重庆四面山森林植物群落水土保持功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以重庆四面山6种森林植物群落为研究对象,通过野外调查试验和室内实验,采用统计方法、灰色关联法、分形理论、层次分析法、模糊数学方法和逼近理想点决策原理等方法,从林冠层、枯落物层和土壤层3个功能层研究了其水土保持功能,构建了多层次多指标的评价体系,进行了水土保持功能评价和灵敏度分析,得出了6种森林植物群落水土保持功能强弱的排序,以期为在重庆四面山及相邻地区营建结构合理、生态性能稳定的水土保持型植被提供参考和依据。主要研究结果如下:
     通过测定6种森林植物群落三个功能层的水文功能,结果显示:在林龄和郁闭度基本一致的条件下,不同雨量级的降雨林冠截持率以针叶林的截留能力表现最好,郁闭度低的落叶阔叶林和暖性竹林截留能力最小。乔木冠层枝叶截持的水分占枝叶干质量的15%~25%;在环境因子基本一致的条件下,3种阔叶林群落地表有较好的枯落物储量和分解强度,且最大持水量显著高于以针叶树和竹林,阔叶林林下枯落物持水量为5.13-5.65 mm,能够有效地持存穿透降水;常绿阔叶林土壤具有良好的贮水和水分渗透能力,其土壤总持水量可达312.99 mm。不同群落土壤的饱和导水率与其土壤容重、孔隙度等因素密切相关。
     通过测定和系统分析6种森林植物群落林地土壤的基本性质、抗蚀和抗冲性能及抗剪强度,揭示出6种森林植物群落林地的土壤保持功能。结果显示,不同森林植物群落对其林下土壤均具有一定的改良作用,不同森林植物群落土壤物理性质存在定差异:3种阔叶林较其它2种针叶林和竹林土壤容重较低,0-20cm土层土壤容重为1.02-1.11g/cm3;非毛管孔隙度较高,可达15.81%~7.66%,3种阔叶林土壤团粒结构数量显著高于针叶林和竹林。土壤结构性和稳定性较优;6种森林植物群落林地土壤抗蚀指数为62.0%~85.0%,抗冲系数为5.56-28.94,土壤抗蚀性与冲刷时间成二次多项式函数关系逐渐降低,土壤抗冲性与冲刷时间成指数关系逐渐增大,其中常绿落叶阔叶混交林的土壤抗蚀性能最好,暖性竹林的土壤抗冲性能最好。在同一土壤剖面,不同层次土壤的抗蚀性和抗冲性随土壤深度的增加呈下降趋势;不同森林植物群落土壤抗剪力在一定垂直压力下,与垂直应力呈线性关系,其抗剪黏聚力、内摩擦角随着土壤深度的增加,其变化存在差异,内摩擦角为21.37°~27.87°、黏聚力值为5.54-38.91KPa,土壤抗剪性能与根密度呈线性正相关关系。不同森林植物群落的抗侵蚀性能与土壤容重、总孔隙度和非毛管孔隙度等土壤物理性质有关。经比较得出阔叶林这3类土壤力学指标相对好于针叶林和竹林。
     在系统分析重庆四面山不同森林植物群落的水文和土壤保持特性的基础上,采用模糊数学法、层次分析法、MATLAB软件开发的AHP (Analytic Hierarchy Process)评价工具箱模型、逼近理想点决策原理和灵敏度分析法,对6种森林植物群落的水土保持功能进行综合评价和强弱排序,结果为:常绿阔叶林>落叶阔叶林>常绿落叶阔叶混交林>暖性针叶林>暖性竹林>温性针叶林。
On the basis of field investigations as well as lab experiments, this paper studied the six types of forest plant communities in Chongqing Simian Mountains about the water and soil conservation function of forests at canopy layer, litters layer and the soil layer respectively. Such research tools as statistic analysis method, grey correlation method, fractal theory, analytic hierarchy process, fuzzy mathematics, technique for order preference by similarity to ideal solution and sensitivity analysis were applied to evaluate the water and soil conservation functions and their corresponding degree of sensitivity. Six types of forest plant communities were consequently ranked in terms of water and soil conservation capacity respectively. This paper aims to shed some lights on the establishment of structurally-reasonable, eco-functionally-stable water and soil conservation vegetation communities in Chongqing Simian Mountains and surrounding regions. The primary findings were summed up as follows:
     Hydrological study on the three functional layers of the different forest plant communities indicated that, given the almost same stand ages and canopy closures, the maximum canopy interception rate is observed in both coniferous forest communities, whereas the lowest was found in broad-leaved forest and warm bamboo forest with relatively lower canopy interception capability under different rainfall levels. Rainfalls retained by the canopy layers account for 15%-25% of the weight of overall branches and trunks. Given similar environmental factors, the broad-leaved tree dominated stands were sufficiently covered by forest litters and relatively higher decomposition intensity, consequently have noticeably better performance than coniferous forest and bamboo forest dominate stands. With maximum water-holding capacity at 5.13-5.65 mm, the litters of broad-leaved forest are capable of conserving throughfall. The soil layers of evergreen broad-leaved forest demonstrated sound water-storage and penetrating capacities, with their average total water storages reaching at 312.99 mm. The soil saturated hydraulic conductivity and soil bulk density and porosity of different forest plants communities is related closely.
     Soil conservation function was revealed, through study and analysis on the physical properties, anti-erodibilit, anti-sourability and anti-shear strength of the soil in the six types of forest plant communities, the results showed that, different forest plant community has role of improved its forest soil. There are differences in the soil physical properties of different forest plant communities: Compared with the soil taken from the two types of coniferous forest communities and bamboo forest community, soil taken from the three types of broad-leaved communities has lower density, measured at 1.02-1.11g/cm3 on the 0~20cm layers; the non-capillary porosity is relatively higher, falling at 15.81%-7.66%; soil aggregate structure of the three kinds of broad-leaved forest communities is significantly greater than the two types of coniferous forest communities and bamboo forest community. Soil anti-erodibilit and time are into two polynomial function relation, soil anti-sourability and flush time are into index relation. The best soil anti-erodibilit and anti-sourability are from evergreen and deciduous broad-leaved mixed forest and warm bamboo forest respectively. The soil anti-erodibilit and anti-sourability at different levels of soil in the same soil profile decline with the increase of the soil depth. In a vertical pressure, soil anti-shear strength of different forest plant communities were in a linear relationship to vertical stress. There are differences in the change of the soil internal friction angle and cohesion and pastes. The value of soil internal friction angle and cohesion and pastes of the six types of forest plant communities ranged respectively between 21.37°~27.87°nd 5.54-38.91KPa. Soil anti-shear strength and root density are in a linear correlated. The anti-erodibilit, anti-sourability and anti-shear strength of different forest plant communities are related to soil physical properties such as soil density, whole-capillary and non-capillary porosity. Comparative studies showed that broad-leaved forest communities outdo both coniferous forest communities and bamboo forest community in terms of the mentioned three indicators.The anti-erodibilit indexes, anti-sourability indexes, internal friction angle and cohesion and pastes the value of resistance of the anti-shear strength and sticky indexes of the six types of forest plant communities ranged respectively between 62.0%~85.0%,5.56~28.94,21.37°~27.87°and 5.54~38.91KPa. Comparative studies showed that broad-leaved communities outdo both coniferous forest communities and bamboo forest community in terms of the above-mentioned three indicators.
     Based on systematical analysis of the characteristic of soil and water conservation of different forest plant communities in Chongqing Simian Mountains and by means of fuzzy mathematics, analytic hierarchy process, MATLAB software-based AHP evaluating tools and models and ideal-point decision-making principles, so that comprehensive assessments could be carried out to rank the six types of plant communities in terms of their corresponding water and soil conserving capacities. It was concluded that the water and soil conserving functions of the six types of plant communities rank as: evergreen broad-leaved forest>deciduous broad-leaved forest>evergreen and deciduous broad-leaved mixed forest>warm coniferous forest>warm bamboo forest>temperate coniferous forest.
引文
[1]鲍文,包维楷,何丙辉等.森林生态系统对降水的分配与拦截效应[J].山地学报,2004,22(4):483-491.
    [2]蔡强国,陈浩.影响降雨击溅侵蚀过程的多元回归正交试验研究[J].地理研究,1989,8(4):28-36.
    [3]曹同,郭水良.长白山主要生态系统苔藓植物的生物多样性研究[J].生物多样性,2000,8(1):50-59.
    [4]常庆瑞,安韶山,刘京等.黄土高原恢复植被防止土地退化效益研究[J].土壤侵蚀与水土保持学报,1999,5(4):6-9.
    [5]陈步峰,周光益,曾庆波等.热带山地雨林生态系统水文动态特征的研究[J].植物生态学报,1998,22(1):68-75.
    [6]陈坷,贾秀磊.基于多属性综合评价法的房地产企业合作伙伴选择[J].建筑管理现代化,2007,4:23-25.
    [7]陈丽华,余新晓,张东升等.贡嘎山冷杉林区苔藓层截持降水过程研究[J].北京林业大学学报,2002,24(4):60-63.
    [8]陈奇伯,解明曙等.森林枯落物影响地表径流和土壤侵蚀研究动态[J].北京林业大学学报,1994,16(增刊):88-97.
    [9]陈奇伯,张洪江,解明曙.森林枯落物及其苔藓层阻延径流速度研究[J].北京林业大学学报,1996,18(1):1-5.
    [10]陈伟烈,江明喜,赵常明等.三峡库区谷地的植物与植被[M].北京:中国水利水电出版社,2008.
    [11]陈伟烈,张喜群,梁松筠等.三峡库区的植物与复合农业生态系统[M].北京:科学出版社,1994.
    [12]陈祥伟,王文波,夏祥友.小流域水源涵养林优化配置[J].应用生态学报,2007,18(2):267-271.
    [13]陈云明,陈永勤.人工沙棘林水文水土保持作用机理研究.西北植物学报[J],2003,23(8):1357-1361.
    [14]陈引珍.三峡库区森林植被水源涵养及其保土功能研究[D].北京林业大学,2007.
    [15]程积民.子午岭森林植被控制水土流失的作用[J].中国水土保持,1987,(5):8-10.
    [16]程金花,张洪江,王伟等.重庆四面山5种人工林保土功能评价.北京林业大学学报,2009,31(6):54-59.
    [17]程金花,张洪江,史玉虎.林下地被物保水保土作用研究进展[J].中国水土保持科学,2003,1(2):96-100.
    [18]程金花,张洪江,史玉虎等.三峡库区几种林下枯落物的水文作用[J].北京林业大学学报,2003,25(2):8-13.
    [19]程金花,张洪江,余新晓等.贡嘎山冷杉纯林地被物及土壤持水特性[J].北京林业大学学报,2002,24(3):45-49.
    [20]代全厚,张力,刘艳军等.嫩江大堤植物根系园士护堤功能研究[J].水土保持通报,1998,18(6): 810.
    [21]程云,缙云山森林涵养水源机制及其生态功能价值评价研究[D].北京林业大学,2007.
    [22]戴云徽.出入境检验检疫符合性条件的筛选、检验策划及风险预警研究[D].南京理工大学, 2008.
    [23]邓世宗,韦炳贰.不同森林类型林冠对大气降雨量再分配的研究[J].林业科学,1990,26(3):271-276.
    [24]丁军,王兆蓦,陈欣等.红壤丘陵区林地根系对土壤抗冲性增强效应的研究[J].水土保持学报,2002,16(4):9-12.
    [25]董慧霞,李贤伟,张健等.不同草本层三倍体毛白杨林地土壤抗蚀性研究[J].水土保持学报,2005,19(3):70-78.
    [26]董威,王建辉,顾树生.关于偏好信息全序化的加权TOPSIS新方法[J].系统仿真学报,2007,19(17):3996-3999.
    [27]樊治平,李洪燕,姜艳萍.基于OWA算子的群决策方法的灵敏度分析[J].东北大学学报(自然科学版),2004,23(11):84-86.
    [28]范世香,裴铁番,蒋德明等.两种不同林分截留能力的比较研究[J].应用生态学报,2000,11(5):671-674.
    [29]高成德,余新晓.密云水库集水区(北京境内)水源保护林最优林种结构的研究[J].林业科技通讯,2000(5):30-31.
    [30]高谦,曹同.苔藓对西南地区大气污染(包括酸雨)指示意义初步研究[J].应用生态学报,1992,3(1);81-90.
    [31]高维森,王佑明.黄土丘陵区柠条林地土壤抗蚀性规律研究[J].西北林学院学报,1991,6(3):70-78.
    [32]葛东媛,张洪江,王伟等.重庆四面山林地土壤水分特性[J].北京林业大学学报,2010,32(4):155-159.
    [33]郭百平,王子科,阎晋民.天然沙棘林减水减沙效益试验研究[J].沙棘,1996,9(4):32-36.
    [34]郭立群,王庆华,周洪昌等.滇中高原区主要森林类型枯枝落叶层对降雨的截留功能[J].云南林业科技,1999(1):22-25.
    [35]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].西北林学院学报,1989,5(4):80-86.
    [36]郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报,1992,6(3):48-52.
    [37]郭忠升,吴钦孝.森林植被对土壤入渗速率的影响.陕西林业科技[J],1996,(3):27-31.
    [38]韩冰,吴钦孝,刘向东.林地枯枝落叶层对溅蚀影响的研究.防护林科技[J],1994,(2):7-10.
    [39]韩同吉,裴胜民,张光灿.北方石质山区典型林分枯落物层涵蓄水分特征[J].山东农业大学学报(自然科学版),2005,36(2):275-278.
    [40]郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    [41]何凡,张洪江,史玉虎等.长江三峡花岗岩坡面管流与渗流实验研究[J].水土保持通报,2004,24(6):10-13.
    [42]何占飞,付永胜,荀方飞等.厌氧氨氧化处理养殖废水启动实验研究[J].水资源与水工程学报,2008,19(2):64-67.
    [43]侯喜禄,曹清玉等.陕北黄土区不同森林类型水土保持效益的研究[J],西北林学院学报,1994,9(2):20-24.
    [44]胡海波,张金池,阮宏华.98长江洪灾的成因及对策分析[J].福建林学院学报,1999,19(4): 303-306.
    [45]胡建忠,范小玲,王愿昌等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):25-30.
    [46]胡建忠,张伟华,李文忠等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854-863.
    [47]胡肄慧,陈灵芝,陈清朗等.几种树木枯叶分解速率的试验研究[J].植物生态学与地植物学学报,1987,11(2):124-132.
    [48]黄承标,李信贤.广西龙胜县里骆林场杉木人工林生态系统的水量结构、分配与平衡[J].广西科学,1994,(02).
    [49]黄礼隆.川西亚高山暗针叶林森林涵养水源性能的研究[A].中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994,400-412.
    [50]黄昱翔.品质机能展开结合网路层级分析法与联合分析法在线上游戏产品开发之研究[D].南台科技大学,2006.
    [51]黄义端,田积莹.土壤内在性质对侵蚀影响的研究[J].水土保持学报,1989,3(3):9-13.
    [52]江忠善,王志强等.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].水土保持学报,1996,2(1):1-9.
    [53]蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,(4):20-23.
    [54]蒋定生,范兴科,李新华等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):1-8.
    [55]蒋定生等编着.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [56]解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [57]雷瑞德,张仰渠.秦岭林区森林水文效应的研究(A).林业部科技司.中国森林生态系统定位研究(C).哈尔滨:东北林业大学出版社,1996,223-233.
    [58]雷瑞德.秦岭火地塘林区华山松水源涵养功能的研究[J].西北林学院学报,1984,1:19-34.
    [59]雷志栋等.土壤水动力学[M].北京:清华大学出版社,1998.
    [60]李传文.森林保持水土涵养水源的效应及评价[J].山西水土保持科技,2006,2:1-3.
    [61]李景文.林生态学[M].北京:中国林业出版社,1994.
    [62]李星明,吴国蔚.投资环境评价体系的指标灵敏度分析[J].世界经济与政治论坛,2007,(3):15-23.
    [63]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾和展望[J].自然资源学报,2001,11(5):390-406.
    [64]李温雯.重庆四面山不同森林植物群落土壤抗剪性质研究[D].北京林业大学,2010.
    [65]李勇,朱显谟.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5):390-393.
    [66]李勇.黄土高原植物根系提高土壤抗冲性机制初步研究[J].中国科学(B辑).1992,(3):254-259.
    [67]林大仪.土壤学实验指导[M].2004,北京:中国林业出版社.
    [68]刘豹,许树柏,赵焕等.层次分析法—规划决策的工具[J].系统工程,1984,2(2):23-30.
    [69]刘昌明,钟骏襄.黄土高原森林对年径流影响的初步分析[J].地理学报,1978,33(2):112-127.
    [70]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):35-36.
    [71]刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].水土保持学报,1998,4(1):93-96.
    [72]刘国花,谢吉荣.重庆四面山风景区森林植被调查研究[J].渝西学院学报(自然科学版), 2005,4(1):90-92.
    [73]刘启慎,李建兴,低山石灰岩区不同植被水保功能的研究[J].水土保持学报,1994,8:78-83.
    [74]刘启慎,赵北林,谭浩亮.太行山石灰岩低山区水土保持防护林高效空间配置研究[J].河南林业科技,2000,20(1):1-5.
    [75]刘启慎.豫北太行山石灰岩区不同植被类型水保功能综述[J].河南林业科技,1995,(4):9-12.
    [76]刘世德,李建牢.罗玉沟流域坡面土壤侵蚀与土壤理化性质[J].水土保持学报,1989,3(1):43-50
    [77]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22.
    [78]刘世荣,温远光等.中国森林生态系统水文生态功能规律.[M]北京:中国林业出版社,1996.
    [79]刘涛.密云县泥石流危险度评价及防治措施体系研究[D].北京林业大学,2009.
    [80]刘霞,王丽,张光灿等.鲁中石质山地不同林分类型土壤结构特征[J].水土保持学报,2005,12(6):49-52.
    [81]刘霞,张光灿,李雪蕾等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):1-5.
    [82]刘向东,吴钦孝等.黄土高原油松人工林枯枝落叶层水文生态功能研究[J].水土保持学报,1991,5(4):87-91.
    [83]刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持[J].水土保持研究,1994,1(3): 8-13.
    [84]刘新宇,赵岭,王立刚等.阿伦河流域水土保持林土壤抗蚀性能研究[J].防护林科技,2000,3(44):21-24
    [85]刘玉成,董鸣,缪世莉.江津四面山森林植被的初步研究[J].西南师范大学学报(自然科学版),1985,10(3).
    [86]卢炜丽.重庆四面山植物群落结构及物种多样性研究[D].北京林业大学,2009.
    [87]卢肇钧.黏性土抗剪强度研究的现状与展望.土木工程学报[J],1999,32(4):3-9.
    [88]罗伟祥,自立强等.不同覆盖度林地和草地的径流量与冲刷量[J].水土保持学报,1990,4(1):30-35.
    [89]马雪华,杨茂瑞.亚热带杉木、马尾松人工林水文功能的研究[A].中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994,346-353.
    [90]慕长龙.森林涵养水源能力的综合评价方法研究[J].四川林业科技,1997,18(4):11-17.
    [91]潘剑君,Bergsma.Ir.E利用土壤入渗速率和土壤拉剪力确定土壤侵蚀等级[J].水土保持学报,1995,9(2):93-96.
    [92]庞学勇,包维楷,张咏梅.岷江上游中山区低效林改造对枯落物水文作用的影响[J].水土保持学报,2005,19(4):119-123.
    [93]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1535-1546.
    [94]秦永胜,余新晓,工示永.密云水库上游森林枯落物持水阻水特性研究(英文)[J]. Forestry Studies in China,2000,2(1):58-62.
    [95]邱菀华.管理决策与应用熵学[M].北京:机械工业出版社,2002.
    [96]饶良懿.三峡库区理水调洪型防护林空间配置与结构优化技术研究[D].北京林业大学,2003.
    [97]任改,张洪江,程金花等.重庆四面山几种人工林地土壤抗蚀性分析[J].水土保持学报,2009,23(3):20-24.
    [98]任改.重庆四面山主要植物群落土壤抗侵蚀性研究[D].北京林业大学,2010.
    [99]沈慧,姜凤岐,杜晓军等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348.
    [100]沙乃兵.包装评价关键技术及其应用[D].西安理:工大学,2008.
    [101]沈品玉,周心澄,张伟华等.祁连山南麓植物根系改善土壤抗冲性研究[J].中国水土保持科学,2004,12,2(4):87-91.
    [102]石生新,赵崇伟.土壤抗冲性的研究[J].山西水利科技,1998,(3):90-93.
    [103]史东梅,吕刚,蒋光毅等.马尾松林地土壤物理性质变化及抗蚀性研究[J].水土保持学报,2005,19(6):35-39.
    [104]宋庆克,汪希龄,胡铁牛.多属性评价方法及发展评述.决策与决策支持系统,1997,7(4):128-137.
    [105]宋轩,李树人,姜凤岐.长江中游栓皮栎林水文生态效益研究[J].水土保持学报,2001,15(2):76-79.
    [106]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.
    [107]宋兆民.黄淮海平原综合防护林体系生态经济效益的研究[M].北京:北京农业大学出版社,1990.
    [108]苏宁虎.森林植物凋落物动态的数学模型[J].林业科学,1989,25(2):162-165.
    [109]孙凡,冯沈萍.论恢复生态学原理及其在三峡库区退耕还林(草)中的指导作用[J].中国农业科技导报,2003,3(1):17-20.
    [110]孙立达,朱金兆主编.水土保持林体系综合效益研究与评价[M].北京:中国科技出版社,1995.
    [111]田大伦.森林生态系统人为干扰的水文学效应研究[A].刘煊章.森林生态系统定位研究[M].北京:中国林业出版社,1993.
    [112]田积莹,黄义端.子午岭连家贬地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报,1964,12(3):286-296.
    [113]汪有科,吴钦孝,韩冰等.森林植被水土保持功能评价[J].水土保持研究,1994,1(3):24-30.
    [114]汪有科,吴钦孝,赵鸿雁等.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(1):75-80.
    [115]王兵,魏文俊,冷泠.宁夏六盘山不同森林类型土壤贮水与入渗研究[J].内蒙古农业大学学报,2006,27(3):1-5.
    [116]王波,张洪江,徐丽君等.四面山不同人工林枯落物储量及其持水特性研究[J].水土保持学报[J],2008,22(4):90-94.
    [117]王春玲.基于GIS的防护林空间配置调整辅助决策系统的框架设计[J].安徽农业科学,2008,36(16):70397041.
    [118]王清.多属性评价的权重敏感性度量及分析[D].华中科技大学,2006.
    [119]王伟,张洪江,李猛等.重庆市四面山林地土壤水分入渗特性研究与评价[J].水土保持学报,2008,22(4):9599.
    [120]王玮,张玉芝.模糊AHP的权重向量求解方法研究[J].控制与决策,2006,21(2):184-188.
    [121]王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [122]王彦辉.几个树种的林冠降雨特征[J].林业科学,2001,37(4):2-9.
    [123]王一峰,张平仓,等.长江中上游地区土壤抗冲性特征研究[J].长江科学院院报,2007,24(1): 12-15
    [124]王一峰,张平仓,朱兵兵等.2007.长江中上游地区土壤抗冲性特征研究[J].长江科学院院报,24(1):12-15.
    [125]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11-16
    [126]王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版杜,1994.
    [127]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108-113.
    [128]王玉杰,解明曙,张洪江.三峡库区花岗岩山地林木对坡面稳定性影响的研究[J].北京林业大学学报,1997,19(4):7-11.
    [129]王云琦,王玉杰,张洪江.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41-44.
    [130]王云琦,王玉杰,朱金兆.重庆缙云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境,2005,14(6):775-780.
    [131]王云琦,王玉杰.缙云山典型林分森林土壤持水与入渗特性[J].北京林业大学学报,2006,28(3):102-108.
    [132]王云琦.三峡库区森林理水调洪机理及空间配置研究[D].北京林业大学,2006.
    [133]王忠林,李会科,贺秀贤.渭北塬花椒地埂林土壤抗蚀抗冲性研究[J].水土保持研究,2000,7(1):33-37.
    [134]韦红波,李锐,杨勤科.我国植被水土保持功能研究进展[J].植物生态学报2002,26(4):489-496.
    [135]巫启新,夏焕柏,喻理飞.云贵高原东部乌江流域生态经济型防护林体系建设技术研究[J].贵州林业科技,1998(2):1-20.
    [136]吴长文,王礼先.林地土壤孔隙的贮水性能分析[J].水土保持研究,1995,2(1):76-79.
    [137]吴长文.北京密云水库水源保护林水土保持效益的研究[D].北京林业大学,1994.
    [138]吴普特,周佩华.黄土丘陵沟壑区(Ⅲ)土壤抗冲性研究——以天水站为例.水土保持学报.1993,7(3):19-25
    [139]吴钦孝,韩冰,李秧秧.黄土丘陵区小流域土壤水分入渗特征研究[J].中国水土保持科学,2004,2(6):1-5.
    [140]吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究Ⅱ:草本植物根系提高表土层土壤抗冲刷力的试验分析[J].水土保持学报,1990,4(1):11-16
    [141]吴钦孝,刘向东,赵鸿雁.森林枯枝落叶层涵养水源保持水土的作用评价[J].水土保持学报,1998,4(2):23-28.
    [142]吴钦孝,山杨次生林枯枝落叶蓄积量及其水文作用[J],水土保持学报,1992,6(1):7.
    [143]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998.
    [144]吴淑安,蔡强国,马绍嘉.土壤抗蚀性实验研究[J].云南地理环境研究,1996,8(1):73-80.
    [145]吴淑安,蔡强国.土壤表土中植物根系影响其抗蚀性的模拟降雨试验研究——以张家口试验区为例[J].干旱区资源与环境,1999,13(3):35-43.
    [146]吴彦,刘世全.植物根系提高土壤水稳性团粒含量的研究[J].水土保持学报,1997(3):11-18.
    [147]夏汉平.论长江与珠江流域的水灾、水土流失及植被生态恢复工程[J].热带地理,1999,23(2):124-129.
    [148]夏勇其,吴祈宗.一种混合型多属性决策问题的TOPSIS方法[J].系统工程学报,2004, 19(6):630-634.
    [149]肖文发,程瑞梅,李建文等.三峡库区杉木林群落多样性研究.生态学杂志[J],2001,20(1):1-4.
    [150]肖文发,李建文,于长青.长江三峡库区陆生动植物生态[M].重庆:西南师范大学出版社,2000.
    [151]肖新平,李为政.有时序多指标决策的关联分析法及灵敏度分析[J].系统工程与电子技术,1995,17(8):36-44.
    [152]谢锦忠,傅憋毅,马占兴等.麻竹人工林水文生态效应[J].林业科学研究,2005,18(6):682-687.
    [153]谢锦忠,傅懋毅,马占兴等.丛生竹林生态系统的水文效应研究—Ⅱ.麻竹林林冠对降水的截持作用[J].竹子研究汇刊,2003,22(1):13-22.
    [154]解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [155]徐海,夏焕柏.乌江流域坡耕地水保防护林体系建设技术研究[J].土壤侵蚀与水土保持学报,1997,11(3):17-22.
    [156]徐琪等.三峡库区移民环境容量研究[M].北京:科学出版社,1993.
    [157]徐跃.枯枝落叶在森林生态系统中的作用.林业实用技术[J].1988,(12):23-26.
    [158]徐泽水.求解不确定性多属性决策问题的一种新方法[J].系统工程学报,2002,17(2):177-181.
    [159]许树柏.层次分析法原理[M].天津:天津大学出版社,1988.
    [160]许新建,陈金耀,俞新妥.武夷山六种杉木伴生树种落叶养分归还的研究[J].福建林学院学报,1995,15(3):213-217.
    [161]杨大三,袁克侃.鄂西三峡库区防护林研究[M].武汉:湖北科学技术出版社,1996.
    [162]杨大三.从98特大洪水透析长江流域生态环境[J].南京林业大学学报,1999,23(2):47-50.
    [163]杨吉华,张永涛,李红云.不同林分枯落物的持水性能及对表层土壤理化性状的影响[J].水土保持学报,2003,17(2):141-144.
    [164]杨海龙.三峡库区小流域森林植被理水调洪规律的研究[D].北京林业大学,2004.
    [165]杨继松,刘景双,于君宝.三江平原沼泽湿地枯落物分解及其营养动态[J].生态学报,2006,26(5):1297-1302.
    [166]杨立文,石清峰.太行山主要植被枯枝落叶层的水文作用[J].林业科学研究,1997,10(3):283-288.
    [167]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干茎流[J].林业科学研究,1992,5(2):158-162.
    [168]杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究,2001,18(1):8-12.
    [169]杨玉坡.长江上游(川江)防护林研究[M].北京:科学出版社,1993.
    [170]杨玉盛,何宗明,陈光水等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-534.
    [171]姚喜军,四种植物根系提高土体抗剪强度有效性研究[D].内蒙古农业大学,2009.
    [172]叶义成,柯丽华,黄德育等.系统综合评价技术及其应用[M].北京:冶金工业出版社,2006.
    [173]尤天慧,樊治平.区间数多指标决策的一种TOPSIS方法[J].东北大学学报(自然科学版),2002,23(9):840-842.
    [174]于大炮,刘明国,邓红兵等.辽西地区林地土壤抗蚀性分析[J].生态学杂志,2003,22(5):10-14.
    [175]余新晓,陈丽华.黄土高原沟壑区土壤抗蚀性的初步研究[J]. 北京林业大学学报,1988, 10(1): 28-34.
    [176]余新晓,张志强,陈丽华等.森林生态水文[M].北京:中国林业出版社,2004:13-17.
    [177]袁正科.拟生造林法的提出与应用实例[J].湖南林业科技,1996(3):1-6.
    [178]曾三云,龙君.无偏好信息的混合型多属性决策问题的TOPSIS方法[J].桂林电子科技大学学报,2007,27(5):398-401.
    [179]曾思齐,余济云等.马尾松水土保持林水文功能计量研究[J],中南林学院学报,1996,16:1-76.
    [180]曾信波.贵州紫色土上植物根系提高土壤抗冲性能的研究[J].贵州农学院学报,1995,14(2): 20-24
    [181]曾信波.海南岛尖峰岭热带林生态系统的水分循环研究[A].中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:413-442.
    [182]曾信波.苔藓层的蓄水保土功能研究[J].水土保持学报,1995,9(4):118-121.
    [183]张爱国,马志正,杨勤科等.中国水土流失土壤因子研究进展[J].山西师范大学学报(自然科学版),2002,16(1):79-85.
    [184]张尔辉.重庆四面山大型真菌调查研究初报[J].重庆师范大学学报(自然科学版),1989,6(1): 45-51.
    [185]张海,张立新,柳江华等.黄土退耕坡地工程治理与林草优化配置模式研究[J].农业工程学报,2006,22(11):93-97.
    [186]张洪江,北原曜,远藤泰造.几种林木枯落物对糙率系数n值的影响[J].水土保持学报,1994,8(4):4-10.
    [187]张洪江,北原曜,远藤泰造等.晋西不同林地状况对糙率系数n值影响的研究[J].水土保持通报,1995,15(2):10-21.
    [188]张洪江,程金花,余新晓等.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学,2003,39(5):147-151.
    [189]张洪江,王礼先.长江三峡花岗岩坡面土壤流失特性及其系统动力学仿真[M].北京:中国林业出版社,1997.
    [190]张洪江.长江三峡花岗岩地区优先流运动及其模拟[M].2005,北京:科学出版社.
    [191]张洪江等.重庆四面山森林植物群落及其土壤保持与水文生态功能[M].北京:科学出版社.2010.
    [192]张光辉,梁一民.植被盖度对水土保持功效影响的研究综述[J].水土保持研究,1996,3(2):104-110.
    [193]张建军,张宝颖,毕华兴等.黄土区不同植被条件下的土壤抗冲性[J].北京林业大学学报.2004,6(6):25-29.
    [194]张金池,康立新,卢义山等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2):633-637.
    [195]张静静.基于逼近理想解法的第三方物流服务商选择研究[D].长安大学,2010.
    [196]张孟喜.土体学原理[M].中国·武汉:华中科技大学出版社,2007.159-160.
    [197]张启昌,孟庆繁,兰晓龙.黄土低山丘陵土壤抗蚀性影响因素的初步研究[J].水土保持通报.1996,14(2):21-26.
    [198]张全,樊治平,潘德惠.不确定多属性决策区间数的一种排序方法[J].系统工程理论与实践,1999,19(5):129133.
    [199]张锐.重庆四面山几种人工林水土保持功能研究[D].北京:北京林业大学2008.
    [200]张晓明,王玉杰,夏一平.重庆缙云山典型植被原状土与重塑土抗剪强度研究[J].农业工 程学报,2006,22(11):6-9.
    [201]张元明,曹同,潘伯荣.新疆苔藓植物的研究现状与展望[J].干旱区研究,2001,18(2):38-41.
    [202]张志强,王礼先,王盛萍.中国森林水文研究进展[J].中国水土保持科学,2004,2(2):69-73.
    [203]张志强.密云水库水源保护林水文功能及其作用机理研究[D].北京林业大学,1999.
    [204]张祖荣.植物根系提高土壤抗侵蚀能力的初步研究[J].渝西学院学报(自然科学版),2002,15(1):31-35.
    [205]张子雪.鲁中南山区不同土地利用类型水土流失规律及蓄水保土功能研究[D].山东农业大学,2010.
    [206]章明奎,韩常灿.浙江省丘陵区土壤的抗蚀性[J].浙江农业学报,2000,12(1):2530.
    [207]赵鸿雁,吴钦孝,刘向东.油松枯落物的水土保持作用研究[J].中国水土保持,1993,(11):36-38.
    [208]赵鸿雁,吴钦孝.影响水土流失主要因子间相互关系研究[J].水土保持研究,1995,2:99-102.
    [209]赵鸿雁.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [210]赵辉.湘中丘陵紫色岩地区坡面水土保持林配置与植被建设[J].亚热带水土保持,2006,18(3):36-39.
    [211]赵金荣,孙立达,朱金兆.黄土高原灌木[M].北京:中国林业出版社,1994.
    [212]赵静,王婷,牛东晓.用于评价的改进熵权TOPSIS法[J].华北电力大学学报,2004,31(3):69-71.
    [213]赵洋毅,周运超,段旭等.黔中石灰岩喀斯特表层土壤结构性与土壤抗蚀抗冲性[J].水土保持研究,2008,15(2):18-21.
    [214]郑世清,周佩华,周保林.黄土高原沟壑区土壤抗冲性研究——以黄委会西峰水土保持站为例[J].水土保持通报.1994,14(1):12-16.
    [215]中国科学院南京土壤所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [216]钟章成.常绿阔叶林生态研究[M].重庆:西南师范大学出版社,1988.
    [217]钟哲科,柴锡周.丘陵红壤防护林树种优化模式选择[J].林业科技通讯,1994(4):12-14.
    [218]周光益,曾庆波,黄全等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报,1995,19(3):201-207.
    [219]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997.
    [220]周厚胜.土保持林优化配置模式初探[J].安徽农业科学,2005,33(7):1198-1199.
    [221]周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(1):29-34.
    [222]周亚.多属性决策中的TOPSIS法研究[D].武汉理工大学,2009.
    [223]周跃.土壤植被系统及其坡面生态工程意义[J].山地学报,1999,17(3):224-229.
    [224]周跃.植被与侵蚀控制:坡面生态工程基本原理探索[J].应用生态学报,2000,11(2):297-300.
    [225]周择福,洪玲霞.不同林地土壤水分入渗和入渗模拟的研究[J].林业科学,1997,33(1):9-16.
    [226]朱金兆,魏天兴,张学培.基于水分平衡的黄土区小流域防护林体系高效空间配置[J].北京林业大学学报,2002,24(5/6):5-13.
    [227]朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110
    [228]朱兆良,文齐孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    [229]Aerts R.Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J]. Oikos,1997,79:439-449.
    [230]Anderson,H W.Suspended sediment discharge as related to streamflow,topography,soil and land use[J].Trans.Am[J].Geophys.Union,1954,35:268-281.
    [231]Bajracharya.R.M, Lal.R.Seasonal Soil Loss and Erodibility Variation on A Miamian Silt Loam Soil[J]. Soil Sci.Soc.Am.J,1992,56:1560-1565.
    [232]Bennet.H H.Some comparisons of propertifes of humid-temperate amecian soils with special reference to indicated relations between chemical composition [J].Soil Sci.,1926,21:349-375.
    [233]Berg B, Berg M P, Bottner P. Litter mass loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality.Biogeochemistry,1993,20:127-153.
    [234]Black P E. Research issues in forest hydrology [J]. J. Amer. Water Resource,1998,34(4): 98-115.
    [235]Bormann F H, L ikens G E. Pattern and Processes in a Forested Ecosystem [M]. Springer Verlag, New York,1979,11-20.
    [236]Bouyoucos,G J.The clay ratio as a criterion of susceptibility of soils to erosion[J].J of American Society of Agronomy,1935,27:738-741.
    [237]Caron J, B. D. Kay, J. A. Stone, Improvement of Structural Stability of a Clay Loam with Drying[J], Soil Science Society of American Journal,1992(56):1407-1403.
    [238]Carrol. C, Halpin M, Burger P, et al. The effect of crop type, crop rotation, and tillage practice on runoff and soil loss on a Vertisol in central Qweenland[J]. Aust. J. Soil Res,1997 (35):925-939.
    [239]Coote, D.R., and C.A.Malcolm-McGovenetal.Seasonal Variation of Erodibility Indiceson Shear Strength and Aggregate Stability in Some Ontario Soils[J].Can.J.SoilSci.,1988,68:405-416.
    [240]Cruse.R.M,Larson.W.E.Effect of Soil Shear Strength on Soil Detachment due to Raindrop Impact [J].Soil Sci.Soc.Am.J,1977,41:777-781.
    [241]Dunkerley, D.L. Measuring interception loss and canopy storage in dryland vegetation:a brief review and evaluation of available research strategies [J]. Hydrol. Process,2000,14:669-678.
    [242]Dunne, T.et al. Effect of rainfall, vegetation and microtopography on infiltration and runoff [J]. Water resource research,1991,27(9):22271-22285.
    [243]Elliot,WJ Foster, GR Ellit, AV. Soil erosion:Processes, impacts and prediction. IN:Soil Management for Sustainability. Soil and Water Conservation Society, Ankeny, Iowa.1991, 25-34.
    [244]Friedman G M. Comparison of Moment Measures for Serving and Thin-Section Data in Sedimentary Petrological Studies [J]. J Sedim Petro,1962,32:15-25.
    [245]Fork R L, Ward W C. Brazoo River Bar: A Study in the Sig-nificance of Grain Size Parameters [J]. J Sedim Petro,1957,27:3-27.
    [246]Gilly J E, Risse L M. Runoff and soil loss as affected by the application of manure[J]. Transaction of the ASAE,2000,43(6):289-297.
    [247]Hillel D. Environmental soil physics [M]. New York: Academic Press,1998,391-393.
    [248]Hudson, N W.An Introduction to the Mechanics of Soil Erosion under Conditions of Subtropical Rainfall[A].//Bulawayo:Rhodesia Science Association Proceedings,1961:49,14-25.
    [249]Ian R. Calder. Canopy processes:implications for transpiration, interception and splash induced erosion, ultimately for Forestmanagement and water resources [J]. PlantEcology,2001,153: 203-214.
    [250]Inman D L. Measures for Describing the Size Distribution of Sediments [J]. Journal of Sedimentary Petrology,1952,22:125-145.
    [251]Kok H, McCool D K. Quantifying Freeze/Thaw-in-duced Variability of Soil Strength [J]. Trans. ASCE, (Transactions of the AS ABE) 1990,33:501-511.
    [252]Krumbein W C, Pettijohn F J. Manual of Sedimentary Petrogra-phy[M]. New York: Appleton-Croffs Inc.1938,228-268.
    [253]Hwang C L, Yoon K S. Multiple attribute decision making:methods and applications [M]. New York: Springer-Verlag,1981,99-103; 128-140.
    [254]Laflen J M, Lane L J, Foster G R. WEPP a new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation,1991,46(1):34-38.
    [255]Lee R, Granillo A B. Soil protection by natural vegetation on clearcut forest land in Arkansas [J].Journal of Soil and Water Conservation,1985,40(4):379-382.
    [256]Liu Shuguang. A new model for the prediction of rainfall interception in forest canopies [J]. Ecological Modelling,1997,99:151-159.
    [257]McCune B, Antes J A. Epiphyte communities the Swan Valley, Montanal [J]. The Bryclogist, 1982,85(1):1-2.
    [258]Middleton, H E.Properties of soils which influence soil erosion [M].USDA Tech.Bull,1930, 178:16.
    [259]O'keefe van der linden.Donld R Farrar. An ecological study of the bryophytes of a natural prairie in Northwest Iowa [J]. The Bryologist.1983,86(01):1-13.
    [260]Pausas J G, Casals P, Romanya J. Litter decomposition and faunal activity in Mediterranean forest soils:Effects of N content and the moss layer [J]. SoilBiology and Biochemistry,2004,36: 989-997.
    [260]Philip J R. Hillslope infiltration divergent and convergent slopes [J].Water Resources Research, 1991,27:1035-1040.
    [261]Rambo T R, Muir PS. Forest floor bryophytes of Pseudotsuga menziesii Tsuga heterophylla stands in semiarid Eastern Austualia [J]. The Bryologist,1998,101(1):116-130.
    [262]Richard Lee and Granillo A B. Soil protection by natural vegetation on clear cut forest land in Arkansas [J]. Journal of Soil and Water Conservation,1985,40 (4):379-382.
    [263]Saaty T.L., Lwis G. Vargas, The Logic of Priorities[R]. Hingham massachusettes:Kluwer Boston Inc,1982.
    [264]Saaty T.L., The Analytical Hierarchy Process [R]. New York:Mcgraw—Hill Inc,1980.
    [265]Scoging H M, Thornes J B... Infiltration Characteristics in a Semiarid Environment [A]. Wallingford:IAHS Publication,1982,159-168.
    [266]Sharma S K, Sastry G. Impact of various land uses on the infiltration in Doon Valley [J]. Indian Journal of Soil Conservation,1998,26(1):17-18.
    [267]Singh K P, Singh P K, Tripathi S K. Litter fall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India [J]. Biology and Fertility of Soil,1999,29:371-378.
    [268]Thornes, J.B., The interaction of erosional and vegetational dynamics in Land degradation:spatial outcomes[M]. In:Thornes, J.B. ed. Vegtation and Erosion, John Wiley&Sons Ltd,1990,41-43.
    [269]Varder Linden O K, Farrar D R. An ecological study of the bryophytes of a natural prairie in Northwestern Iowa [J]. The Bryologist,1983,66(1):1-13.
    [270]Viles, H.A.The agency of organic beings:A selective review of recent woek in biogeomorphology [A].In:Thormes JB. (ed). Vgetation and erosion[C]. Sydney:John Wiley & Sons Ltd,1990,5-24.
    [271]Wang Yunqi, Wang Yujie, Zhu Jinzha. Anti-erodibility analysis in forest soil of typical forests in Jinyun mountain in Chongqing city [J]. Resources and Environment in the Yangtze Basin,2005, 14(6):775-780.
    [272]Wang Yunqi. Research on Hydrological Function of Forest Based on MMS in Three Gorges Reservior Area [D]. PHD Dessertation, Beijing Forestry University,2006.
    [273]Waston.D.A, Laflen.J.M.Soil Strength, Slopeand Rain fall Intensity Effectson Interrill Erosion [J].Transactions of The AS AE,1986,29:98-102.
    [274]Wiersum K F. Effect of various vegetation layers in an Acacia auriculiform is forest plantation on surface erosion in Javi, Indonesia [A]. Soil erosion and conservation [M]. New York: The international conference,1983,79-89.
    [275]Wilson G V, Luxmoore R J... Infiltration, macroporosity and mesoporosity distribution on two forested watersheds [J]. Soil Science Society of America Journal,1988,52:329-335.
    [276]Woodburn, R, Kozachyn, J.Study of relative erodibility of a group of Mississippi gully soils [J]. Trans.Am.Geophys.Union,1956,37:749-753.
    [277]Wu Qinxiao Han Bing Li Yangyan. Characteristics of soil infiltration in watersheds in Loess Hilly RegiOn [J]. Science of Soil and Water Conservation,2004,2(6):1-5.
    [278]Zeleny M.Multiple criteria decision making.New York:McGraw-Hill,1982,518-554
    [279]Zwieniecki M A, Newton M. Water holding characteristics of meta-sedimentary rock in selected forest ecosystems in Southwester [J]. Soil Science Society of America Journal,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700