单分散羧基化聚苯乙烯微球的制备及生物医学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单分散微米级聚苯乙烯微球具有形貌规则、粒径均一、良好的表面反应能力和易于功能化等优点,在免疫技术和疾病早期诊断等领域具有很高的研究和应用价值。在液相生物芯片的应用中,如何制得高性能聚苯乙烯微球并实现编码,对液相生物芯片实现快速、高通量检测起着至关重要的作用。
     本文研究了单分散、粒径可控的功能化聚苯乙烯微球的制备,探讨了不同的微球编码方式,实现了在免疫技术方面的初步应用。首先,以分散聚合制备的直径2μm左右的聚苯乙烯微球为种子,通过种子聚合的方法制备了粒径在5-15μm的羧基化聚苯乙烯微球,并对种子聚合的机理、共聚的可行性进行了探讨,同时探索了单体溶胀时间、苯乙烯的加入量、甲基丙烯酸的加入量等反应条件对微球粒径和形貌的影响;通过酶联免疫反应评价了微球的表面反应能力和羧基的活性。其次,通过在种子聚合单体溶胀阶段加入致孔剂甲苯,制备出多孔聚苯乙烯微球,探讨了交联度和甲苯用量对微球表面孔径大小和分布的影响;用不同发射波长的量子点对多孔微球进行荧光编码,制备出量子点荧光编码微球,并对多孔荧光微球荧光性能进行了相应的表征;用多孔的量子点编码荧光微球进行免疫反应实验,并通过光纤光谱仪对免疫反应后微球的荧光光谱进行扫描分析。
     扫描电子显微镜分析表明,制得的微球形貌规则、粒径高度均一,流式细胞术分析表明,不同粒径的微球分属不同的点群并能够完全分开,因此可通过微球粒径差异实现编码;红外谱图和核磁谱图证明,在种子聚合中甲基丙烯酸通过共聚的方法被成功引入到了微球表面,电导滴定测得聚合物微球表面羧基含量为0.3mmol/g,免疫反应实验进一步证实微球表面羧基具有良好的反应活性。量子点荧光编码微球荧光谱图表明可基于微球中量子点的最大发射峰位实现编码;激光共聚焦显微镜表征显示,相比于无孔致密的荧光微球,多孔荧光微球内部荧光强度分布更加均匀,证明量子点通过多孔微球的孔道渗入了微球内部且均匀分布;免疫反应实验证明多孔荧光微球能够稳定地结合抗原(人IgG),并且能够特异识别相应的抗体(量子点标记的羊抗人IgG)。
     本课题的研究成果为液相生物芯片中编码微球的研发提供了重要的理论支持和实验依据,在生物识别和检测领域具有广阔的应用前景。
There is extensive research and using value of monodisperse micron-sized polystyrene microspheres in immunological technique and early diagnosis of diseases. It is attributed to many advantages of the microspheres such as good spherical shape, uniform size, high surface reaction capability, and easily to be functionalized. The preparation of high-performance encoded beads play a critical role in the field of suspension array biochip for rapid and multiplex detection.
     In this work, the preparation of monodisperse functionalized polystyrene microspheres, encoding methods and their applications in immunological technique were investigated. Firstly, the 2μm polystyrene seeds were synthesized by dispersion polymerization. And carboxylated polystyrene microspheres with the diameter in the range of 5-15μm were prepared via seed polymerization. The mechanism of seed polymerization and the copolymerization feasibility of styrene with methacrylic acid (MAA) were studied. The parameters influencing the diameter and morphology of microspheres, including the monomer swelling time, the content of styrene and MAA, were investigated. The reactivity of carboxyl group on the surface of microspheres was confirmed by enzyme linked immunosorbent assay (ELISA). Secondly, for producing porous polystyrene microspheres, toluene as the porogen was added into the system during the monomer swelling stage of seed polymerization. The effect of the toluene content and the crosslinking degree on the size and distribution of pore on the microsphere surface were investigated. Quantum Dot-encoded fluorescent microspheres were successfully obtained by tagging quantum dots (QDs) with different fluorescence emission peaks into porous microspheres. The fluorescent properties of the porous quantum dot-encoded fluorescent microspheres were characterized. The porous quantum dot-encoded fluorescent microspheres were used in immunoreactions and their fluorescence spectra were obtained by optical fiber optic spectrograph.
     The monodisperse and spherical microspheres was observed in the scanning electronic microscope (SEM) photographs. In flow cytometry analysis, the microspheres with various sizes can be completely separated into different groups, which show the diameter-encoded method can be validly employed in the multiplexing detection systems. The results of FTIR and 1HNMR indicated that the MAA monomer was successfully copolymerized to the microspheres. The content of carboxyl group on the microsphere surface was 0.3mmol/g via conductometric titration. The high reactivity of carboxyl group on the surface of microspheres was well established by immunoreactions. The fluorescence photographs and spectrums showed that the quantum dot-encoded fluorescent microspheres were effectively encoded using QDs with different emission wavelengths. The fluorescent intensity distribution of quantum dot-encoded fluorescent microspheres was characterized by the laser confocal fluorescence microscopy. The results showed that the QDs permeated into the porous microspheres effectively via the interior pores, offering a more homogeneous interior fluorescent intensity than the non-porous ones. The immunoreactions showed that the porous quantum dot-encoded fluorescent microspheres can be sensitized by antigen (human IgG) stably and capture the antibody specifically (QDs labled goat-anti-human IgG).
     This work is beneficial to fabrication of polymer beads for suspension array biochip, and this robust study can be further utilized to the field of immunological technique and early diagnosis of diseases.
引文
[1]马光辉,苏志国,高分子微球材料,北京:化学工业出版社,2005
    [2] Annmuriel S., Marylène F., Chantal A., et al. Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: An assay amenable to high-throughput screening technologiesm, Cytometry, 2001, 45: 237~243
    [3] Nolan J. P., Sklar L. A., The emergence of flow cytometry for the sensitive, real-time analysis of molecular assembly, Nature Biotechnology, 1998, 16: 833~838
    [4] Reese C. E., Guerrero C. D., Weissman J. M., et al. Asher synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals, Journal of Colloid and Interface Science, 2000, 232: 76~80
    [5] Zhang J., Chen Z., Wang Z., et al. Preparation of monodisperse polystyrene spheres in aqueous alcohol system, Materials Letters, 2003, 57: 4466~4470
    [6] Zhang Q., Han Y., Wang W. C., et al. Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method, European Polymer Journal, 2009, 45: 550~556
    [7] Kim J. W., Suh K. D., Monodisperse polymer particles synthesized by seeded polymerization techniques, Journal of Industrial and Engineering Chemistry, 2008, 14: 1~9
    [8] Weisberger J., Wu C. D., Liu Z., et al. Differential diagnosis of malignant lymphomas and related disorders by specific pattern of expression of immuneophenotypic markers revealed by multiparameter flow cytometry, International Journal of Oncology, 2000, 17:1165~1177
    [9] Rahmani A., Fornel F. de., Near-field optical probing of fluorescent microspheres using a photon scanning tunneling microscope, Optics Communications, 1996, 131: 253~259
    [10] Park J., Joo J., Kwon S. G., et al. Synthesis of monodisperse spherical nanocrystals, Angewandte Chemie, 2007, 46: 4630~4660
    [11]王娟,粱彤祥等,单分散聚合物微球的合成技术,材料工程,2004,11:61~64
    [12]熊博晖,沈丽,丛润滋等,单分散多孔交联聚苯乙烯色谱填料的合成,色谱,1998,16 (6):492~494
    [13]罗正平,张秋禹等,分散聚合研究,高分子通报,2002,5:35~40
    [14] Xu Z. S., Yi C. F., Cheng S. Y., et al. The Inverse Emulsion Polymerization of Acrylamide Using Poly(Methyl Methaerylate)-Graft-Polyoxyethylene as the Stabilizer, Journal of Applied Polymer Science, 2001,79(3):528~534
    [15] Ge X. W., Sheng M. Y., Ye Q., et al. Ampholytic Terpolymers of Acrylamide with Sodium Acrylate and (2-Methacryloyloxyethyl) trimethylammonium Chloride, Synthesis with 60Co–Ray and Polymerization Kinetics, Polymer Journal, 1999, 31(12): 1243~1246
    [16]王玉霞,张芳,王艳君等,无皂乳液聚合的进展,化学工业与工程,2003,20(l):16~19
    [17]王志英,范丽恒,杨成等,无皂乳液共聚制备纳米微球,化工新型材料,2006,34(3):43~44
    [18] Tu C., Yang Y., Gao M., Preparations of bifunctional polymeric beads simultaneously incorporated with ?uorescent quantum dots and magnetic nanocrystals, Nanotechnology, 2008, 19: 105601
    [19] Omi S. Preparation of monodisperse microspheres using the Shirasu porous glass emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 109: 97~107
    [20] Yuyama H., Yamaoto K., Shirafuji K., et al. Preparation of polyurethaneurea (PUU) uniform spheres by SPG membrane emulsification technique, Journal of Applied Polymer Science, 2000, 77: 2237~2245
    [21] Yuyama H., Watanabe O., Ma G. H., et al. Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 168: 159~174
    [22] Chu L. Y., Xie R., Zhu J. H., et al. Study of SPG membrane emulsification processes for the preparation of monodisperse core–shell microcapsules, Journal of Colloid and Interface Science, 2003, 265: 187~196
    [23] Omi S., Katami K., Yamamoto A., et al. Synthesis of polymeric microspheres employing SPG emulsification technique, J. Appl Polym. Sci., 1994, 51: 1~11
    [24] Jeffrey S. D., Frank R. S., Li W. H., et al. Growth Mechanism of Poly(divinylbenzene) Microspheres in Precipitation Polymerization, Macromolecules, 1999, 32, 2838~2844
    [25] Naka Y., Yamamoto Y., Preparation of microspheres by radiation-induced polymerization. I. Mechanism for the formation of monodisperse Poly(diethyleneglycol dimethacrylate) microspheres, Journal of Polymer Science Part A: Polymer Chemistry, 1991, 29: 1197~1202
    [26] Lu Y. Y., El-Aasser M. S., Vanderhoff J. W., Dispersion polymerization of styrene in ethanol: Monomer partitioning behavior and locus of polymerization, Journal of Polymer Science Part B: Polymer Physics, 1988, 26:1187~1203
    [27] Paine A. J., Dispersion polymerization of styrene in polar solvents.Ⅳ. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerizations, Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28: 2485~2500
    [28] Shen S., Sudol E. D., El-Aasser M. S., Dispersion polymerization of methyl methacrylate mechanism of particle formation, Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32: 1087~1099
    [29] Song J. S., Leonid C., Mitchell A., Monodisperse Micrometer-Size Carboxyl-Functionalized Polystyrene Particles Obtained by Two-Stage Dispersion Polymerization, Macromolecules, 2006, 39: 5729~5737
    [30] Takahashi K., Miyamori S., Uyama H., et al. Preparation of micron-size monodisperse poly(2-hydroxyethyl methacrylate) particles by dispersion polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34: 175~182
    [31] Ugelstad J., Mork P. C., Kaggerud K. H., et al. Swelling of oligomer-polymer particles: new methods of preparation of emulsions and polymer dispersions, Advances in Colloid and Interface Science, 1980, 13: 101~140
    [32] Ugelstad J., Mork P. C., Schimid R., et al. Preparation and biochemical and biomedical applications of new monosized polymer particles, Polymer International, 1993, 30: 157~168
    [33] Okubo M., Shiozaki M., Tsujihiro M., et al. Preparation of micron-size monodisperse polymer particles by seed polymerization utilizing the dynamic monomer swelling method, Colloid and Polymer Science, 1991, 269(3): 222~226
    [34] Ma G. H., Nagai M., Omi S., Synthesis of uniform microspheres with higher content of 2-hydroxyethyl methacrylate by employing SPG(Shirasu Porous Glass) emulsification technique followed by swelling process of droplets, Journal of Applied Polymer Science, 1997, 66: 1325~1341
    [35] Bai F., Yang X. Li R., et al. Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitationpolymerization, Polymer, 2006, 47: 5775~5784
    [36] Kang K., Kan C., Du Y., et al. Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization, European Polymer Journal, 2005, 41: 439~445
    [37] Li J., Li H. M., Functionalization of syndiotactic polystyrene with succinic anhydride in the presence of aluminum chloride, European Polymer Journal, 2005(41): 823~829
    [38]王伟财,张琦,张兵波等,氨基化单分散超顺磁荧光PGMA多功能微球制备,科学通报,2007,52:2477~2481
    [39] Dusek K. I., Haward E. N., Developments in polymerization, Applied Science, 1982, 3(4): 143~158
    [40] Vanderhoff J. W., Cheng C. M., Micale F. J., et al. Pore structure studies of monodisperse porous polymer particles, Journal of Colloid and Interface Science, 1992, 150(2):199~203
    [41] Gao X. H., Nie S. M., Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity: Rapid Readout Using Flow Cytometry, Analytical Chemistry, 2004, 76: 2406~2410
    [42] Uyama H., Takahashi K., Kobayashi S., Kobunshi Kako, 1996, 45: 492~496
    [43] Ogino K., Hisaya S., Tsuchiya K., et al. Synthesis of monodisperse macroreticular styrene-divinylbenzene gel particles by a single-step swelling and polymerization method, Chromatograph A, 1995, 69: 59~66
    [44]漆红兰,磁性微粒的制备方法和研究进展,生命的化学,2002,22:586~589
    [45]徐辉,张国亮,张风宝,免疫磁性微球的研究进展,化学工业与工程,2003,20:27~32
    [46] Vestal C. R., Zhang Z. J., Atom transfer radical polymerization synthesis and magnetic characterization of MnFe204/Polystyrene core/shell nanoparticles, Journal of American Chemical Society, 2002, 124: 14312~14313
    [47] Matsuno R., Yamamoto K., Otsuka H., et al. Polystyrene-grafted magnetite nanoparticles prepared through surface-initiated nitroxyl-mediated radical polymerization, Chemistry of Materials, 2003, 15: 3~5
    [48]王延梅,封麟先,磁性高分子微球的研究进展,高分子材料科学与工程,1998,14(5):6~14
    [49] Han K., Xiang Z., Zhao Z. H. et al. Preparation of monodisperse CdTe nanocrystals-SiO2 microspheres without ligands exchange, Colloids and SurfacesA: Physicochemical and Engineering Aspects, 2006, 280: 169~176
    [50] Ma Q., Wang X. Y., Li Y. B., et al. Multicolor quantum dot-encoded microspheres for the detection of biomolecules, Talanta, 2007, 72(4): 1446~1452
    [51] Hatakeyama M., Nakamura K., Iwato S., et al. DNA-carrying latex particles for DNA diagnosis 2. Distinction of normal and point mutant DNA using S1 nuclease, Colloids and Surfaces B: Biointerfaces, 1998, 10: 177~178
    [52] Eugenia C., Patrizia E., Giorgio L., et al. Flow cytometry applications in the evaluation of sperm quality: semen analysis, sperm function and DNA integrity, Contraception, 2005, 72: 273~279
    [53] Christ D., Earle M. A., High-throughput fluorescent multiplex array for indoor allergen exposure assessment, Journal of Allergy and Clinical Immunology, 2006, 119: 428~435
    [54] Yan X. M., Schielke E. G., Grace K. M., et al. Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry, Journal of Immunologieal Methods, 2004, 2(84): 27~38
    [55] Jani I. V., Janossy G., Brown D. W., et al. Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings, Lancet Infectious Diseases, 2002, 2(4): 243~250
    [56] Nolan J. P., Sklar L. A., Suspension array technology: evolution of the flat-array paradigm, Trends in Biotecthnology, 2002, 20(1): 9~12
    [57] Vignali D. A., Multiplexed particle-based flow cytometric assays, Journal of Immunological Methods, 2000, 243(1-2): 243~255
    [58] McBride M., Stuart G., Maurice P., et al. Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents, Analytical Chemistry, 2003, 75(8):1924~1930
    [59] Yan X. M., Zhong W. W., Tang A. et al. Multiplexed Flow Cytometric Immunoassay for Influenza Virus Detection and Differentiation, Analytical Chemistry, 2005, 77(23): 7673~7678
    [60]韩艳,种子溶胀法制备微米级单分散功能化聚苯乙烯微球:[硕士学位论文],天津大学,2008
    [61] Okubo M., Wang Z. Q., et al. Morphology of micron-sized, monomer-adsorbed, crosslinked polymer particles having snowmanlike shapes prepared by the dynamic swelling method, Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39: 3106~3111
    [62] Zhang Q., Srinivasan B., Li Y., et al. A new and facile method for measurement of apparent density of monodisperse polymer beads, Talanta, 2010, 80: 1681~1685
    [63] Hoshino A., Hanaki K., Suzuki K., et al. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body, Biochemical and Biophysical Research Communications, 2004, 314: 46~53
    [64] Han M. Y., Gao X. H., Su J. Z., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnology, 2001, 19: 631~635
    [65] Siepmann J., Faisant N., Akiki J., et al. Effect of the size of biodegradable microparticles on drug release, Journal of Controlled Release, 2004, 96(1): 123~134
    [66] Kimura T., Teramachi M., Hosoya K., et al. Polymer packing material for liquid chromatography and a producing method thereof [P]. US 6482867, 2002-11-19
    [67] Cheng C. M., Vanderhoff J. W., El-Aasser M. S., Monodisperse porous polymer particles: formation of the porous structure, Journal of Polymer Science, Part A: Polymer Chemistry, 1992, 30: 245~256
    [68] Wang Q. C., Frantisek S., Jean M. J., et al. Fine control of the porous structure and chromatographic properties of monodisperse macroporous poly(styrene-divinylbenzene) beads prepared using polymer progens, Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32: 2577~2588
    [69] Wang H. Q., Huang L. Z., Liu T. C., et al. A Feasible and Quantitative Encoding Method for Microbeads with Multicolor Quantum Dots, Journal of Fluorescence, 2007, 17: 133~138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700