超韧尼龙11结构与性能的研究及其共混合金相容性介观模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会与科学技术的飞速发展,单一材料的性能已不能满足日趋发展的形势,高性能化、多功能化和复合化已成为材料发展的必然趋势。尼龙11相对于其它聚酰胺类材料,虽然具有吸水率低、耐油性好、耐低温、弹性记忆效应好、耐应力开裂性好、易于加工等优点。但是,纯粹的PA11的性能已不能满足各种产品对材料性能的特殊要求,且其相对较高的市场价格也限制了其应用领域的进一步拓展。因此,通过物理或化学改性的方法制备高性能和功能化PA11基合金材料的重要性越来越明显。
     国内外学者对尼龙改性的研究颇多,尤以尼龙6和尼龙66的改性研究为主,而尼龙11改性研究相对较少。而且参阅大量文献时发现,国外研究重点集中在尼龙11的晶体结构、晶形转变以及压电性能上;国内在上述方面也进行了不少的研究。而国内外,在尼龙11增塑、增强、增韧等方面的合金研究则都相对较少。本文在以往实验经验的基础上,仍采用弹性体增韧的思路,这样可以保证韧性大幅度提高,达到超韧化目的。另外,聚合物之间的相容性是决定共混物形态结构和性能的关键因素,因此本文除了对尼龙11超韧化及其合金的力学性能、形态结构、结晶性能、流变性能进行系统研究外,还首次通过Materials Studio软件对尼龙11共混体系的相容性进行了介观动力学模拟,进而分析了弹性体的增韧机理,并首次提出三维网络化增韧机理。
     本文主要从以下几个方面进行了研究:
     通过不同增韧剂改性PA11,研究结果表明,采用POE作为增韧剂,POE-g-MAH为相容剂,增韧效果明显,且经济适用。单纯用POE-g-MAH增韧时,其含量的增加对PA11合金冲击强度的影响不大,而当体系PA11/POE/POE-g-MAH三元共混时,体系冲击强度可提高到80kJ/m2以上,且POE/POE-g-MAH存在一个最佳比例,MAH接枝率并非越大越好;而POE-g-MAH含量的增加却能使拉伸强度呈线性下降,但MAH接枝率的多少对共混物拉伸强度的影响不大。
     动态力学性能研究表明,PA11中加入POE及POE-g-MAH后,复合体系的储能模量均比纯PA11的低;在共混体系中引入POE-g-MAH后,由于增加了PA11和POE两相间的界面亲和力,储能模量相对于AMO-0-30体系的要高;三元共混时,体系分子间的作用力增大,粘度增加,导致内耗明显增大;且损耗峰向高温方向移动,导致Tg升高。加入POE和POE-g-MAH可以有效降低PA11的吸水性,PAll与POE各个共混体系的p松弛峰高显著低于纯PA11的。
     共混物冲击断面的SEM分析结果显示,PA11仅与POE共混时,两相界面清晰,界面粘结松散,形成所谓的“海-岛”结构,为典型的两相不相容体系;而当PA11/POE-g-MAH/POE三元共混时,两相界面变得模糊,分散相颗粒细化,分散相与基体材料粘结强度高,成为典型的“海-海”结构。
     DSC研究结果表明,POE或POE-g-MAH的加入,起到异相成核的作用,可以提高PA11的结晶速率,降低晶体生长对时间的依赖性;相容剂POE-g-MAH的引入,使得PA11和POE的分子链发生缠结,增大了PA11体系的粘度,导致结晶速率下降,另外体系中形成的这些交联网络不易熔融,起到异相成核的作用,使得某些结晶不完善的小晶粒趋于完善,表现为低温熔融峰变小;纯PA11的成核方式只有均相成核方式,加入相容剂和弹性体后,结晶成核方式不仅存在自相成核方式,还存在异相成核方式,由于成核作用的影响,诱发其生长向高维数发展。
     XRD研究显示,PA11中单纯加入POE,可使复合材料的晶体结构从Y晶型转变为α晶型;而体系中加入POE-g-MAH,可以提高PA11的结晶能力,且使晶形更加完善。
     偏光显微成像研究发现,PA11中加入POE或POE-g-MAH后,黑十字消光现象消失,球晶尺寸明显变小,PA11球晶的生长受到破坏,生成大量的微晶和一些较大的晶粒;当体系变为三元共混时,由于POE-g-MAH使得PA11与POE的分子间的作用力增强,阻碍了PA11分子链折叠排入晶格的运动,不利于PA11球晶的生长,而只能以微晶形式存在。
     毛细管流变研究认为,PA11及其与POE的复合材料都属于假塑性流体,POE和POE-g-MAH的引入,增加了共混体系的非牛顿性,对剪切应力或剪切速率的敏感性较大;共混体系的粘流活化能均大于纯PA11的,说明共混体系的熔体粘度对温度的敏感性较高。
     采用介观动力学方法对PA11共混体系的相容性进行研究。采用珠子代替一个重复单元或分子片段,用由珠子组成的高斯链代替真实分子链,真实分子链的特性反映在珠子的性质上。模拟得到等密度图、自由能密度和有序度参数来表征共混体系的相容性。结果表明,PA11与POE共混体系中引入POE-g-MAH时,可以起到细化POE粒径的作用,同时它可以在PA11和POE之间形成连接点,使POE分子链接枝到PA11链上,进而提高了尼龙11的冲击韧性;共混体系介观模拟形貌基本上与实际共混物的断面形貌相吻合,这一事实验证了该模拟方法的合理性和可行性。
     弹性体增韧机理分析认为,增韧后的PA11复合材料试样由于在冲击作用下,产生大量银纹或剪切带,消耗了大量能量,从而显著提高了材料的冲击强度;分散相粒子间距的减小,使得分散相应力场逐渐增大,产生塑性变形的幅度增加,材料韧性也随之增大;三维网络状的分散相粒子,在体系中不仅起到骨架作用,而且在外力作用下,网络发生大变形,引发大量的银纹,吸收外界能量,从而起到增韧的作用。
With the development of society and the improvement of science and technology, the performance of a single material has not meet the growing development of the situation. Polymer materials are developing toward the high performance, multifunctional and complex. Compared to other type of polyamide material, nylon 11 although has a lot of excellent properties, such as low water absorption, oil resistance, good resistance to low temperature, good flexible memory effect, good stress cracking resistance, easy processing and so on. However, the performance of pure PA11 has been unable to meet all kinds of products on the material properties of the special requirements, and its relatively high market price also limits its applications. Therefore, it is important that high performance and functional of PA11-base alloy materials are prepared by physical or chemical modification method.
     Nylon modification, especially on nylon 6 and nylon 66, has been studied in recent years. However, the research on the modification of nylon 11 is relatively little. Based on the extensive literature, it had been found that overseas research focused on the crystal structure, crystalline changes, and the piezoelectric properties of nylon 11. The same is true of domestic. However, at home and abroad, the study is relatively few on plasticizing, enhancement, toughening of nylon 11 alloys. In this paper, based on past experience, the elastomer was still used as toughening agent in order to guarantee substantial increase in toughness and achieve the purpose of super-toughening. In addition, the compatibility between the different phases of the polymers is the one of key factors in determining the morphology structure and performance of blend. This paper investigated the mechanical properties, morphology, crystalline properties, and rheological properties of the ultra-toughening nylon11. For the first time, the compatibility of nylon 11 blends systems in mesoscopic region was simulated using the Materials Studio software. Thus, elastomer-toughening mechanism was analyzed, and three-dimensional network toughening mechanism was first proposed.
     This paper studied from the following aspects.
     The different toughening agents were used to toughen PA11. The results indicate that when POE as a toughening agent and POE-g-MAH as compatibilizer, the toughening effect is obvious, which is affordable and economical. When simply using POE-g-MAH toughness, its content has little effect on impact strength of the PA11 alloy. When the system was composesed of PA11, POE and POE-g-MAH, impact strength of the system can increase to more than 80KJ/m2. There is an optimal ratio between POE and POE-g-MAH, and MAH grafting rate is not bigger and the better. The POE-g-MAH content increaseing linearly can decrease the tensile strength, but the amount of MAH graft ratio was little effect on tensile strength of the blends.
     Study on the dynamic mechanical properties indicated that the storage modulus of the composites system is higher than that of pure PA11 when POE and POE-g-MAH were added into PA11. The reason is that POE-g-MAH improves the interface affinity between two phases. And the storage modulus of the tri-blending system is higher than the AMO-0-30 system. What's more, in the tri-blending system the intermolecular forces and viscosity are bigger than binary blends system so.that the intermolecular friction increases and the loss peaks move to high temperatures which resulting in higher Tg. POE and POE-g-MAH can effectively reduce water absorptivity of PA11,βrelaxation peak of PA11 blending with POE and POE-g-MAH is significantly lower than that of pure PA11.
     The SEM results of impact fracture of composites show that when PA11 was only mixed with POE, the two-phase interface is clear, and bond loosely, forming the so-called "sea-island" structure which is a typical two-phase incompatible systems. When PA11 blended with POE-g-MAH and POE, the two-phase interface is blurred, the dispersed phase is refined and the bonding strength between the dispersed phase and matrix material is higher. A typical "sea-the sea" structure has been formed.
     DSC results show that POE or POE-g-MAH play the role of heterogeneous nucleation, which can increase the crystallization rate of PA11 and reduce time-dependence of crystal growth. The introduction of compatibilizer POE-g-MAH causes molecular chain entanglement of PA11 and POE, which increase the viscosity of the PA11 and decline crystallization rate. The cross-linked networks that are not melting easily play the role of heterogeneous nucleation, and make some imperfect crystallization, of small grains close to perfection which low-temperature melting peaks reduce. The nucleation of pure PA11 is only homogeneous nucleation. When the compatibility agents and elastomer are added into blend system, the crystal nucleation is not only homogeneous nucleation, but there is still heterogeneous nucleation. Due to the impact of nucleation function, its growth is induced to a higher dimension.
     XRD results show that the POE transforms the crystal structures of blends from y to a form when only POE introduced into PA11. However, POE-g-MAH can improve the crystallization of PA11 and make the crystal perfect.
     Polarized microscopic results indicate that when POE or POE-g-MAH is added into PA11, the typical Maltese cross extinction disappears and spherulite size become much smaller. The growth of PA11 spherulites is restrained and a large number of microcrystalline and some large crystal grains are generated. When the system is ternary blends, POE-g-MAH increases intermolecule force between PA11 and POE, and hinder the movement of molecular chain of PA11 folding into the lattice, which is not benefit to the growth of PA11 spherulites so that they exist in the form of microcrystalline.
     The research results of Capillary rheological show that PA11 and PA11/POE composite are pseudo-plastic fluid. The introduction of POE and POE-g-MAH increase their non-newtonian behaviour, and there is a larger sensitivity to shear stress or shear rate. The viscosity-flow activation energy of the blending system is larger than that of pure PA11, which indicate the melt viscosity of blending system is sensitive to temperature.
     The phase separation of the PA11 blend system in mesoscoopic region is simulated using MesoDyn. The thermodynamic forces are obtained by a mean-field density functional method, using Gaussian chain as a molecular model. The results demonstrate that POE-g-MAH in the blends of PA11 and POE can refine particle size of POE and generate connection point between PA11 and POE of molecular clain so that it can increase the impact toughness of PA11. Blend Morphology of mesoscopic simulation is consistent with the actual cross-section morphology of blends that verify that it is feasible and practicable for this simulation method.
     Elastomer toughening mechanism analysis, PA11 toughened composites under the action of impact result in a large number of crazes or shear zones which consum a lot of energy, and thus significantly improve the impact strength of the material. Dispersed phase particle spacing decrease, the force field of dispersed phase increases gradually, resulting that plastic deformation region and toughness of composites increase. In the blend system, the dispersed phase particles that is three-dimensional nectwork structure, not only play a role in skeleton, but also play a toughening role in nylon 11 which the network structure produce a large number of deformation, and trigger a large number of silver grain and absorbing external energy.
引文
[1]张庆新,莫志深.尼龙11结构与性能的研究进展.高分子通报.2001,(6):27-37.
    [2]吴忠文,寇喜春,姜振华译.实用高分子合金.吉林:吉林科学技术出版社.1996:1-49.
    [3]陈秀娟,许国志.反应型增容剂及多相聚合物体系的增容技术.塑料科技.2003,154(2):59-64.
    [4]郭天英.可反应性增容聚合物共混体系的研究进展.工程塑料应用.1999,120(11):34-36.
    [5]张广成.聚合物反应挤出的研究进展.现代塑料加工应用.2001,71(5):50-54.
    [6]Andrea L, Marco M, Mariano P. Reactive Compatibilization and Fracture Behavior in Nylon6/VLDPE Blends. Appled Polymer Science.1999,74(14):3455-3468.
    [7]张凌燕,陈慧杰,魏婷婷,等.低密度聚乙烯/高岭土对尼龙6的增韧增强协同作用研究.非金属矿.2008,31(3):3-5,8.
    [8]Jurkowski B,Olkhov Y A.New Aspects of Polymide 6 Mixing In Molten State with LDPE. Journal of Applied Polymer Science 1997,65(9):1807-1811.
    [9]Kang Y P, Seong H P. Improved Nylon6/LDPE Compatibility Through Grafting of Isocyanate Functional Group. Journal of Applied Polymer Science 1997,66(11): 2183-2189.
    [10]Gonzalez-Nunez R, De Kee D. The Influence of Coalescence on the Morphology of the Minor Phase in Melt-drawn PA6/HDPE Blends. Polymer.1996,37(21):4689-4693.
    [11]冯国华,左建东,刘忠杰,等.UHMWPE、PUR-T对PA6共混改性研究.工程塑料应用.2003,31(9):4-6.
    [12]Heino M, Hietaoja P, Seppala J, Harmsa T, Friendrich K. Studies on Fracture Behavior of Tough PA6/PP Blends. Journal of Applied Polymer Science 1997,66(12):2209-2220.
    [13]骆丁胜,伍玉娇,肖贤彬,等.热处理对PP/纳米SiO2/PA6/POE-g-MAH复合材料力学性能与结晶行为的影响.塑料工业.2008,36(2):51-54.
    [14]刘卫平.聚酰胺合金的现状与前景.塑料加工.2000, 29(3):15-18.
    [15]Kim B J, White J L. Simulation of Thermal Degradation Peroxide Induced Degradation and Maleation of PP in a Modular Co-Rotating Twin Screw Extruder. Polymer Engineering Science.1997,37(3):576-589.
    [16]Yeh J T, Fan-Chiang C C. The Barrier Impact Morphology and Rheological Properties of Modified Polyamides and their Corresponding PE-Modified Polyamide Blends. Journal of Applied Polymer Science.1997,66(13):2517-2527.
    [17]Lin J S, Shen E Y, Jois Y H R. The Effect of Extruder Temperature and Maleated PP on PP/PA66 Blend:Small Angel X-Ray Scattering Study. Journal of Applied Polymer Science 1995,55(5):655-666..
    [18]Sathe S N, Rao G S S, Rao K V. Relationship between Morphology and Mechanical Properties of Binary and Compatibilized Ternary Blends of PP and Nylon6. Journal of Applied Polymer Science.1996,61(1):97-108.
    [19]Yao ZH, Yin ZH, Sun GE, etal. Morphology, Thermal Behavior, and Mechanical Properties of PA6/UHMWPE Blends with HDPE-g-MAH as a Compatibilizing Agent. Journal of Applied Polymer Science 2000,75(2):232-238.
    [20]Anttila U, Hakala K, Helaja T, etal.Compatibilization of polyethylene/polyamide 6 blends with functionalized polyethylenes prepared with Metallocene catalyst. Journal of Applied Polymer Science 1999,37(16):3099-3108.
    [21]李笃信,贾德民,郭宝春.聚丙烯接枝物反应挤出增容PP/PA6共混物的形态结构.高分子材料科学与工程.2002,18(1):71-74.
    [22]周应学,胡国胜,李迎春.PP-g-MAH和SMAH增容PP/PA11的研究.工程塑料应用.2004,32(5):17-20.
    [23]林春雷.LDPE接枝马来酸锌离聚物对PP/PA6共混体系相容性的影响.塑料工业.1998,26(1):101-105.
    [24]吴智华,沈经伟.衣康酸接枝PP增容PA6/PP合金的研究.中国塑料.1999,13(8):45-50.
    [25]刘长生,王琪,夏和生.PP-g-HMA增容尼龙6/聚丙烯共混物结构与性能研究.塑料工业.2001,29(6):9-11.
    [26]张景春,谢续明,郭宝华.多组分单体接枝聚丙烯/尼龙6反应共混物结晶行为研究.高分子学报.2002,6(3):282-286.
    [27]Mehrabzadeh M, Burford R. P. Effect of crosslinking on polyamidell/butadiene-acrylonitrile copolymer blends. Journal of Applied Polymer Science 1997,64(8): 1065-1611.
    [28]Mehrabzadeh M, Burford R. P. Impact modification of polyamid 11. Journal of Applied Polymer Science 1996,61(13):2305-2314.
    [29]Guosheng Hu, Biaobing Wang, Xiumiao Zhou. Effect of EPDM-MAH Compatibilizer on the Mechanical Properties and Morphology of Nylon 11/PE Blends. Materials Letters. 2004,58(27-28):3457-3460.
    [30]汪晓东,金东吉.增容剂等对尼龙6/乙烯-醋酸乙烯酯共聚物共混合金的亚微态与力学性能影响.材料研究学报.1996,10(1):85-89.
    [31]刘安详,王文才.EVA-g-MAH对PA6/EVA共混合金原位反应增容作用的研究.高分子材料科学与工程.2000,16(4):88-91.
    [32]邱宏斌,董丽松.一种新型塑料增韧剂-核壳结构聚合物.高分子通报.1997,(3):179-183.
    [33]Haojun Liang, Wei Jiang, Jilin Zhang etal. Toughening Mechanism of Polymer Blends: Influence of Voiding Ability of Dispersed-phase Particles. Journal of Applied Polymer Science.1996,59(3):505-509.
    [34]李齐方,田明,冯威等.尼龙11/MBS/环氧树脂共混合金的力学性能和增韧机理.高分子材料科学与工程.2001,17(4):57-61.
    [35]罗忠富,黄锐.塑料冲击改性剂的研究进展.中国塑料.2000,14(4):17-19.
    [36]李小梅,武德珍,吴立峰.PA6/POE/EAA共混体系的相态与性能的研究.中国塑料.2002,16(8):27-30.
    [37]宋波,杨丹,黄锐.PA6/POE/POE-g-MAH分散相态与性能研究.塑料科技.2007,35(1):22-26.
    [38]Qi Fang Li, Dong Gil Kim, De Zhen Wu etal. Effect of Maleic Anhydride Graft Ratio on Mechanical Properties and Morphology of Nylon11/Ethylene-octene Copolymer Blends. Polymer Engineering and Science.2001,41(12):2155-2161.
    [39]赵军峰.超韧尼龙11合金的力学性能和相态研究.郑州经济管理干部学院学报.2006,21(1):93-96.
    [40]高或,吕坤,李齐方.接枝率对尼龙11/POE/POE-g-MAH韧性的影响.现代塑料加工应用.2001,13(4):8-10.
    [41]于中振,欧玉春.超韧尼龙6体系的流变与力学行为.高分子材料科学与工程.2000,16(6):102-104.
    [42]Willis J. M, Favis B. D. Processing-morphology relationships of compatibilized polyolefin/polyamide blends. Part I:The effect of an lonomer compatibilizer on blend morphology. Polymer Engineering and Science.1988,28(21):1416-1426.
    [43]徐学林,李素云.离子聚合物增韧尼龙6.化工新型材料.1995,(7):9-10.
    [44]Dongming Li, Yee A F, Powers K.W etal.The toughening of polyamide-6 by brominated poly(isobutylene-co-p-methylstyrene):fracture and toughening mechanisms. Polymer. 1993,34(21):4471-4480.
    [45]Claude Lacasse, Basil D. Favis etal. Interface/morphology/property relationships in polyamide-6/ABS blends. Advance Polymer Technology.1999,18(3):255-265.
    [46]Majumdar B, Keskkula H, Paul D.R. Mechanical properties and morphology of nylon-6/acrylonitrile-butadiene-styrene blends compatibilized with imidized acrylic polymers. Polymer.1994,35(25):5453-5467.
    [47]李志君,郭宝华,胡平,等.PP-g-(GMA-co-St)对PA6/PC共混物的反应增容作用.高等学校化学学报.2001,22(7):1244-1248.
    [48]Chih-Rong Chiang, Feng-Chih Chang. Polymer blends of polyamide-6 and poly(phenylene oxide) compatibilized by styrene-co-glycidyl methacrylate. Journal of Applied Polymer Science.1996,61(13):2411-2421.
    [49]冯威,崔秀国,张庆敏,等.PPO/PA6/弹性体多相共混物的流变行为.中国塑料.1999,13(8):35-39.
    [50]李齐方,金日光,冯威等.增塑型超韧尼龙11的力学性能和增塑机理.材料研究学报.2000,14(3):265-270.
    [51]吕通建,隗学礼,赵宽放等.铁酸钾晶须增强PA6的研究.工程塑料应用,1995,(6):5-8.
    [52]马雅琳.增强型抗静电PA11/T-ZnOw复合材料的研究.山西:中北大学,2007.
    [53]Anu M. Moilanen, Osmo E.0. Hormi, Kirsti A. Taskinen. Unexpected Strengthening of Polyamide 11 with Liquid Crystalline Oligomers of 2-Alkoxy-4-hydroxybenzoic Acids. Macromolecules,1998,31(4):8595-8599.
    [54]吴彤,罗运军,周贵忠等.树形大分子尼龙11/尼龙6共混物的增韧增强.高分子材料科学与工程,2002,18(6):119-121,125.
    [55]黎学东.塑料的刚性填料增韧.塑料.1995,24(5):7-12.
    [56]宋波,黄锐,魏刚等.PA6/纳米CaCO3复合材料的制备和性能.工程塑料应用.2002,30(12):2-4.
    [57]方海林,袁淑军.玻璃微珠改性尼龙6的研究.现代塑料加工应用.1997,9(4):19-21.
    [58]陈媛,陈永东,杨桂生.聚酰胺增韧改性研究进展.塑料工业.2000,28(5):11-12,33.
    [59]钱翼清,张仲华,韦亚兵等.FPE,CaC03非弹性体增韧PVC/CPE体系的研究.塑料工业.1998,26(1):93-96.
    [60]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构.高分子材料科学与工程.1998,14(2):12-15.
    [61]任杰,郑霞,王英蔚.无机刚性粒子对PVC/CPE合金体系的增韧作用.化学建材.1998,14(1):13-14.
    [62]陆桂娜,李树材.纳米CaC03改性LDPE膜力学性能的研究.塑料科技.2004,3(16):14-17.
    [63]黄锐,徐伟平,郑学晶等.纳米级无机粒子对聚乙烯的增强与增韧.塑料工业.1997(3):106-108.
    [64]Wilbrink M. W. L, Argon A. S, Cohen, R. E etal. Toughenability of nylon-6 with CaCO3 filler particles:new findings and general principles. Polymer.2001,42(26):0155-10180.
    [65]李迎春,胡国胜,朱华等.尼龙11/蒙脱土纳米复合材料的研究.工程塑料应用. 2004,32(6):11-13.
    [66]何晓峰.聚丙烯基尼龙11基复合材料结构和性能的研究.吉林:吉林大学.2008.
    [67]胡国胜,杨云峰,陈利,等.阻隔性尼龙611/有机蒙脱土纳米复合材料的研究.工程塑料应用.2008,36(8):13-16.
    [68]王一中,董华,余鼎声.尼龙6/凹凸棒土纳米级复合材料的合成.合成树脂及塑料.1997,14(2):16-18.
    [69]郝向阳,刘吉平,冯顺山.插层剂对蒙脱土/PA6纳米塑料性能的影响.塑料工业.2002,30(3):48-51.
    [70]王志强,李迎春,胡国胜等.纳米二氧化硅改性尼龙11的研究.塑料工业.2005,33(S1):73-75.
    [71]王珂,徐布衣,曾汉民.PP/POE/BaSO4三相复合体系的形态控制和力学性能的研究.高分子材料科学与工程.2002,18(2):165-167,173.
    [72]Hammer C. O, Maurer F. H. J. Control of the structure and properties of barium sulphate-filled blends of polypropylene and ethylene propylene copolymers. Journal of Materials Science.1999,34(23):5911-5918.
    [73]张玲.弹性体及无机刚性粒子增韧增强聚丙烯复合材料的研究.四川:四川大学,2002.
    [74]王旭,黄锐.PP/纳米级CaCO3复合材料性能研究.中国塑料.1999,13(10):22-25.
    [75]王旭,黄锐,金春洪,等.PP/弹性体/纳米CaCO3复合材料的研究.中国塑料.2000,14(6):34-38.
    [76]郑明嘉,黄锐,宋波,等.高抗冲高刚性EPDM改性聚丙烯的研究.中国塑料.2003,17(8):43-45.
    [77]袁绍彦,黄锐,吴涛.纳米CaCO3和SBS协同增韧聚苯乙烯.合成橡胶工业.2003,26(2):116.
    [78]姜苏俊,李光宪,陆玉本等.纳米碳酸钙和三元乙丙橡胶接枝马来酸酐协同增韧聚丙烯.合成橡胶工业.2002,25(1):42.
    [79]Merz E. H, Claver G. C. Studies on heterogeneous polymeric systems. Polymer Science. 1956,22(101):325-341.
    [80]吴培熙,张留城.聚合物共混改性.北京:中国轻工业出版社.1996.
    [81]C.B.Bucknall, R.R.Smith. Stress-Whitening in High-impact Polystyrenes. Polymer.1965, 6(8):437-446.
    [82]S.Newman, S.Strella. Stress-strain Behavior of Rubber-reinforced Glassy Polymers. Journal of Applied Polymer Science.1965,9(6):2297-2310.
    [83]C.B.Bucknall, D. Clayton. Rubber-toughening of plastics. Journal of Materials Science 1972,7(12):1443-1453.
    [84]W.D.Bascom, R.L.Cottington, R.L.Jones. The Fracture of Epoxy and Elastomer Modified Epoxy Polymers in Bulk and AS Adhesives. Journal of Applied Polymer Science.1975, 19(9):2545-2562.
    [85]A.Lazzeri, C.B.Bucknall. Applications of A Dilatational Yielding Model to Rubber-Toughened Polymers. Polymer.1995,36(15):2895-2902.
    [86]Alla.M, Wu S. Percolation model for brittle-tough transition in nylon/rubber blends. Polymer.1988,29(12):2170-2173.
    [87]T. Kurauchi, T. Ohta. Energy Absorbtion in Blends of Polycarbonate With ABS And SAN. Journal of Materials Science.1984,19(5):1699-1709.
    [88]杨文君,吴其哗.刚性聚合物对PVC/MBS共混体系的改性研究.塑料工业.1993,5:39-41,46.
    [89]李东明,漆宗能.碳酸钙增强聚丙烯复合材料的断裂韧性.高分子材料科学与工程.1991,7(2):18-25.
    [90]李东明,王维,漆宗能.碳纤维对聚丙烯结晶行为的影响.高分子通报.1989,(3):304-309.
    [91]王国建,李勇进.高分子合金增容剂与增韧机理研究.化学建材.1998,14(4):12-14.
    [92]张宇东,武德珍,张立群.聚氯乙烯(PVC)共混合金——(Ⅱ)聚合物共混改性的增韧理论.化工进展.1994,(4):49-54.
    [93]陈旭东,沈家瑞,夏成林.刚性有机填料(ROF)增韧及其应用研究进展.高分子材料科学与工程.1997,13(3):11-15.
    [1]过梅丽.高聚物与复合材料的动态力学热分析.北京:化学工业出版社,2002.29-60.
    [2]邓友娥,章文贡.动态机械热分析技术在高聚物性能研究中的应用.实验室研究与探索.2002,21(1):38-39.62.
    [3]李奇方.尼龙11增塑及共混体系的超韧化和超韧机理的研究.北京:北京化工大学,1996.
    [4]钱保功,许观藩.余赋生.高聚物的转变与松弛.北京:科学出版社.1986:538.
    [5]Mccrum N. G.., Read B. E., Williams G..Anealastic and Dielectric Effects in Polymeric Solids. New York:Wiley.1967:478.
    [6]Prevorsek D. C., Butler R. H., Reimschuessel H. K.. Mechanical Relaxations in Polyamides. Journal of Polymer Science A-2.1971,9(5):867-874.
    [7]王玉东,赵清香,刘民英,等.尼龙1212动态力学性能的研究.高分子材料科学与工程.2006,22(3):113-116.
    [8]周秀苗.超韧尼龙11合金的制备研究.山西:华北工学院,2002.
    [1]何曼君,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社,2000:38-97.
    [2]金日光,华幼卿.高分子物理.北京:化学工业出版社,2000:114.
    [3]李奇方.尼龙11增塑及共混体系的超韧化和超韧机理的研究.北京:北京化工大学,1996.
    [4]Cebe P, S D Hong. Crystallization behavior of poly(ether-ether-ketone). Polymer.1986,27 (3):1183-1193.
    [5]Xikui Zhang, Tingxiu Xie, Guisheng Yang. Isothermal crystallization and melting behaviors of nylon 11/nylon 66 alloys by in situ polymerization. Polymer,2006,47(5): 2116-2126.
    [6]Liu MY, Zhao QX, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212. Polymer,2003,44(8):2537-2545.
    [7]Weng WG, Chen GH, Wu DJ. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer,2003,44(26):8119-8132.
    [8]Wu TM, Liu CY. Poly(ethylene 2,6-naphthalate)/layered silicate nanocomposites: fabrication, crystallization behavior and properties. Polymer,2005,46(15):5621-5629.
    [9]马雅琳.增强型抗静电PA11/T-ZnOw复合材料的研究.山西:中北大学,2007.
    [10]Yalin Ma, Guosheng Hu, Xinglin Ren, et al. Non-isothermal crystallization kinetics and melting behaviors of nylon 11/tetrapod-shaped ZnO whisker (T-ZnOw) composites. Materials Science and Engineering.2007,460-461(15):611-618.
    [11]Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c.. Polymer,1978,19(10):1142-1144.
    [12]Ozawa T. Kinetics of non-isothermal crystallization. Polymer.1971,12(3):150-158.
    [13]丁正亚.尼龙11/EVOH阻隔材料的制备、结构与性能研究.山西:中北大学,2008.
    [1]徐佩弦.高聚物流变学及其应用.北京:化学工业出版社,2003:35-41.
    [2]Kwak H, Rana D, Choe S. Melt rheology of binary blends of metallocene polyethylene with conventional polyolefins, Journal of Industrial and Engineering Chemistry.2000, 6(1):107-114.
    [3]杨凯.茂金属催化的乙烯-辛烯共聚物及其共混物的流变学研究.上海:上海交通大学.2007:45-49.
    [4]何素芹,陈红,朱诚身,等.PA1010/纳米橡胶/POE-g-MAH共混物的流变性能研究.工程塑料应用.2005,33(4):43-46.
    [5]冯威,罗欣,武德珍,等.尼龙6/乙烯-1-辛烯共聚物接枝马来酸酐共混体系的亚微相态与性能.北京化工大学学报.1999,26(1):11-15.
    [6]于中振,欧玉春.尼龙6/(乙烯-辛烯)共聚物弹性体的流变及结晶行为.高分子学报.1999,(3):377-380.
    [1]夏宗宁,贺立,吕允文.材料科学中的计算机模拟.化工新型材料,1996,(2):1-6.
    [2]杨小震.高分子的计算机模拟研究进展.计算机与应用化.1999,16(5):321-324.
    [3]杨小震.分子模拟与高分子材料.北京:科学出版社,2002.
    [4]Li Youyong, Hou Tingjun, Guo Senli, et al. The MesoDyn simulation of fluronic water mixtures using the equivalent chain method. Physical Chemistry Chemical Physics.2000, 2(12):2749-2753..
    [5]李有勇,郭森立,王凯旋,等.介观层次上的计算机模拟和应用;化学进展.2000,12(4):361-375.
    [6]Fermeglia M, Cosoli P, Ferrone M. PET/PEN blends of industrial interest as barrier materials. Part 1. Many-scale molecular modeling of PET/PEN blends. Polymer.2006, 47 (16):5979-5989.
    [7]于秀艳.聚丙烯/乙烯-1-辛烯共聚物相结构的表征与计算机模拟.天津:天津大学.2005.
    [8]宋宏图.高聚物共混体系细观结构与有效力学性能关系的研究.天津:天津大学.2005:53-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700