新疆北山地区红石山镁铁质—超镁铁质层状岩体的地球化学特征与岩石成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红石山镁铁质-超镁铁质层状岩体位于塔里木板块东北部的新疆北山地区。北山地区是我国主要的镁铁质-超镁铁质杂岩带之一,已发现该类杂岩体近百个,红石山岩体是其中最具代表性的镁铁质-超镁铁质层状岩体之一。本文通过对红石山岩体岩相学、晶体化学、稀土元素、微量元素和Nd、Sr、Pb同位素方面的系统研究,科学论证了其岩浆过程、岩浆性质、地幔源区特征。通过研究取得的了以下几点初步认识:
     1、红石山镁铁质-超镁铁质层状岩体存在两种岩相:橄榄岩相和辉长岩相。两种岩相是同源岩浆演化到不同阶段的产物。橄榄岩相的岩石类型有:纯橄岩、单辉橄榄岩、含长橄榄岩、橄长岩;辉长岩相的岩石类型有:橄榄辉长岩、辉长岩、斜长岩。橄榄岩相岩石化学成分明显富MgO、FeOT,贫CaO、Al2O3, m/f=5.74-8.76,属铁质-镁质超基性岩;辉长岩相岩石化学成分明显富CaO、Al2O3,贫MgO、FeOT, m/f=1.81-4.56,属铁质超基性岩。橄榄岩相与金属硫化物矿化关系密切,而辉长岩相与磁铁矿化关系密切。红石山岩体呈岩盆状,形成于早二叠世。
     2、红石山岩体是一堆晶层理非常发育的镁铁质-超镁铁质层状岩体。通过对2个钻孔的编录,红石山岩体至少可以划分为4个旋回,每一个旋回代表着一次岩浆贯入,各个旋回之间堆晶韵律明显,完整的堆晶韵律为“纯橄岩+单辉橄榄岩+含长橄榄岩+橄长岩+橄榄辉长岩+辉长岩+斜长岩”。
     3、红石山层状岩体岩石结构以正堆晶结构为主,堆晶矿物为橄榄石、尖晶石、斜长石和磁铁矿,填隙相主要为单斜辉石。岩相学和地球化学特征表明岩浆在演化过程中经历了橄榄石、尖晶石、斜长石、单斜辉石和磁铁矿的分离结晶作用,结晶次序为橄榄石+尖晶石→橄榄石+尖晶石+单斜辉石→橄榄石+尖晶石+斜长石→橄榄石+斜长石+单斜辉石→斜长石+单斜辉石+磁铁矿。
     4、红石山岩体稀土元素和微量元素含量都很低,为原始地幔的1-10倍。稀土元素配分曲线大体上表现为平坦型,相对富集大离子亲石元素,相对亏损TiO2、P2O5、Na2O、K20和高场强元素,具有不同程度的正铕异常。Nd、Sr、Pb同位素特征表明红石山岩体源自于亏损型地幔,局部与围岩发生了同化混染作用。
     5、原生岩浆属苦橄质岩浆,这种高温高镁的苦橄质岩浆是地幔柱轴部部分熔融形成的,这为塔里木东北部早二叠纪地幔活动提供了确凿的证据。
Hongshishan mafic-ultramafic layed intrusion lies in the Beishan zone in Xinjiang, northeast of the Tarim plate.The Beishan zone is one of the most important mafic-ultramafic layed complex zone in China.lt is reported that almost hundreds of such intrusions has been found in this area, while the Hongshishan intrusion is one of the most representative mafic-ultramafic intrusions. According to systematically research the petrography, crystal chemistry, rare earth elements, trace elements and Sr, Nd, Pb isotopic geochemistry of Hongshishan intrusion, it's demonstrateed its magmatic process, magma nature and mantle source district features in this paper. Based on such researches,we get some initial understanding as follows:
     1. In the Hongshishan mafic-ultramafic layed intrusion, there are two phases:peridotitic facies and gabbroic.facies,which are products of different stages of comagmatic rock.The facies units of the peridotitic facies are dunite,clinopyxene peridotite,peridotite,feldspathic peridotite,troctolite,while the gabbroic facies are olivine gabbro,gabbro,anorthosite. MgO as well as FeOT are rich and CaO、Al2O3 poor in the peridotitic facies,the m/f ratio is 5.74-8.76 and belong to ferruginous-magnesium ultrabasic rocks,while CaO、Al2O3 are rich and MgO、FeOT are poor in the gabbroic facies,the m/f ratio is 1.81-4.56 and belong to feruginous ultrabasic rocks. The peridotitic facies have a relation with sulfide metallization,while the gabbroic facies with magnetite metallization. The intrusion is a chonolith,forming in the Early Permian.
     2.The Hongshishan intrusion is a mafic-ultramafic layered intrusion with cumulate bedding well development.After researchs on two cores,at least four cycles can be classified in the Hongshishan intrusion,and every cycle can be representative for a magma injection.The cumulate rhythmicities are obvious in every cycles,and a complete cumulate rhythmicity should be dunite+clinopyroxene peridotite+ feldspathic peridotite+ troctolite+ olivine gabbro+gabbro+anorthosite.
     3.The orthocumulate texture is the primary texture in the Hongshishan intrusion. The cumulate minerals is olivine,spinel, plagioclase,magnetite,and the intercumulate mainerals is primaryly clinopyroxene.Petrography and geochemistry characters shou that the Hongshishan intrusion had undergone fractional crystallizition of olivine,spinel,plagioclase,clinopyroxene and magnetite in the magma evolution,with crystallization order of olivine +Cr-spinel→olivine+Cr-spinel+clinopyroxene→olivine+Cr-spinel+ plagioclase→olivine+ plagioclase+ clinopyroxene→plagioclase+ clinopyroxene+ magnetite.
     4. The concentrations of rare earth elements and trace elements are very low with 1 to 10 times for that of the primitive mantle.The REE patterns are flattened,with positive Eu anomalies to different extent.The Large Ion Lithpophile Elements (LILE) are enriched,while TiO2、P2O5、Na2O、K2O as well as high field-strength elments(HFSE) depleted in the Hongshishan intrusion. The characters of Nd、Sr、Pb isotopes show that the magmatic source belong to the depleted mantle (DM),and it was locally inflenced by contamination with the wall rocks.
     5. The primary magma of the Hongshishan intrusion belong to Mg-enriched and high-temperature picritic magma,which forms in the axle center of mantle plume under fraction melting.It is a conclusive evidence to mantle plume of northeast Tarim Plate.
引文
[1]Alexander Y. and Anatoly N.,2004. Noril'sk-Talnakh Cu-Ni-PGE deposits:a revised tectonic model. Mineralium Deposita,39(2),125-142.
    [2]Churig S.L., Jahn, B.M.,1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary, Geology,23:889-892.
    [3]Campbell I. H. and Griffiths R.W.. The evolution of mantle's chemical structure [J]. Lithos, 1993,30:389-399
    [4]Campbell I, Naldrett A.J., Barnes S.J.,1983. A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. Journal of Petrology, 24:133-165
    [5]Courtillot, V., Renne, P.,2003. On the ages of flood basalt events. C. R. Geosci,335: 113-140.
    [6]Faure G... Principles of isotope geology [J]. John Wiley and Sons.,1986,142-247
    [7]Forster J.G., Lambert D.D., Frick L.R., Maas R.1996. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature,382:703-706
    [8]Furman T. Y., Bryce J.G., et al. East African rift system(EARS) plume structure:insight from quaternary mafic lavas of Turkana, Kenya [J]. Journal of Petrology,2004,45: 1069-1088
    [9]Jason R.A., Gary M.T., Zhou M.F., Song X.Y.,2005. Emeishan large igneous province, SW China. Lithos,79:475-489
    [10]Hannah J.L., Stein, H.J.2002 Re-Os model for the origin of sulfide deposits in anonthosite-associated intrusive complexes. Economic Geology,97:371-384
    [11]Horan M.F., Morgan J.W., Walker R.J., et al.2001. Re-Os isotopic constraints on magma mixing in the Peridotite Zone of the Stillwater Complex, Montana, USA. Contributions to Mineralogy and Petrology,141 (4):446-457
    [12]Irvine T.N.,1975.Crystallisation sequence of the Muskox intrusion and other layered intrusions:II origin of the chromotite layers and similar deposits of other magmatic ores.Geochim.Cosmochim.Acta,39:991-1020
    [13]Keays R.R.,1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of the ore deposits. Lithos,34:1-18
    [14]Lambert D.D., Frick L.R., Foster J.G., Li C.S., Naldrett AJ.2000. Re-Os isotope systematics of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: Ⅱ. Implications for parental magma chemistry, ore genesis, and metal redistribution. Econ. Geol.,95:867-888
    [15]Medvedev A.Ya., Al'Mukhamedov A.I., Kirda, N.P.,2003. Geochemistry of Permo-Triassic volcanic rocks of West Siberia. Russ. Geol. Geophys,44:86-100
    [16]Naldrett A.J.,2004. Magmatic sulfide deposits:geology, geochemistry and exploration. Spring Berlin Heidelberg New York,481-725
    [17]Naldrett A.J.,1999. World-class Ni-Cu-PGE deposits:Key factors in their genesis. Mineralium Deposita,34:227-240.
    [18]Pirajno F., Mao J.W., Zhang Z.C., Zhang Z.H., Chai F.M.2007. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China:Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2007.10.012
    [19]Reichow M. K., Saunders A. D., White R.V. et. al.2005 Geochemistry and petrogenesis of basalts from the West Siberian Basin:an extension of the Permo-Triassic Siberian Traps, Russia. Lithos,79:425-452
    [20]Saunders A.D., Norry J.M., Tarney J.. Origin of MORB and chemically depleted mantle reservoirs:trace element constraints [J]. Journal of Petrology (Special Litho sphere Issue), 1988,425-445
    [21]Sharma, M., Basu, A.R., Nesterenko, G.V.,1992. Temporal Sr,Nd and Pb-isotopic variations in the Siberian flood basalts:implications for the plume-source characteristics. Earth Planet Sci. Lett.,113:365-381
    [22]Song X.Y., Zhou M. F., Hou Z.Q., et al.,2001. Geochemical constraints on the mantle source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China. International Geology Review,43:213-225.
    [23]Song, X.Y., Zhou, M.F., Keays, R.R., Cao, Z., Sun, M., Qi, L.,2006. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:implications for sulfide segregation. Contrib. Mineral. Petrol,152:53-74
    [24]Yang S.F., Li Z.L., Chen H.L., et.al,2007. Permian bimodal dyke of Tarim Basin, NW China:Geochemical characteristics and tectonic implications. Gondwana Research.12(1-2):113-120
    [25]Wang C.Y., Zhou M.F., Zhao D.G.,2005. Mineral chemistry of chromite from the Permian Jinbaoshan Pt-Pd-sulphide-bearing ultramafic intrusion in SW China with petrogenetic implications. Lithos,83:47-66.
    [26]Wang C.Y., Zhou M.F., Keays.R.R.,2006. Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China. Contribution to Minerlogy and Petrology,152:309-321.
    [27]Wilson M.. Igneous Petrogenesis [M]. London:Unwin Hyman,1989
    [28]Xu Y.G., Chung S.L., Jahn B.M., et al.,2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos,58:145-168.
    [29]Zhou M.F., Lesher C.M., Yang Z.X. et al.,2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China:implications for the tectonic evolution of the Central Asian orogenic belt, Chemical Geology,209:233-257
    [30]Zhou M.F., Yan D.P., Kennedy A.K, Li Y.Q., et al.,2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China, Earth and Planetary Science Letters,196 (1-2):51-67.
    [31]Zhou M.F., Malpas J., Song X.Y., Robinson P.T., et al.,2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction, Earth and Planetary Science Letters,196 (3-4):113-122.
    [32]柴凤梅,新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁—超镁铁质岩石的地球化学特征对比研究[D].北京:中国地质大学(北京),2006
    [33]陈汉林, 杨树锋, 王清华, 罗俊成, 贾承造,魏国齐,厉子龙,何光玉, 胡安平.2006.塔里木板块早-中二叠世玄武质岩浆作用的沉积响应.中国地质.33(3):545-552
    [34]成守德,张湘江.新疆大地构造基本框架[J].新疆地质,2000,18(4):53-62
    [35]高振家,陈晋镳,陆松年,彭昌文等.前寒武纪地质(第6号,新疆北部前寒武纪)[M].北京:地质出版社,1993,8-40
    [36]龚全胜,刘明强,梁明宏,李海林.北山造山带大地构造相及构造演化[J].西北地质,2003,36(1):11-19
    [37]胡素芳.攀西地区红格、新街岩体的岩石地球化学特征[D].北京:中国科学院地质与地球物理研究所,2001
    [38]姜常义,程松林,叶书锋等.新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩 石成因[J].岩石学报,2006,22(1):115-126
    [39]姜常义,姜寒冰,叶书锋,等.新疆库鲁克塔格地区二叠纪脉岩群岩石地球化学特征,Nd、Sr、Pb同位素组成与岩石成因[J].地质学报,2005a,79(6):823-833
    [40]姜常义,卢登蓉,白开寅,等.大陆岩石圈地质交代作用的产物-且干布拉克蛭石矿床[J].岩石学报,2005b,21(1):201-210
    [41]姜常义,钱壮志,姜寒冰,等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报,2007,23(4):777-792
    [42]姜常义,夏明哲,余旭,逯东霞,魏巍,叶书锋.塔里木板块东北部柳园粗面玄武岩带:软流圈地幔减压熔融的产物[J].岩石学报,2007,22(1):1777-1790
    [43]李华芹,陈富文,梅玉萍,吴华,程松林,杨甲全,代玉财.新疆坡北基性-超基性岩带Ⅰ号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义[J].矿床地质,2006,25(4):463-469
    [44]李华芹,梅玉萍,屈文俊,蔡红,杜国民.新疆坡北基性-超基性岩带10号岩体SHRIMPU-Pb和矿石Re-Os同位素定年及其意义[J].矿床地质,2009,28(5):633-642
    [45]刘玉琳,张志诚,郭召杰,黄宝玲,穆志国.1999.库鲁克塔格基性岩墙群K-Ar等时年龄测定及其有关问题讨论.高校地质学报5(1):54-58
    [46]聂凤军,江思宏,赵省民,白大明.2003.新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征:对同化混染和结晶分异过程的启示[J].岩石学报,25(4):873-887
    [47]苏本勋,秦克章,孙赫,唐冬梅等.2009.蒙-甘-新相邻(北山)地区两种新类型贵重金属矿床的发现及其意义[J].地球学报,22(5):397-402
    [48]汤中立,钱壮志,姜常义,李文渊,闫海卿,曾章仁,苏尚国,刘民武,焦建刚.中国镍铜铂族岩浆硫化物矿床与成矿预测.北京:地质出版社,2006,22-179
    [49]吴利仁.论中国基性岩、超基性岩的成矿专属性[J].地质科学,1963,(1):29-41
    [50]校培喜等.笔架山幅1:25万区域地质调查(修测)k46c004002[R].西安地质矿产研究所,2005
    [51]肖渊甫,王道永,吴德超,邓江红,何政伟.新疆北山构造带西段地质演化[M].四川科学出版社和新疆科技卫生出版社.2000.113-139
    [52]杨树锋,陈汉林,董传万,贾承造,汪振国.1997.塔里木盆地二叠纪基性岩带的确定及大地构造意义.地球化学25(2):121-128
    [53]杨树锋,陈汉林,冀登武,厉子龙,董传万,贾承造,魏国齐.2005.塔里木盆地早-中 二叠世岩浆作用过程及地球动力学意义.高校地质学报 11(4):504-511
    [54]张旺生.新疆北山大地构造属性及演化特征.新疆地质,1992,10(2):129-137
    [55]张招崇,Mahoney J.J.,王福生,赵莉,艾羽,杨铁铮. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据.岩石学报,2006,22(6):1538-1552
    [56]张招崇,王福生.一种判别原始岩浆的方法-以苦橄岩和碱性玄武岩为例[J].吉林大学学报(地球科学版),2003,33(2):130-134
    [57]张志诚,郭召杰,刘树文.1998.新疆库鲁克塔格地区基性岩墙群的岩石地球化学特征、形成时代及其大地构造意义.北京大学国际地质科学学术研讨会论文集,北京:地震出版社,124-131
    [58]赵鹏大,胡旺亮.北山远景成矿区地物化综合研究与找矿靶区圈定[R].1995
    [59]周济元,崔炳芳,肖惠良,陈世忠,黄文彬,梁世奎,王文冈.红十井—北山裂谷带南亚带金银铜成矿条件研究及找矿靶区预测[R].南京地质矿产研究所,1996,85-103
    [60]周济元,崔炳芳.甘新北山东段裂谷演化及金矿成矿规律[J].火山地质与矿产,2000,21(1):7-17
    [61]左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社.1990,1-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700