膀胱Cajal间质细胞(ICC)在膀胱起搏中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱肌组织能够产生不受神经系统控制的自发性动作电位(如离体膀胱组织在多种神经阻滞剂混合物作用下仍可发生自发收缩,在体膀胱可以发生不受抑制的兴奋收缩等)[1],这提示我们特定情况下,膀胱可能被某种“潜在起搏点”所调控。
     以往的观点认为这种自发性兴奋起搏来源于逼尿肌细胞,但更多的实验数据表明,逼尿肌细胞没有自发性兴奋的特点,无法担当膀胱起搏的任务[ 2]。所以,寻找和确认膀胱的起搏细胞成了亟待解决的问题。
     对胃肠道的研究发现,胃肠道肌肉的蠕动是由分布于其间的ICC细胞所发动的。胃肠道的ICC细胞成群分布,常常交织成网状,与神经末梢,平滑肌有很多的结构联系[3],它们已被认为是胃肠道蠕动的起搏细胞。近年来,形态与胃肠道起搏细胞相似的ICC细胞在膀胱被发现,它被认为有类似的起搏功能。
     目前对膀胱的ICC细胞所做的研究工作尚处于起步阶段,从取得的结果看,形态学研究较多,功能学研究较少,尤其对其是否是膀胱的起搏细胞阐释不清,对它在膀胱运动中的地位缺乏系统论证。
     本实验目的在于考察膀胱的ICC细胞在膀胱运动中是否起到起搏作用。分为三个环节予以证明:1. ICC细胞具有成为起搏细胞的结构基础,利用形态学方法研究ICC细胞的分布特点以及ICC细胞与逼尿肌细胞之间的结构关系; 2. ICC细胞具有成为起搏细胞的功能特征,利用对ICC细胞上起搏通道HCN和ICC细胞与逼尿肌细胞信号通讯的研究,说明ICC细胞具有产生起搏电流和将兴奋传递给逼尿肌的能力;3. ICC细胞的正常功能受到抑制后,膀胱逼尿肌功能下降。应用ICC细胞特异性阻断剂Glivec,分别在细胞、组织、在体三个水平研究逼尿肌的功能的改变。另外,在完成对ICC细胞在膀胱运动中的起搏作用进行论证后,我们进一步对不稳定膀胱中ICC细胞的结构和功能改变做了初步探索,研究逼尿肌不稳定与ICC细胞改变间的关系。
     主要的结果、结论如下:
     1.建立了能有效观察膀胱ICC样细胞的免疫组织化学实验方法:采用改良的国外学者制备膀胱铺片方法,通过c-KIT免疫组织化学染色技术,证实在膀胱的粘膜下层和逼尿肌肌束边缘存在有ICC细胞。
     2.发现了ICC细胞的结构分布特点:对ICC细胞的免疫荧光观察发现ICC细胞呈现明显的网络状分布,与胃肠道ICC网络相似。
     3. ICC细胞与逼尿肌细胞之间结构上存在密切联系:免疫荧光双标发现,ICC细胞与逼尿肌细胞相邻,且有相互交错分布现象。透射电镜发现,ICC细胞与逼尿肌细胞之间具有细胞间电信号传递的结构基础——缝隙连接。这样,ICC细胞具有了成为膀胱起搏的结构特征。
     4.发现了ICC细胞上有可产生起搏电流的HCN阳离子通道:采用c-Kit和HCN抗原的免疫荧光双标法,证明了c-Kit阳性的ICC细胞上具有HCN离子通道抗原的表达,这样ICC细胞上就具有可产生起搏电流的功能单位的存在。
     5. ICC细胞与逼尿肌细胞之间可以发生信号传递:荧光漂白实验发现,ICC细胞可将荧光染料有效传递给相邻的被漂白的逼尿肌细胞,这说明ICC细胞与逼尿肌细胞之间可以存在信号通讯。这也是ICC细胞可以将兴奋信号传递给逼尿肌细胞的功能基础。
     6.建立了特异性阻断ICC细胞功能的实验模式:利用对细胞游离钙的检测发现,c-Kit阻断剂Glivec主要影响ICC细胞的游离钙波动而对逼尿肌细胞没有明显影响,即Glivec作用靶点在ICC细胞上。这给我们提供了一个阻断实验的模式,即选择性阻断ICC功能,观察在ICC功能缺失的情况下,逼尿肌细胞功能的变化,从而考察ICC细胞在膀胱起搏中的作用。
     7.在细胞、组织、在体水平特异阻断ICC细胞后逼尿肌发生功能改变:细胞水平阻断使ICC细胞游离钙波动、ICC细胞与逼尿肌细胞之间的通讯受到明显抑制;而在组织和在体水平的实验均发现,肌收缩的振幅(收缩力)明显缩窄。这说明ICC细胞在膀胱起搏中发挥着重要的作用。
     8.不稳定膀胱中的ICC细胞网络结构和HCN阳离子通道的表达发生了明显改变:不稳定膀胱中的ICC细胞网络结构形态得到强化,而HCN阳离子通道的表达是明显增加的,这说明ICC的改变有可能是膀胱功能改变的原因。给我们提供了逼尿肌不稳定机制的一种全新解释方式。
Spontaneous action potential can be recorded from muscular tissue of bladder, even if its nerval control is removed. That indicates that in some circumstance, spontaneous excitation and contraction of bladder could be induced by some‘pacemaker cells’which remained unknown to us till now.
     Years ago, it was regarded that that‘pacemaking’was from cells in detrusor but outcomes of a series of experiments showed that detrusor smooth muscle cells could not act as‘pacemaker’due to the lack of their ability to evoke spontaneous excitation. Since that case, it was our goal to find which is the pacemaker of bladder and to indentify it.
     Study from gastrointestinal tract(GI) discovered that enterocinesia was induced by interstitial cells of Cajal(ICC) in it, so ICCs were regarded as pacemaker cells in GI. ICCs in GI, divided into different groups and reticulate, had quite a few structural junction not only to nerve terminal but also to smooth muscle cells.It was not long before the ICC-like cells was find in bladder, and the role of them was also thought to be similar to their counterpart in GI.
     From all accounts, study on ICC in bladder as pacemaker cell is still in primary phase. Evidences should be found to prove the hypothesis.
     The aim of the study is to investigate whether or not ICC in bladder is the pacemaker cell and we are going to pursue our goal from three directions: First, ICC as pacemaker should have a specilized structure. Characteristic of its distribution and structural connection between ICC and detrusor smooth muscle cell will be analysised in morphology.Second, ICC as pacemaker should have specilized function, that is,ICC could generate pacemaking current and transmit the current to neighboring detrusor smooth muscle cells. Third, detrusor function could be down-regulated when function of ICC was inhibited by blocking agent Glivec. Changes of detrusor function would be detected on the level of cell, tissue, and in vivo after blockade. Moreover, we made a intitial study on the structural and functional changes of ICC in instable bladder when the demonstration of ICC as pacemaker was accomplished.
     Results and conclusions:
     1. We established the effective method to investigate the morphology of ICC in the bladder: ICCs were identified to exist in suburothlium layer and the border of detrusor smooth muscle in bladder through KIT immunohistochemistry on the reformed stretch prepared bladder.
     2. We found the characteristic of ICC’s distribution: ICCs exist as a network just like ICC in GI, which we found by immunofluorescence(IF).
     3. There was tight relationship between ICC and detrusor smooth muscle cell: ICCs were close to smooth muscle cells and they were intercrossed to each other when double-labeled IF was applied for analysis.Moreover,Gap junction was detected by transmission electron microscope(TEM).
     4. Hyperpolarization-activated cyclic nucleotide gate(HCN) ion channel, which was specified in generating pacemaking current, was found on the membrane of ICC: we used double-labeled IF by c-Kit and HCN antigen to detect it, so the capcity of ICC to generate pacemaking current was found.
     5. Signal transmission was found from ICC to detrusor smooth muscle cell: We found the cellar signal could be transmitted efficiently from ICC to detrusor smooth muscle cells using Fluorescence Recovery After Photobleaching (FRAP).That might be the functional basis for ICC to be pacemaker cell to initiate the action potential of detrusor smooth muscle cells.
     6. A mode for ICC’s functional inhibition was established: The effects of blocking agent Glivec were mainly on the calcium influx of ICC which provided us a new mode to investigate the function of smooth muscle cells with ICC’s function decreased.
     7. Changes of detrusor function were detected on the level of cell, tissue, and in in vivo. Calcium influx and signal transmission from ICC to detrusor were inhibited significantly and contractile amplitude of detrusor was also decreased significantly in muscle strip and bladder as a whole. That indicated that ICC would play a crucial important role in the movements of bladder.
     8. Changes on ICC network and expression of HCN were found in instable detruor: Network in ICC was strengthened while the protein expression of HCN was increased significantly, which implied that changes of ICC may be the cause for functional abnormality of detrusor.
引文
1. Smet PJ, Jonavicius J, Marshall VR, etal.Distribution of nitric oxide synthase-immunoreactive nerves and identification ofthe cellular targets of nitric oxide in guinea-pig and human urinarybladder by cGMP immunohistochemistry. Neuroscience 1996;71:337-348
    2. Sanders KM, Ordog T, Koh SD,et al. Development and plasticity of interstitial cells of cajal. Neurogastroenterol Motil 1999;11:311-338
    3. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development 1992;116:369-375
    4. Ward SM, Burns AJ, Torihashi S, et al. Mutation of the protooncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 1994;480 (Pt 1):91-97
    5. Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of cajal in the guinea-pig small intestine. J Auton Nerv Syst 1996;61:169-174
    6. Wester T,Eriksson T. Intelstitial cells of cajal in the human fetal small bowel as shown by c-kit immunohistochemistry Gut 1999;44:666- 674
    7. Vannuechi MG. Receoptors in interstitial cells of cajal:identificatioa and possible physiological roles. J Microsc Res Tech 1999;47:325-335
    8. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of cajal. Arch Histol Cytol 1999;62:295-316
    9. Sanders KM.A case for interstitical cells of cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract.Gastroenterology 1996;111:492-515
    10. Hagiwara N, Iriaswa H,Kameyama M.Contribution of two types of calciumcurrents to the pacemaker potential of rabbit sinoatrial node cells.J Phyisol (Lond) 1988;395(1):233
    11. Klemm MF, Exintaris B, Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 1999;519:867-884
    12. Pezzone MA, Watkins SC, Alber SM, et al. Identification of c-kit positive cells in the mouse ureter: the interstitial cells of cajal of the urinary tract. Am J Physiol RenalPhysiol 2003;284:F925- F929
    13. Sergeant GP, Hollywood MA, McCloskey KD,et al. Specialised pacemaking cells in the rabbit urethra. J Physiol 2000;526:359-366
    14. Van Der Aa F, Roskams T, Blyweert W, et al. Interstitial cells in the human prostate: a new therapeutic target? Prostate 2003;56:250-255
    15. Exintaris B, Klemm MF, Lang RJ. Spontaneous slow wave and contractile activity of the guinea pig prostate. J Urol 2002;168:315-322McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol 2002;168:832-836
    16. Sui GP, Rothery S, Dupont E,et al. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int 2002;90:118-129
    17. Davidson RA, McCloskey KD.Morphology and localization interstitial cells in the guinea pig bladder:Structural relationships with smooth mnscle and neurons. J Urol 2005;173:1385-1390
    18.李应龙,王江平,丁国富,等.膀胱“Cajal样间质细胞”的研究进展[J].医学综述,2007,13(2):85-87
    19. Piotrowska PA, Rolle U, Solari V, et al. Interstitial cells of cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon-intestinal hypoper-istalsis syndrome. BJU Int 2004;94:143-146
    20. Shafik A,El-sibal O, Shafik AA, et al. Identification of interstitial cells of cajal in human urinary bladder:concept of vesical pacemaker. J Urol 2004;64(4):809-813
    21.杨航,宋波.泌尿系统“起搏样细胞”研究进展[J].国外医学:泌尿系统分册,2005,25(3):294-297
    22. Sergeant GP, Thornbury KD, McHale NG, et al. Interstitial cells of cajal in the urethra. J Cell Mol Med 2006;10(2):280-291
    23. Lang RJ, Zoltkowski BZ, Hammer JM,et al. Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction.J Urol 2007;177(4):1573-1580
    24. McHale NG, Hollywood MA, Sergeant GP, et al. Organization and function of ICC in the urinary tract.J Physiol 2006;576(Pt 3):689-694
    25. Lang RJ, Tonta MA, Zoltkowski BZ, et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers.J Physiol2006;576(Pt 3):695-705
    26. Sergeant GP, Hollywood MA, McHale NG, et al. Ca2+ signalling in urethral interstitial cells of Cajal. J Physiol 2006;576(Pt 3):715-720
    27. Johnston L, Sergeant GP, Hollywood MA, et al. Calcium oscillations in interstitial cells of the rabbit urethra.J Physiol 2005;565(Pt 2):449-461
    28. Bradley E, Hollywood MA, Johnston L, et al. Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra.J Physiol 2006;574(Pt 3):651-661
    29. Hashitani H. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis.J Physiol 2006;576(Pt 3):707-714
    30.邱功阔,宋波,金锡御,等。膀胱出口梗阻对逼尿肌兴奋性、收缩性及顺应性影响的实验研究。中华泌尿外科杂志,2000,21(7):421-423.
    31.李新,宋波,李益人等。M受体及其亚型与逼尿肌功能的关系研究。第三军医大学学报,2002,24(2):164-166
    32.卢根生,金锡御,宋波。逼尿肌不稳定超微结构改变的实验研究。解放军医学杂志,2002,27(3),219-220。
    33. Jiang HH, Song B, Lu GS, etc. Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model. BJU Int. Aug;96(3):428-33. 2005
    34.周逢海,宋波,熊恩庆等。逼尿肌不稳定中缝隙连接介导的细胞间通讯的研究。中华泌尿外科杂志,2004,25(4):260-262
    35. Gong Y, Song B, Jin X Y. Phenotype transformation is the structural basis of functional changes of detrusor smooth muscle cell subjected to cyclic over-load mechanical stretch . Int J Urol , 2002 , 10 (9 Suppl) : A88.
    36. Hashitani H, Brading AF, Suzuki H. Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. Br J Pharmacol. 2004 Jan;141(1):183-93. Epub 2003 Dec 8.
    37. Sui GP, Wu C, Fry CH. The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells.J Urol. 2001 Feb;165(2):627-32
    38. McHale N, Hollywood M, Sergeant G, etc. Origin of spontaneous rhythmicity in smooth muscle. 2006 Jan 1;570(Pt 1):23-8. Epub 2005 Oct 20.
    39. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol. 2005 Apr;173(4):1385-90.
    40. Gillespie JI, Harvey, IJ and Drake M J. Agonist- and nerve-induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity Exp Physiol. 2003 May; 88(3):343-57.
    41. Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. J Physiol. 2001 Jan 15;530(Pt 2):273-86.
    42. Drake MJ, Harvey IJ, Gillespie JI. Autonomous activity in the isolated guinea pig bladder. Exp Physiol 2003; 88 :19–30
    43. Plumb F, Colfelt RH. The genesis of vesical rhythmicity. AMA Arch Neurol 1960;2: 487–96
    44. Biers SM, Reynard JM, Doore T, etc. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int. 2006 Mar;97(3):612-6.
    45. Drake MJ, Gardner BP, Brading AF. Innervation of the detrusor muscle bundle in neurogenic detrusor overactivity. BJU Int. 2003 May;91(7):702-10.
    46. Won KJ, Suzuki T, Hori M, etc. Motility disorder in experimentally obstructed intestine: relationship between muscularis inflammation and disruption of the ICC network. Neurogastroenterol Motil. 2006 Jan;18(1):53-61.
    47. Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg. 2002 Apr;37(4):551-67.
    48. Huizinga JD, Robinson TL, Thomsen L. The search for the origin of rhythmicity in intestinal contraction; from tissue to single cells. Neurogastroenterol Motil. 2000 Feb;12(1):3-9
    49. Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med. 2005 Jul-Sep;9(3):543-56.
    50. Hasegawa K. Electromyographic study on the dog's ureter under dissection of the nerves innervating kidney and ureter. Tohoku Igaku Zasshi. 1961 Sep 1;64:365-76.
    51. Ballaro A, Mundy AR, Fry CH, Craggs MD.A new approach to recording the electromyographic activity of detrusor smooth muscle. J Urol. 2001Nov;166(5):1957-61.
    52. Wang XY, Paterson C, Huizinga JD. Cholinergic and nitrergic innervation of ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol Motil. 2003 Oct;15(5):531-43.
    53. Alberti E, Mikkelsen HB, Larsen JO, etc. Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat. Neurogastroenterol Motil. 2005 Feb;17(1):133-47.
    54. Tubaro,-A; Carter,-S; Hind,-A,et al. A prospective study of the safety and efficacy of suprapubic transvesical prostatectomy in patients with benign prostatic hyperplasia. J-Urol. 2001 Jul; 166(1): 172-6.
    55. Kuo,-Hann-Chorng. Analysis of the pathophysiology of lower urinary tract symptoms in patients after prostatectomy. Urol-Int. 2002; 68(2): 99-104.
    56. Flynn,-Brian-J; Mian,-Hamayun-S; Cera,-Peter-J. Early molecular changes in bladder hypertrophy due to bladder outlet obstruction. Urology. 2002 Jun; 59(6): 978-82.
    57. Persson,-K; Dean-Mckinney,-T; Steers,-W-D, et al. Activation of the transcription factors nuclear factor-kappaB and activator protein-1 in bladder smooth muscle exposed to outlet obstruction and mechanical stretching. J-Urol. 2001 Feb; 165(2): 633-9.
    58. Gong Yu(龚宇),Song Bo(宋波),Jin Xiyu(金锡御)。Phenotype transformation is the structural basis of functional changes of detrusor smooth muscle cell subjected to cyclic overload mechanical stretch. International Journal of Urology. 2002; Aug (9 Suppl): A88.
    59. Stead,-E; White,-J; Faast,-R; et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene. 2002 Nov 28; 21(54): 8320-33
    60. Wills,-K-N; Mano,-T; Avanzini,-J-B, et al. Tissue-specific expression of an anti-proliferative hybrid transgene from the human smooth muscle alpha-actin promoter suppresses smooth muscle cell proliferation and neointima formation. Gene-Ther. 2001 Dec; 8(24): 1847-54.
    61. Ehsan A; Mann MJ; Dell AG; Dzau VJ, et al. Endothelial healing in vein grafts: proliferative burst unimpaired by genetic therapy of neointimal disease. Circulation. 2002 Apr 9; 105(14): 1686-92
    62. Mann MJ; Gibbons GH; Hutchinson H, et al. Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proc Natl Acad Sci USA.1999 ;May 96:6411-6416.
    63. Naruya Tomita, Masatsugu Horiuchi, Sawako Tomita, et al. An oligonucleotide decoy for transcription factor E2F inhibits mesangial cell proliferation in vitro Am J Physiol Renal Physiol. 275, Issue 2, F278-F284, August 1998
    64. Ouslander,-J-G. Geriatric considerations in the diagnosis and management of overactive bladder. Urology. 2002 Nov; 60(5 Suppl 1): 50-5; discussion 55
    65. Johansson,-R; Pandita,-R-K; Poljakovic,-M; Garcia-Pascual,-A; De-Vente,-J; Persson,-K. Activity and expression of nitric oxide synthase in the hypertrophied rat bladder and the effect of nitric oxide on bladder smooth muscle growth. J-Urol. 2002 Dec; 168(6): 2689-94
    66.龚宇宋波熊恩庆等;大鼠BOO对逼尿肌生物力学特性的影响第三军医大学学报2003 ,22:115-117
    67. Sotoudeh,-Mohammad; Li,-Yi-Shuan; Yajima,-Noriyuki; et al. Induction of apoptosis in vascular smooth muscle cells by mechanical stretch. Am-J-Physiol-Heart- Circ-Physiol. 2002 May; 282(5): H1709-16.
    68. Harris DR. Smooth muscle cell culture :a new approach to the sudy of human detrusor physiology and pathophysiology.Br J Urol ,1995 ,75 Suppl 1 :18226.
    69. Baskin LS , Howard PS ,Duckett JW,et al. Bladder smooth mulscle cells in culture :identification and charactarization. J Urol ,1993 ,149 :1902197.
    70. Sui GP ,Wu C , Fry CH. The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells. J Urol ,2001 ,165 :6272633.
    71.涂永生,黄红林,朱炳阳,等.Ⅱ型胶原酶/弹性蛋白酶消化法培养大鼠血管平滑肌细胞.中国动脉硬化杂志,2001 ,9 :4382440.
    72.牛朝诗,罗其中,徐纪文,等.脑血管平滑肌细胞分离培养与鉴定.中国临床神经科学,2000 ,8 :2282230.
    73. Oberpenning F ,Meng J , Yoo JJ ,et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotech ,1999 ,17 :1492155.
    74. Abrams P.The 2nd Intermational consultation on BPH. Paris. June 27-30,1993,153-209
    75. Dmochowski,-R-R; Staskin,-D. Overactive bladder in men: special considerations forevaluation and management. Urology. 2002 Nov; 60(5 Suppl 1): 56-62; discussion 62-3
    76. Ouslander,-J-G. Geriatric considerations in the diagnosis and management of overactive bladder. Urology. 2002 Nov; 60(5 Suppl 1): 50-5; discussion 55
    77. Flisser,-A-J; Blaivas,-J-G. Role of cystometry in evaluating patients with overactive bladder. Urology. 2002 Nov; 60(5 Suppl 1): 33-42; discussion 42
    78. Ozturk,-B; Cetinkaya,-M; Gur,-S; Ugurlu,-O; Oztekin,-V; Aki,-F-T. The early effects of partial outflow obstruction on contractile properties of diabetic and non-diabetic rat bladder. Urol-Res. 2002 Jul; 30(3): 178-84
    79. Lee,-G-J; Barker,-A-P; Moss,-T-J; Gurrin,-L-C; Charles,-A-K; Smith,-N-M; Newnham,-J-P. The effects of overcoming experimental bladder outflow obstruction in fetal sheep. J-Matern-Fetal-Neonatal-Med. 2002 Feb; 11(2): 130-7
    80. Lemack,-G-E; Zimmern,-P-E; Vazquez,-D, et al. Altered response to partial bladder outlet obstruction in mice lacking inducible nitric oxide synthase. J-Urol. 2000 Jun; 163(6): 1981-7
    81. Johansson,-R; Pandita,-R-K; Poljakovic,-M; Garcia-Pascual,-A; De-Vente,-J; Persson,-K. Activity and expression of nitric oxide synthase in the hypertrophied rat bladder and the effect of nitric oxide on bladder smooth muscle growth. J-Urol. 2002 Dec; 168(6): 2689-94
    82. Gong Yu(龚宇); Song Bo(宋波); Jin Xiyu(金锡御). Phenotype transformation is the structural basis of functional changes of detrusor smooth muscle cell subjected to cyclic overload mechanical stretch. Int J Urol. 2002; Aug 9(Suppl.): A88
    83. Wu,-X; Wang,-Z; Levin,-R-M; Hudson,-A-P. Cloning of COX4 cDNA from the NZ white rabbit and expression of this gene in bladder smooth muscle following partial outlet obstruction. World-J-Urol. 2002 Sep; 20(4): 255-9
    84. Schroder,-Annette; Uvelius,-Bengt; Capello,-Seth-A; Longhurst,-Penelope-A. Regional differences in bladder enlargement and in vitro contractility after outlet obstruction in the rabbit. J-Urol. 2002 Sep; 168(3): 1240-6
    85. Cumming J A, Chisholm G D. Changes in detrusor innervation with relief of outflow tract obstruction.Br J Urol,1992,69:7
    86. Kok,-D-J; Wolffenbuttel,-K-P; Minekus,-J-P; van-Mastrigt,-R; Nijman,-J-M. Changes in bladder contractility and compliance due to urethral obstruction: a longitudinalfollowup of guinea pigs. J-Urol. 2000 Sep; 164(3 Pt 2): 1021-4; discussion 1025
    87. Evaans J E H, Christmas T J. Dtrusor instability following colchicine therapy.Br J Urol,1991,67:552
    88. Harrison S C W, Hunnam G K, Patfarman DR, et al. Bladder instability and denevation in patients with bladder outflow obstruction. Br J Urol.1987.10:519
    89. Mostwin,-J-L. Pathophysiology: the varieties of bladder overactivity. Urology. 2002 Nov; 60(5 Suppl 1): 22-6; discussion 27
    90. Van Mastrigt,R: The longth dependence of the series elasticity of pig bladder smooth muscl.J, Muscle Res. cell Motil, 9:525 1988
    91. Perlberg S, Cane M. Adrenergic response of bladder muscle in prostatic obstruction. Urology, 1982,20:524
    92. Brading,-A-F. Alterations in the physiological properties of urinary bladder smooth muscle caused by bladder emptying against an obstruction. Scand-J-Urol- Nephrol- Suppl. 1997; 184: 51-8
    93. Elbadawi A, Yalla S V, Resnick N M. Strutral basis of geriatric vioding dysfuncion Ⅳ:Bllader outlet obstruction, J Urol,1993.150;1681-1695.
    94. Chaple CR, Smith D. The pathophysiology changes in the bladder obstructed by benign prostatic hyperplasia.Br J Urol,1994,73:117-123
    95. Blaivs J G. Urinary symptoms and symptom score. J Urol,1993,150:1714
    96. Harvey,-R-A; Skennerton,-D-E; Newgreen,-D; Fry,-C-H. The contractile potency of adenosine triphosphate and ecto-adenosine triphosphatase activity in guinea pig detrusor and detrusor from patients with a stable, unstable or obstructed bladder. J-Urol. 2002 Sep; 168(3): 1235-9
    97. Lee,-J-Z; Omata,-S; Tillig,-B, et al. Chronology and urodynamic characterization of micturition in neurohormonally induced experimental prostate growth in the rat. Neurourol-Urodyn. 1998; 17(1): 55-69
    98. Das,-A-K; Horan,-P; Leggett,-R-E , et al. Use of abdominal fascia to create partial outlet obstruction in rabbits. Neurourol-Urodyn. 1998; 17(3): 231-9
    99. Gabella G, Uvelius B. Urinary bladder of rat: fine structure of normal and hypertrophic musculature.Cell Tissue Res,1990,262:67~79
    100. Gosling JA, Gilpin S A, Dixon J S, et al.Decrease in the autonomic innervation ofhuman detrusor muscle in outflow obstruction. J Urol,1986,136:501
    101. Brading A F, Turner W H, The unstable bladder: towards a common mechanism.Br J Urol ,1994,73:3-8
    102. Sibley G N A. Developments in our understanding of detrusor instability.Br j Urol.1997 80.suppl,54-61
    1. Smet PJ, Jonavicius J, Marshall VR, et al.Distribution of nitric oxide synthase-immunoreactive nerves and identification ofthe cellular targets of nitric oxide in guinea-pig and human urinarybladder by cGMP immunohistochemistry. Neuroscience 1996;71:337-348
    2. Sanders KM, Ordog T, Koh SD,et al. Development and plasticity of interstitial cells of cajal. Neurogastroenterol Motil 1999;11:311-338
    3. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development 1992;116:369-375
    4. Ward SM, Burns AJ, Torihashi S, et al. Mutation of the protooncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 1994;480 (Pt 1):91-97
    5. Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of cajal in the guinea-pig small intestine. J Auton Nerv Syst 1996;61:169-174
    6. Wester T,Eriksson T. Intelstitial cells of cajal in the human fetal small bowel as shown by c-kit immunohistochemistry Gut 1999;44:666- 674
    7. Vannuechi MG. Receoptors in interstitial cells of cajal:identificatioa and possible physiological roles. J Microsc Res Tech 1999;47:325-335
    8. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of cajal. Arch Histol Cytol 1999;62:295-316
    9. Sanders KM.A case for interstitical cells of cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract.Gastroenterology 1996;111:492-515
    10. Hagiwara N, Iriaswa H,Kameyama M.Contribution of two types of calciumcurrents to the pacemaker potential of rabbit sinoatrial node cells.J Phyisol (Lond) 1988;395(1):233
    11. Klemm MF, Exintaris B, Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 1999;519:867-884
    12. Pezzone MA, Watkins SC, Alber SM, et al. Identification of c-kit positive cells in the mouse ureter: the interstitial cells of cajal of the urinary tract. Am J Physiol Renal Physiol 2003;284:F925- F929
    13. Sergeant GP, Hollywood MA, McCloskey KD,et al. Specialised pacemaking cells in the rabbit urethra. J Physiol 2000;526:359-366
    14. Van Der Aa F, Roskams T, Blyweert W, et al. Interstitial cells in the human prostate: a new therapeutic target? Prostate 2003;56:250-255
    15. Exintaris B, Klemm MF, Lang RJ. Spontaneous slow wave and contractile activity of the guinea pig prostate. J Urol 2002;168:315-322
    16. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol 2002;168:832-836
    17. Sui GP, Rothery S, Dupont E,et al. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int 2002;90:118-129
    18. Davidson RA, McCloskey KD.Morphology and localization interstitial cells in the guinea pig bladder:Structural relationships with smooth mnscle and neurons. J Urol 2005;173:1385-1390
    19.李应龙,王江平,丁国富,等.膀胱“Cajal样间质细胞”的研究进展[J].医学综述,2007,13(2):85-87
    20. Piotrowska PA, Rolle U, Solari V, et al. Interstitial cells of cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon-intestinal hypoper-istalsis syndrome. BJU Int 2004;94:143-146
    21. Shafik A,El-sibal O, Shafik AA, et al. Identification of interstitial cells of cajal in human urinary bladder:concept of vesical pacemaker. J Urol 2004;64(4):809-813
    22.杨航,宋波.泌尿系统“起搏样细胞”研究进展[J].国外医学:泌尿系统分册,2005,25(3):294-297
    23. Sergeant GP, Thornbury KD, McHale NG, et al. Interstitial cells of cajal in the urethra. J Cell Mol Med 2006;10(2):280-291
    24. Lang RJ, Zoltkowski BZ, Hammer JM,et al. Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction.J Urol 2007;177(4):1573-1580
    25. McHale NG, Hollywood MA, Sergeant GP, et al. Organization and function of ICC in the urinary tract.J Physiol 2006;576(Pt 3):689-694
    26. Lang RJ, Tonta MA, Zoltkowski BZ, et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers.J Physiol 2006;576(Pt 3):695-705
    27. Sergeant GP, Hollywood MA, McHale NG, et al. Ca2+ signalling in urethral interstitial cells of Cajal. J Physiol 2006;576(Pt 3):715-720
    28. Johnston L, Sergeant GP, Hollywood MA, et al. Calcium oscillations in interstitial cells of the rabbit urethra.J Physiol 2005;565(Pt 2):449-461
    29. Bradley E, Hollywood MA, Johnston L, et al. Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra.J Physiol 2006;574(Pt 3):651-661
    30. Hashitani H. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis.J Physiol 2006;576(Pt 3):707-714
    1. Vemana S , Pandey S , Larsson HP. S4 Movement in a Mam2 malian HCN Channel[J ]. J Gen Physiol , 2004 ;123(1) :21.
    2. Martin Biel , Angela Schneider ,Christian Wahl. Cardiac HCN Channels ,Structure , Function , and Modulation[J ]. Trends in Cardiovascular Medicine ,2002 ;12(5) : 206.
    3. Reinhard Seifert , Alexander Scholten , Renate Gauss , et al. Molecular characterization of a slowly gating human hyperpolar2ization2activated channel predominantly expressed in thalamus ,heart , and testis[J ]. Neurobiology , 1999 ; 96(16) :9391.
    4. Accili EA , Proenza C , Baruscotti M ,et al. From Funny Current to HCN Channels : 20 Years of Excitation[J ]. News Physiol Sci ,2002 ; 17 : 32.
    5. Richard RB , Siegelbaum SA. Hyperpolarization2activated cation currents : From Molecules to Physiological Function[J ]. Annual Review of Physiology , 2003 ; 65 :453.
    6. Gauss R , Seifert R ,Kaupp UB. Molecular identification of a hy2perpolarization
    2activated channel in sea urchin sperm[J ]. Nature ,1998 ; 393 :583.
    7. Gloss B , Trost S , Bluhm W,et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hor2mone receptorαorβ[J ]. Endocrinology , 2001 ;142 : 544.
    8. Zagotta WN , Olivier NB , Black KD , et al. Structural basis formodulation and agonist specificity of HCN pacemaker channels[J ]. Nature , 2003 ; 425(6954) :2001
    9. Jun Chen , David R. Piper and Michael C. Voltage Sensing andActivation Gating of HCN Pacemaker Channels [J ]. Trends inCardiovascular Medicine ,2002 ;12(1) :42.
    10. Stieber J , Herrmann S , Feil S ,et al. The hyperpolarization2ac2tivated channel HCN4 is required for the generation of pacemak2er action potentials in the embryonic heart [J ]. Proc Natl AcadSci USA , 2003 ;100(25) :15235.
    11. Vasilyev DV , Barish ME. Postnatal development of the hyper2polarization2activated excitatory current Ih in mouse hippocampalpyramidal neurons[J ]. J Neurosci ,2002 ;15 ;22(20) :8992.
    12. Kim IB , Lee EJ , Kang TH, et al. Morphological analysis ofthe hyperpolarization2activated cyclic nucleotide2gated cationchannel 1 ( HCN1) immunoreactive bipolar cells in the rabbitretina[J ]. J Comp Neurol , 2003 ; 467(3) :389.
    13. Muller F , Scholten A , Ivanova E. HCN channels are ex2pressed differentially in retinal bipolar cells and concentrated atsynaptic terminals[J ]. Eur J Neurosci ,2003 ; 17(10) :2084.
    14. Bender RA , Soleymani SV , Brewster AL , et al. MathernGW, Baram TZ. Enhanced expression of a specific hyperpolar2ization2activated cyclic nucleotide2gated cation channel (HCN) insurviving dentate gyrus granule cells of human and experimentalepileptic hippocampus[J ]. J Neurosci , 2003 ; 23(17) :6826.
    15.徐有秋. If离子流和心脏起搏[J ].中华心律失常学杂志,2001 ; 5(4) : 252.
    16. Ludwig A , Zong X, Jeglitsch M , et al1A family of hyperpo2larization2activated mammalian cation channels [ J ]. Nature , 1998 ;393 :587.
    17. Ludwig A , Zong X, Stieber J , et al. Two pacemaker channelsfrom human heart with profoundly different activation kinetics[J ]. EMBO J ,1999 , 18 : 2323.
    18. Moroni A , Gorza L , Beltrame M ,et al. Hyperpolarization2ac2tivated cyclic nucleotide2gated channel 1 is a molecular determi2nant of the cardiac pacemaker current If [J ]. J Biol Chem ,2001 ; 276 : 29 ,233.
    19. Wainger BJ , DeGennaro M , Santoro B , et al. Molecularmechanism of cAMP modulation of HCN pacemaker channels[J ]. Nature , 2001 ; 411 : 805.
    20. Chen J , Mitcheson JS , Tristani2Firouzi M , et al. The S42S5linker couples voltage sensing and activation of pacemaker chan2nels[J ]. Proc Natl Acad Sci USA ,2001 ;98(11) :277.
    21. Chen S , Wang J , Siegelbaum SA. Properties of hyperpolar2ization2activated pacemaker current defined by coassembly ofHCN1 and HCN2 subunits and basal modulation by cyclic nu2cleotide[J ]. J Gen Physiol , 2001 ; 117 : 491.
    22. Ishii , TM , Takano M ,Ohmori H. Determinants of activationkinetics in mammalian hyperpolarization2activated cation channels[J ]. J Physiol (London) , 2001 ; 537 : 93.
    23. Rothberg BS , Shin KS , Phale PS , et al. Voltage2controlledgating at the intracellular entrance to a hyperpolarization2activat2ed cation channel[J ]. J Gen Physiol , 2002 ;119 :83.
    24. Shin KS ,Rothberg BS ,Yellen G.Blocker state dependence andtrapping in hyperpolarization2activated cation channels : evidencefor an intracellular activation gate[J ]. J Gen Physiol ,2001 ;117 :91.
    25. Wainger B J , DeGennaro M , Santoro B , et al. Molecularmechanism of cAMP modulation of HCN pacemaker channels[J ]. Nature , 2001 ;411 :805.
    26. Wang J , Chen S , Siegelbaum SA. Regulation of hyperpolar2ization2activated HCN channel gating and cAMP modulation dueto interactions of COOH terminus and core transmembrane[J ]. JGen Physiol , 2001 ;118 :237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700