丙炔噁草酮在稻田环境中的行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以丙炔噁草酮为对象,研究了该药剂在环境和植物样品中的残留分析方法,并利用此检测手段研究了丙炔噁草酮在实验室内的土壤吸附、土壤降解、水解、光解等行为特性,比较了丙炔噁草酮在稻田环境中的降解特性。研究结果将有助于进一步了解丙炔噁草酮在环境中的迁移和转化过程,系统评价其在环境中的归宿和潜在危害,从而为该药剂的注册登记和安全合理使用以及最终消除可能产生的环境污染提供科学依据。主要结果如下:
     本文建立了一种测定水、土壤、稻苗、稻米样品中水稻田除草剂丙炔噁草酮残留的气相色谱分析方法。前处理方法以QuEChERS方法为基础进行优化,节约了溶剂用量、样品前处理时间与人工,将此方法应用于除食物蔬菜样品外的环境样品检测的前处理。使用带ECD检测器的Agilent6890气相色谱仪进行检测,测得检测器对丙炔噁草酮的最小检出量为1.0×10-12g,各类样品的最低定量检出限均为0.01 mg/kg.水、土壤、稻苗、稻米样品中丙炔噁草酮的添加回收率范围为82.9-112.0%,标准偏差范围为0.2-6.2%。本气相色谱条件下该方法准确度、精密度及灵敏度均达到农药残留检测的要求。
     丙炔噁草酮在土壤中的吸附能力为黄红壤>壤土>青紫泥,Kd值分别为103.35、97.45、76.52,属于较易吸附类型。吸附自由能△G均小于40KJ/mol,说明其在土壤中的吸附以物理吸附为主。土壤中的有机质含量与丙炔噁草酮的吸附Kd值成显著正相关,pH值、阳离子交换量及粘粒含量对其影响较小
     丙炔噁草酮在青紫泥和黄红壤中属于较难降解类型,在壤土中属于中等降解类型,降解半衰期分别为277.3d、233.6d、182.4d。土壤中的有机质含量与丙炔噁草酮降解半衰期成显著的负相关,粘粒含量、pH值及阳离子交换量对其影响较小
     丙炔噁草酮在pH=9.6、pH=7.1、pH=5.0缓冲溶液中水解半衰期分别为3.7 d、192.5d、147.5d,碱性环境中水解速率比在中性和酸性环境中迅速。分解产物经GC-MS检测,其碎片信息表明丙炔噁草酮在溶液中发生水解反应时,母体的杂环内酯键水解开环,有产物N-(2,4-二氯-5-β-丙炔氧苯基)-N'-(2,2-二甲基丙酰基)-肼甲酸生成。
     紫外灯照射下丙炔噁草酮的光解速率远大于氙灯,半衰期分别为3.09min、1.43h。增加光照强度、升高光解时溶液体系温度均能加快丙炔噁草酮在模拟太阳光(氙灯)下的光降解反应速度。光解反应溶液体系中丙酮含量的增加对丙炔噁草酮的光解有促进作用,而乙腈含量增加对光解反应略有抑制,甲醇对丙炔噁草酮的光降解几乎没有影响;二氧化钛的存在及含量的增加,能显著促进丙炔噁草酮的光解作用。丙炔噁草酮在缓冲溶液中的光解反应,根据光解产物质谱信息可知母体苯环上的脱氯作用是其主要作用机理,5-叔丁基-3-(4-羟基-3-β-丙炔氧苯基)-1,3,4-恶唑啉-2-酮或5-叔丁基-3-(3-p-丙炔氧苯基)-1,3,4-恶唑啉-2-酮或5-叔丁基-3-(2-羟基-5-β-丙炔氧苯基)-1,3,4-恶唑啉-2-酮均可能是其主要的光解产物。
     施用在水稻田的丙炔噁草酮,在大田环境中迅速消解,远快于室内的降解试验结果。其原因除药剂本身的降解以外,降雨和土壤吸附可能是丙炔噁草酮在田水中迅速消解的重要因素;大田土壤中丙炔噁草酮消解迅速的主要原因则可能是雨水冲刷的流失和稻苗的吸收有关。
Method for residual analysis of oxadiargyl in plant samples and environmental samples was studied in this thesis. Using this residue determination method, we studied environmental behavior of oxadiargyl, such as soil adsorption, soil degradation, hydrolysis, and photodegradation in lab. Degradation characteristics of oxadiargyl in paddy field had been also studied and compared with the results obtained in lab. This study contributed to understanding the transference and transformation process of oxadiargyl in environment and to evaluating its fate and potential hazards in environment systematically. Results of this study would provide a scientific basis for registration, safe and reasonable using, and eliminating of possible arising pollution of oxadiargyl. The main conclusions obtained were listed as follows:
     A gas chromatography analytical method for determining residue of oxadiargyl had been developed. This method developed from QuEChERS. It was proved to economize on solvent, time and labor, and was proved to work well in determining residue of oxadiargyl in plant, water, and soil samples. A Agilent 6890 gas chromatogrphy spectrometry equipped with ECD was involved in this method. The recoveries of oxadiargyl in water, soil, rice straw and grain ranged from 82.9% to 112.0%, and the RSDs ranged from 0.2% to 6.2%. LOQs were 0.001,0.001,0.005, 0.005 mg/kg respectively, and LODs was 0.01 mg/kg. This method had been recommended in the study of oxadiargyl's photodegradation, hydrodegradation, dissipation and field study for its accuracy, precision and sensitivity.
     The Kd values of oxadiargyl in yellow/red loam from Tong'an, loam from Ha' erbin, purplish clayey soil from Wuxi were 103.35,97.45 and 76.52, respectively. Kd values revealed high absorption capability of oxadiargyl. Adsorption free energy(△G) of oxadiargyl in soils were all below 40 KJ/mol, showing that the adsorption largely resulted from the physical action. There had a good positive correlation between adsorption coefficient (Kd) of oxadiargyl in three different kinds of soils and the soil properties OC, while pH, CEC, and clay content had little effect on Kd.
     For the half-lifes of Oxadiargyl in yellow/red loam, loam and purplish clayey soil were 233.6d,182.4d and 277.3d, respectively. Oxadiargyl had low dissipation rate in yellow/red loam and purplish clayey soil, and had medium dissipation rate in loam. The degradation rate had a good negative correlation with the soil properties OC, while pH, CEC. Clay content had little effect on degradation rate.
     Oxadiargyl had a relatively high hydrodegradation rate in alkali buffer with half-life of 3.7d at pH=9.6, and had a very low hydrodegadaton rate in acid and neutral buffer with half-lifes of 147.5d at pH=5.0 and 192.5d at pH=7.1. The fragmentation pattern of photoproduct indicated ring-opening reaction occurred in the bone of macrocyclic lactones of heterocycle while oxadiargyl hydrolyzed in solutions, and the oxadiargyl matrix turned to be N-(2,4-Dichloro-5-prop-2-ynyloxy-phenyl)-N'-(2,2-dimethyl-propionyl)-hydrazinecarboxylic acid.
     The half-life of oxadiargyl photodegradation under UV light was 3.09min. It was much higher than that under Xenon lamp which with a half-life of 1.43h. Lower half-life under simulation of solar radiation(Xenon lamp) would be enhanced with the treatments of strengthening light intensity and increasing temperature. When came to solvents used in study, acetone would result in higher photodegradation rate, and lower rate gained with acetonitrile, and no rate change with methanol. Humic acid in solution would increase the photodegradation rate slightly. But in presence or increasing dosage of TiO2, photodegradation rate would be accelerated sharply. The fragmentation pattern of photoproduct indicated loss of chlorine was the dominant process when oxadiargyl photodegraded in buffer solutions. 5-tert-Butyl-3-(4-hydroxy-3-prop-2-ynyloxy-phenyl)-3H-[1,3,4]oxadiazol-2-one or 5-tert-Butyl-3-(3-prop-2-ynyloxy-phenyl)-3H-[1,3,4]oxadiazol-2-one or 5-tert-Butyl-3-(2-hydroxy-5-prop-2-ynyloxy-phenyl)-3H-[1,3,4]oxadiazol-2-one was the possible photoproduct.
     Dissipation rates of oxadiargyl in rice paddy field water and soil were much rapider than that in laboratory experiment. In addition to degradation by oxadiargyl itself, rainfall and oxadiargyl being absorbed by soil would be the important factors leading to the rapid disspation rate of oxadiargyl in paddy water. Washing out by rainfall and being absorbed by rice plant would be the main reasons for the rapidly dissipation of oxadiargyl in paddy soil.
引文
1. 赵善欢主编,植物化学保护(第三版)[M].北京:中国农业出版社,1999:P1.
    2. 袁增雯,张一宾.农药与环境[J].上海化工,2000,17:4-5.
    3. 杨士杰,农药发展新特点.柑桔与亚热带果树信息,2003.19(3):42.
    4. 顾晓军,田素芬.农药的负面效应:过去、现状及展望[J].福建农业大学学报(自然科学版),2001,30(1):80-83.
    5. 邢岩.辽宁省高毒农药使用现状及治理对策[J].农药,2001,40(12):1-3.
    6. 夏世钧主编,农药毒理学[M].北京:化学工业出版社,2008.
    7. 王蔚,陈隆智,高希武等.环境农药残留与毒理学终点在环境风险评估中的应用[J].中国农学通报,2006,22(2):375-378.
    8. 唐萌.关于卫生杀虫剂的毒理学思考[J].中华卫生杀虫药械,2006,12(4):260-262.
    9. 聂果,吴春先,高立明等.莠去津的生态毒理学及其环境行为学研究进展[J].现代农药,2007,6(4):32-37,54.
    10. 石利利,林玉锁,徐亦钢等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74.
    11. 吴鑫.可溶性有机物对土壤中主要有机污染物环境行为的影响[J].生态环境,2003,12(1):81-85.
    12. 陈志良,罗军,王成刚等.土壤有机农药污染的降解机理与生物修复技术[J].环境污染治理技术与设备,2003,4(8):73-77.
    13. 开美玲,徐步进.保持耕作下农药的环境行为[J].核农学报,2004,18(6):491-494.
    14. Laabs, V., et al., Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados [J]. Chemosphere,2000,41(9):1441-1449.
    15. 张辉,刘广民.农药在土壤环境中迁移转化规律研究的现状与展望[J].世界地质,2000,19(2):199-204,208.
    16. 徐瑞薇,胡钦红,靳伟.杀虫双在土壤中行为的研究[J].环境化学,1991,10(3):47-53.
    17. Wang,Y.S, Movement of three striazine herbicides atrazine, simazine,and ametryn in subtropical soil [J]. Bull Environ Contain Toxicol,1996,57(5):743-750.
    18. 刘国金,王志辉,马召坤等.多介质逸度模型研究鄱阳湖流域p,p’-DDT[J].江西科学,2007,25(2):141-146.
    19. 朱文达,涂书新,王楼明.不同剂型甲磺隆在土壤中淋洗和迁移分布的研究[J].农药,1998,37(2):20-22.
    20. Petrovic, A.M., LarssonKovach IM. Effect of maturing turfgrass soils on the leaching of the herbicide mecoprop. [J]. Chemosphere,1996,33(4):585-593.
    21. 刘维屏,季瑾.农药在土壤——水环境中归宿的主要支配因素——吸附和脱附[J].中国环境科学,1996,16(1):25-30.
    22. Konda. L.N., et al., Modeling of single-step and multistep adsorption isotherms of organic pesticides on soil [J]. JAgric Food Chem,2002,50(25):7326-7331.
    23. Khan, S.U., Interaction of humic acid with chlorinated phenoxyacetic and benzoic acids[J]. Environ Lett,1973,4(1):141-148.
    24. Khan, S.U., Can J., Interaction of humic substance with bipyridy lium herbicides [J]. Soil Sci,1973,53(2):199-204.
    25. Pusino, A., Liu W., Effect of metal-binding ability on the adsorption of aci-fluorfen on soil[J]. Water Air Soil Pollu,1994,73(2):325-330.
    26. Racke, K.D., Environmental fate of chlorpyrifos[J]. Rev Environ Contam Toxicol,1993, 131:1-150.
    27. Dubus, I.G., E. Barriuso, and R. Calvet, Sorption of weak organic acids in soils:clofencet, 2,4-D and salicylic acid[J]. Chemosphere,2001,45(6-7):767-74.
    28. Sensi, N., The Science of the Total Environment [M].1992,123-124.
    29. Gramatica, P., M. Corradi, and V. Consonni, Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors [J]. Chemosphere, 2000,41(5):763-77.
    30. Gessa, C., Delitala L., Solinas V. Water stress and plasticity of phenolic metabolism in Thymus capitatus [J]. Soil Sci,1987,144(4):420-426.
    31. Renshaw, C.E., et al., Impact of land disturbance on the fate of arsenical pesticides [J]. J Environ Qual,2006,35(1):61-7.
    32. Xie, M., et al., Human and rodent carboxylesterases:immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression [J]. Drug Metab Dispos,2002,30(5):541-7.
    33. 方晓航,仇荣亮.有机磷农药在土壤环境中的降解转化[J].环境科学与技术,2003,26(2): 57-59,62.
    34. Bejarano, A.C., A.W. Decho, and G.T. Chandler, The role of various dissolved organic matter forms on chlorpyrifos bioavailability to the estuarine bivalve Mercenaria mercenaria [J]. Mar Environ Res,2005,60(1):111-130.
    33. 李克斌,王琪全,刘维屏.除草剂苯达松与腐殖酸作用机理的研究[J].上海环境科学,1998,17(5):18-20.
    34. Sheng, G., et al., Influence of pH on pesticide sorption by soil containing wheat residue-derived char[J]. Environ Pollut,2005,134(3):457-63.
    35. Singh, B.K., et al., Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium [J]. Appl Environ Microbiol,2003,69(9):5198-206.
    36. Tse, K.K. and S.L. Lo, Desorption kinetics of PCP-contaminated soil:effect of temperature [J]. Water Res,2002; 36(1):284-90.
    37. Oliveira, G.A. and A.J. Kowaltowski, Phosphate increases mitochondrial reactive oxygen species release [J]. Free Radic Res,2004,38(10):1113-8.
    38. Aguer, J.P., et al., Fenuron sorption on homoionic natural and modified smectites [J]. J Environ Sci Health B,2000,35(3):279-96.
    39. 郜红建.土壤中结合残留态农药的生态环境效应[J].生态环境,2004,13(3):399-402,413.
    40. 汪海珍,徐建民.甲磺隆在土壤腐殖物质中结合残留的动态变化[J].环境科学学报,2002,22(2):256-260.
    41. 欧阳天贽,谢九皋,李学垣.磺酰脲类除草剂在土壤中的吸附与降解研究进展[J].华中农业大学学报,2004,23(3):375-379.
    42. 刘相梅,彭平安,黄伟林等.酸度对林丹水解的影响[J].中国环境科学,2002.22(6):485-489.
    43. Brajesh K., Singh Allan Walker, J Alum. Role of soil pH in the development of enhanced biodegradation of fenamiphos[J]. Applied and environmental Microbiology, 2003,12:7035-7043.
    44. Taylor-Lovell, S., G.K. Sims, and L.M. Wax, Effects of moisture, temperature, and biological activity on the degradation of isoxaflutole in soil [J]. JAgric Food Chem,2002, 50(20):5626-33.
    45. 刘伟,吴文君.甲拌磷在棉花及土壤中的残留动态研究[J].农药科学与管理,2005,26(9):10-14.
    46. 冯秀斌,庞民好,刘颖超等.土壤中降解涕灭威菌株的分离鉴定及降解特性[J].农药学学报,2007,9(4):383-389.
    47. 周振惠,翁朝联,莫汗宏.单甲脒在土壤中的降解及持效性研究[J].环境化学,1995,14(3):47-53.
    48. 欧晓明,张俐,裴晖等.新农药硫肟醚在土壤中的降解[J].中国环境科学,2005,25(6): 705-709.
    49. 何华,徐存华,孙成等.高效氯氰菊酯在土壤中的降解动态[J].中国环境科学2003,23(5):490-492.
    50. 张卫,虞云龙,林匡飞等.阿维菌素在土壤中的微生物降解研究[J].应用生态学报,2004,15(11):2175-2178.
    51. 段玉梅.农药的微生物降解[J].污染防治技术,2003,16(z1):167-168.
    52. 朱九生,乔雄梧,王静等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029.
    53. 郑巍,新农药吡虫啉的环境物理化学与生物化学行为研究.杭州,2000,浙江大学博士论文.
    54. Sarmah, A.K., et al., Hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in alkaline soil and aqueous solutions [J]. Pest Management Science,2000,56(5):463-471.
    55. Jia, L., et al., Carbendazim:disposition, cellular permeability, metabolite identification, and pharmacokinetic comparison with its nanoparticle[J]. J Pharm Sci,2003,92(1): 161-72.
    56. Morrica, P., Barbato, F., Jacovo, R.D., et al., Kinetics and mechanism of imazosulfuron hydrolysis[J]. J. Agric. Food Chem,2001,49:3816-3820.
    57. Sabadie, J., Nicosulfuron:Alcoholysis, chemical hydrolysis, and degradation on various minerals[J]. J. Agric. Food Chem,2002,50:526-531.
    58. 张爱云,杨佩芝,蔡道基.呋喃丹等三种农药在水中的水解测定[J].农村生态环境,1987,3:15-18.
    59. 戴树桂,承雪琨,刘广良等.SDBS及腐殖质对涕灭威及其氧化产物水解的影响[J].中国环境科学,2002,22(3):193-197.
    60. 李学德,花日茂,岳永德.百菌清水解的影响因素研究[J].安徽农业大学学报,2004,31(2):131-134.
    61. 王连生,有机污染物化学(上册)[M].北京,1990,科学出版社.
    62. 戴树桂,环境化学[M].北京,2001,高等教育出版社.
    63. Burrows, H.D., et al., Reaction pathways and mechanisms of photodegradation of pesticides [J]. Journal of Photochemistry and Photobiology B-Biology,2002,67(2): 71-108.
    64. 岳永德,刘根风.农药的环境化学及应用[J].安徽农业大学学报,1995,22(4):339-345.
    65. 方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97.
    66. 杨仁斌,刘毅华,郭正元.三唑酮在水中的光化学降解及其影响因素[J].农村生态 环境,2005,21(4):68-71.
    67. Durand, G., Barcelo, D., Albaiges, J., et al., Utilisation of liquid chromatography in aquatic photodegradation studies of pesticides:A comparison between distilled water and seawater[J]. Chromatographia,1990,29(3/4):120-124.
    68. Headley, J., Du, J. L., Xu, X., et al., Kinetics of photodegradation of thifensulfuronmethyl in aqueous solutions [J]. Comm.Soil.Sci.Plant.Anal,2002,33(15):3287-3330.
    69. Mikami, N., Imanishi, K., Yamada, H., et al., Photodegradation of fenitrothion in water and on soil surface, and its hydrolysis in water[J]. Nippon Noyaku Gakkaishi,1985,10(2): 263-272.
    70. 王燕.丙草胺在水体中的光化学降解研究.安徽农业大学硕士学位论文,2004.
    71. Jin, R.Y., et al., Comparison of monoclonal antibody-based ELISA for triazophos between the indirect and direct formats [J]. Food and Agricultural Immunology,2008,19(1): 49-60.
    72. Gui, W.J., et al., Development of a one-step strip for the detection of triazophos residues in environmental samples[J]. Analytical Biochemistry,2008,377(2):202-208.
    73. Holland, P.T., D.E. McNaughton, and C.P. Malcolm, Multiresidue Analysis of Pesticides in Wines by Solid-Phase Extraction [J]. Journal of Aoac International,1994,77(1): 79-86.
    74. Bentabol, A. and M. Jodral, Determination of Organochlorine Pesticides in Cheese [J]. Journal of Aoac International,1995.78(1):94-98.
    75. Lopezavila, V., R. Young, and W.F. Beckert, Microwave-Assisted Extraction of Organic-Compounds from Standard Reference Soils and Sediments [J]. Analytical Chemistry,1994,66(7):1097-1106.
    76. Sannino, A., et al., Multiresidue method for determination of organophosphorus insecticide residues in fatty processed foods by gel permeation chromatography [J]. Journal of Aoac International,1995,78(6):1502-1512.
    77. Richter, B.E., et al., Extraction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from environmental samples using accelerated solvent extraction (ASE) [J].Chemosphere,1997,34(5-7):975-987.
    78. Gan, J., et al., Evaluation of accelerated solvent extraction (ASE) for analysis of pesticide residues in soil [J]. Environmental Science & Technology,1999,33(18):3249-3253.
    79. Barker, S.A., A.R. Long, and C.R. Short, Isolation of Drug Residues from Tissues by Solid-Phase Dispersion [J]. Journal of Chromatography,1989,475:353-361.
    80. Kristenson, E.M., L. Ramos, and U.A.T. Brinkman, Recent advances in matrix solid-phase dispersion [J]. Trac-Trends in Analytical Chemistry,2006,25(2):96-111.
    81. Lehotay, S.J., et al., Development of a Sample Preparation Technique for Supercritical-Fluid Extraction for Multiresidue Analysis of Pesticides in Produce [J]. Journal of Aoac International,1995,78(3):831-840.
    82. Arthur, C.L. and J. Pawliszyn, Solid-Phase Microextraction with Thermal-Desorption Using Fused-Silica Optical Fibers[J]. Analytical Chemistry,1990,62(19):2145-2148.
    83. Arthur, C.L., et al., Automation and Optimization of Solid-Phase Microextraction. Analytical Chemistry[J],1992,64(17):1960-1966.
    84. Popp, P., K. Kalbitz, and G. Oppermann, Application of Solid-Phase Microextraction and Gas-Chromatography with Electron-Capture and Mass-Spectrometric Detection for the Determination of Hexachlorocyclohexanes in Soil Solutions [J]. Journal of Chromatography A,1994,687(1):133-140.
    85. Lehotay, S.J., K. Mastovska, and S.J. Yun, Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes [J]. Journal of Aoac International,2005, 88(2):630-638.
    86. Schenck, F.J., et al., A rapid multiresidue method for determination of pesticides in fruits and vegetables by using acetonitrile extraction/partitioning and solid-phase extraction column cleanup [J]. Journal of Aoac International,2008,91(2):422-438.
    87. Schenck, F., et al., Multiresidue Analysis of 102 Organophosphorus Pesticides in Produce at Parts-per-Billion Levels Using a Modified QuEChERS Method and Gas Chromatography with Pulsed Flame Photometric Detection [J]. Journal of Aoac International,2009,92(2):561-573.
    88. Zhao, L., D. Schultz, and J. Stevens, Analysis of Pesticide Residues in Apples using Agilent SampliQ QuEChERS AOAC Kit by LC-MS-MS Detection [J]. Lc Gc Europe, 2009:13-14.
    89. 黄忠祥.促进安徽省水稻比较优势持续发展的思考[J].中国农学通报,2001,17(3):106-107.
    90. 张夕林,张谷丰,孙雪梅等.直播稻田杂草发生特点及其综合治理[J].南京农业大学学报,2000,23(1):117-118.
    91. 胡质文.水稻旱育秧田草害及其治理对策[J].湖北植保,2000(1):23-24.
    92. 周宇涵,苗蔚荣,程侣柏等.原卟啉原氧化酶抑制剂类除草剂研究进展[J].农药学学报,2002,4(1):1-8.
    93. 张国生.原卟啉原氧化酶抑制剂类除草剂进展概况[J].农药科学与管理,2001,22(6):21-25.
    94. 石小清,沈晓霞.原卟啉原氧化酶抑制剂研究与开发进展[J].浙江化工,2000,31(3): 33-35.
    95. Haendel, M.A., et al., Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish[J]. Toxicol Sci,2004,81(2):390-400.
    96. 潘铭均.稻思达防除水稻田杂草药效试验[J].福建稻麦科技,2000,19(1):32-33.
    97. 范志伟,沈奕德,陈幸华.稻思达在移栽稻田的除草效果和安全性研究[J].热带农业科学,2000,3:17-21,71.
    98. 陈平,麦铭,尤玉珍等.稻思达在稻田环境中的降解与残留研究[J].华中农业大学学报,1999,18(3):219-221.
    99. 陈平,麦铭,尤玉珍.稻思达在稻田环境中残留量的测定[J].农药,1999,38(4):20-21.
    100.李华英,李正扬,刘在松.稻思达对不同栽植稻田杂草的防除效果及安全性[J].广西植保,2002,15(2):8-11.
    101.林长福,马宏娟,李鸣等.丙炔嗯草酮对水稻的药害试验研究[J].现代农药,2004,3(3):17-19,32.
    102.杨余清,李万梅.草克星与稻思达复配防除抛栽稻田杂草效果[J].杂草科学,1999,3:17-21.
    103. Frost, P.R., Macleod I.L., Hanlon, E.M. Evaluation of oxadiargyl herbicide in various Australian horticultural crops [J]. Bcpc International Congress Crop Science & Technology 2003, Vol 1 and 2, Congress Proceedings:929-932.
    104. Gitsopoulos, T.K., Froud-Williams, R.J., Effects of oxadiargyl on direct-seeded rice and Echinochloa crus-galli under aerobic and anaerobic conditions [J]. Weed Research,2004, 44(4):329-334.
    105. Markovic, M., Protic, R., Protic, N., Efficiency and selectibity of herbicides in Maize(Zea Mays L.) [J]. Romanian Agricultural,2008,25:77-82.
    106. Ambrosi, D., Helling, C.S., Leaching of oxadiazon and phosalone in soils [J]. J Agric Food Chem,1976,25(1):215-217.
    107. Ambrosi, D., Kearney, P.C., Macchia, J.A., Persistence and metabolism of oxadiazon in soils[J]. J Agric Food Chem,1977,25(4):868-872.
    108. Crane, D.B., Younghans-Haug, C., Oxadiazon residue concentrations in sediment, fish, and shellfish from a combined residential/agricultural area in southern California [J]. Bull Environ Contain Toxicol,1992,48(4):608-615.
    109. Lin, Y.J., Lin, C., Yeh, K.J., et al., Photodegradation of the herbicides butachlor and ronstar using natural sunlight and dirthylamine[J]. Bull Environ Contam Toxicol,2000, 64(6):780-785.
    110. Ying, G.G., Willians, B., Laboratory study on the interaction between herbicides and sediments in water systems[J]. Environ Pollut,2000,107(3):399-405.
    111. Ying, G.G., Willians, B., Laboratory study on leachability of five herbicides in South Australian soils [J]. J Environ Sci Health B,2000,35(2):121-141.
    112. Ying, G.G. and Williams, B., The degradation of oxadiazon and oxyfluorfen by photolysis [J]. J Environ Sci Health B,1999,34(4):549-567.
    113. Garbi, C., Casasus, L., Martinez-Alvarez, R. et al., Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5:Implementation in an herbicide removal reactor and modelling [J]. Water Res,2006,40(6):1217-1223.
    114. Hoque, M.E., Wilkins, R.M., Kennedy, A. et al., Sorption behaviour of oxadiazon in tropical rice soils [J]. Water Sci Technol,2007,56(1):115-121.
    115. AOAC and INTERNATIONAL, (2006) Collaborative Study Design and Management. AOAC Training Course Series. Gaithersburg, MD.
    116. Lehotay, S.J., K. Mastovska, and S.J. Yun, Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes [J]. Journal of Aoac International,2005, 88(2):630-638.
    117. Giles, C.H., Macewan, T.H., Nakhwa, S.N., et al., Studeis in adsorption.11.A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids [J]. Journal of The Chemical Society,1960:3973-3993.
    118.蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1999,18-23.
    119. Von, O.B., Kordel, W., Klein, W. Sorption of non-polar and polar compounds to soils: process, measurements and experience with the applicability of the modified OECD guidelines[J]. Chemosphere,1991,22(2):285-304.
    120.施晨辉,陆小磊,朱国念等.丙炔嗯草酮在水环境中的降解行为研究[J].农药学学报,2008,10(3):349-353.
    121. Li, C.G., Wang, S.S. The rate of disappearance of oxadiazon in different soil [J]. Weed Science Bull,1980,1:52-59.
    122. Finkel' shtein, Z.I., Netedova, M.Y., Baskunov, B.P., et al., Transformation of oxadiazon by microorganisms [J]. Agrokhimiya,1984,4:88-94.
    123. Subhasish, K.C., Ashim, C., Anjan, B., et al., Microbial degradation of oxadiazon by soil fungus Fusarium solani[J].J. Agric.Food.Chem,1995,43:2964-2969.
    124. Tingle, C.C., et al., Fipronil:environmental fate, ecotoxicology, and human health concerns [J]. Rev Environ Contam Toxicol,2003,176:61-66.
    125. Racke, K.D., Environmental fate of chlorpyrifos[J]. Rev Environ Contain Toxicol,1993, 131:1-150.
    126. Diez, C., et al., Study of different parameters affecting the derivatization of acidic herbicides with trimethylsulfonium hydroxide to make them suitable for gas chromatography analysis[J]. J Chromatogr A,2006,1125(2):244-253.
    127. Lin, C.H., et al., Degradation of isoxaflutole (balance) herbicide by hypochlorite in tap water[J]. JAgric Food Chem,2003,51(27):8011-8014.
    128.徐晓白等主编,典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社,1998,328.
    129. Martins, J.M., et al., Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites [J]. Chemosphere,2001,45(4-5):515-522.
    130. Comber, S.D.W., Abiotic persistence of atrazine and simazine in water [J]. Pesticide Science,1999,55(7):696-702.
    131. Zheng, W. and W.P. Liu, Kinetics and mechanism of the hydrolysis of imidacloprid[J]. Pesticide Science,1999,55(4):482-485.
    132.张卫,虞云龙,谭成侠.阿维菌素水解动力学的研究[J].农业环境科学学报,2004,23(1):174-176.
    133. Subhasish, K.C., Anjan, B., Ashim, C., et al., Degradation of oxadiazon in Kalyani alluvial soil[J]. Pestic Sci,1999,55:943-948.
    134. Mazellier, P., J. Jirkovsky, and M. Bolte, Degradation of diuron photoinduced by iron(III) in aqueous solution [J]. Pesticide Science,1997,49(3):259-267.
    135.袁芳,多效唑在水体中光化学降解的研究.长沙,2007,湖南农业大学硕士论文.
    136.王敏欣,李发生,韩梅等.异丙草胺在水溶液中的光解动力学[J].环境科学,2003,24(5):125-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700