated response element in the mouse retinoic acid receptor type β gene. Proc Natl Acad Sci, USA 87: 5392-5396; 1990
    132. Harding PP et al. Retinoic acid activation and thyroid hormone repression of the human alcohol dehydrogenase gene ADH3 J. Biol Chem 267 :14145-14150; 1992
    133. Duester G et al. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis. Mol Cellu Biol 11:1638-1646; 1991
    134. Raisher BD et al. Identification of a novel retinoid- responsive element in the promotor region of the medium chain acyl- coenzyme A dehydrogenase gene. J Biol Chem 267 (28): 20264-20269; 1992
    135. Lepar GJ et al. Retinoic acid and dexamethasone interact to regulate S14 gene transcription in 373- F442A a diplocytes. Mol cellular Endocrinology, 84:65-72; 1992
    136. Pan CJ et al. Induction of phosphoenolpyruvate carboxykinase gene expression by retinorc acid in an adult rat hepatocyte line. Biochem 29: 10883-10888; 1990
    137. Lucas PC et al. A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene. Proc Natl Acad Sci USA 88: 2184-2188; 1991
    138. Hall RK et al. Activation of the phosphoenolpyruvate carboxkinase gene retinoic acid response element is dependent on a retinoic acid receptor/coreglulator complex. Mol Cellular Bioi 12:5527-5535; 1992
    139. Pura Munoz-Canoves et al. Mapping of a retinoic acid response element in the promotor region of the complement factor H gene. J Biol Chem 265(33): 20065-20068; 1990
    140. Bertram JS et al. Retinoids up-regulative expression of connexion 43 in human and mouse cells implication for growth control and differentiation. Biomed & Pharmacother 46: 284; 1992
    141. Ways DK et al. Effect of retinoic acid on phorbol ester- stimulated differentiation and protein kinase C dependent phosphorylation in the U937 human monoblastoid cell. Cancer Res 48:5779;1988
    142. Makowake M et al. Immunochemical evidence that three protein kinase C isozymes increase in abundance during HL-60 differentiation induced by dimethyl sulfoxide and retinoic acid. J Biol Chem. 263:3402-3410;1988
    143. Frank AE et al. A cyclic AMP response element is involved in retinoic acid-dependent BARβ2 promotor activation. Nucleic Acid Res 20:6393-6399; 1992
    144. M Leonor Cancela et al. Retinoic acid induces matrix Gla protein gene expression in human cells. Endocrinology, 130: 102-108; 1992
    145. Chomienne C et al. Regulation of Bcl -2 and cell death by all- trans retinoic acid in acute promyelocytic leukemic cells. Biomed & Pharmaeother 46, 260, 1992
    146. Draetta G et al. Human cdc 2 protein kinase is a major cell- cycle regulated tyrosine kinase substrate. Nature 336:738-744; 1988
    147. Jonathor Pines et al. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p~(34cdc2) Cell 58:833-846; 1989
    148. Tsai Li-Hui et al. Isolation of the human cdk2 gene that encodes the cyelin A-and adenvirous EIA-associated p33 kinase;. Nature 353: 174-177; 1991
    149. Tony Hunter and Jonathon Pines. Cyclins and cancer. Cell 66:1071-1074; 1991
    150. Jonathan A et al. RB and the cell cycle: extrance or exit? Cell 58:1009-1011; 1989
    151. Chen PL et al. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation Cell 58:1193-1198; 1989
    152. Decaprio JA et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58: 1085-1095; 1989
    153. Lebovitz RM et al. Oncogenes as medicators of cell growth and differentiation. Lab Invest 55:249-251;1986
    154. Studzinski G.P. Oncogenes growth and the cell cycle: an overview. Cell Tissue Kinet. 22:405-424; 1989
    155. Adams JM. Growth control circuity and the oncogene connetion. Cancer Cells. 2:190; 1990
    156. Gezer S et al. Changes observed in the growth fraction, labeling index, duration of S phase and total cell cycle times of HL-60 cells as they undergo differentiation in response to retinoic acid. Cancer Res. 48:5989-5995; 1988
    157. Jonk LJ. et al. Aggregation and cell cycle dependent retinoic acid receptor mRNA expression in P19 emhryonal carcinoma cells. Mech Dev. 36(3): 165-172; 1992
    158. Ang AT. e t al. Regulation of phosphorylation of the retinoblastoma gene product. Biomed & Pharmacother 46: 258; 1992
    159. Yen A, Varvayanis S. Tumor suppressor gene expression responds to chemotherapeutic drugs. Biomed & Pharmacother 46: 258; 1992
    160.李林:全反式维甲酸诱导HL-60细胞的作用机理研究,中国医学科学院博士研究生毕业论文,1992
    161. Edward Schnipper. New retinoids- Roch program. International symposium on retinoids in hematologic malignancies, pl. 1993
    162. Emmons R et al. Ro 40-8757 a new arotinoid with antitumor activity in vivo and vitro. Biomed & Pharmacother 46: 304; 1992
    163. Uchida T et al, Anti-tumor arotinoid R。 40-8757 down regulates mitochondrial gene expression in breast and pancreatic cancers. Molecular and Cellular Differentiation. 1(4): 409; 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700