石墨多孔介质成孔逾渗机理及渗透率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨材料是典型的多孔介质,微观结构中存在大量微小孔隙,必须通过浸渍密实或者过滤吸附才能成为性能优异的工程材料,但是对石墨坯料无序孔隙的盲浸很难获得高品质材料,制约了高端石墨材料制备工艺的发展。本文从多孔介质流体力学角度出发,研究沥青粘结剂在焙烧过程中的流动与热质输运情况,分析焙烧后多孔介质孔隙结构特征,探讨孔隙结构形成过程的逾渗机理以及孔隙结构对渗透率的影响规律。
     本文首先从理论上分析了石墨多孔介质孔隙形成过程中的热质输运现象,将整个过程分为沥青软化、液相迁移、热解挥发、缩聚固化四个阶段。沥青液相迁移阶段表现为饱和多孔介质热质传递过程,孔隙空间完全由液相沥青占据;沥青软化、热解、缩聚阶段为非饱和多孔介质热质传递过程,孔隙空间由液态沥青、水蒸汽和挥发分气体共同占据。利用Whitaker体积平均法,推导了各阶段的热质输运方程,阐述了方程中各参数的物理意义。
     为了研究石墨多孔介质孔隙结构形成过程的影响因素,在差异性工艺条件下制备了多组石墨生坯试样,进行了焙烧实验,通过金相实验及压汞实验测量多孔介质孔隙结构,重点考查了不同升温曲线对孔隙结构的影响。结果表明,升温速度过快促使沥青热解过程不充分,结焦率降低,形成的孔隙较为松散,不具备长程联结性。降低升温速度和延长保温时间有利于沥青充分进行热解缩聚反应,形成分布合理,具有长程联结性的孔隙结构。焙烧升温曲线按照“两头稍快,中间缓慢,延长保温时间”的原则,热解阶段的升温速度以5℃/h左右为宜,保温时间不低于36h。
     本文应用分形理论描述了石墨多孔介质不规则的孔隙结构,并指出了各分形维数的物理意义。研究表明:石墨多孔介质具有典型的分形特征,其孔隙分形维数在1.683~1.821之间,骨架分形维数在1.709~1.852之间,体积分形维数在2.883~2.958之间,骨料颗粒边界分形维数在1.09~1.21之间,迂曲度分形维数在1.146~1.169之间。可以应用Menger海绵模型构造某孔隙度、比表面积的石墨多孔介质,需要根据其分形维数D,选取合适m、n、i进行构造。
     石墨多孔介质形成过程表现出典型的逾渗特征,焙烧过程就是“孔隙产生-孔隙局部联通-形成有限大集团-各局部联通的孔隙长程联结,形成无限大集团”的逾渗化过程。对孔隙结构图像进行了重整化群计算,并用压汞实验进行验证。结果表明:过滤用多孔介质面孔隙度在0.508~0.575之间,体孔隙度在0.273~0.324之间,具有逾渗结构;浸渍用多孔介质的面孔隙度在0.189~0.314,体孔隙度在0.107~0.155,小于正方形和简单立方体的键逾渗阈值,不具有逾渗结构。
     本文利用分形理论对石墨多孔介质的渗透率进行研究,研究结果表明:(1)多孔介质渗透率与其孔隙结构参数紧密相关,并由孔隙结构参数共同决定,并不是某一个孔隙结构参数的单值函数,也没有随某个参数呈现简单的递增或递减关系。(2)预测石墨多孔介质的渗透率必须考虑迂曲度的影响,考虑迂曲度的渗透率更接近实验值,相对误差在8.60%~13.56%。(3)渗透率的实验测量值受到诸如毛细压力、流动速度、流体性质等外部条件影响。
As a typical porous media, the graphite performs well after impregnation or filtration because there are lots of micro-pores in the graphite. However, it’s difficult for the graphite with disordered pore to receive high quality by blind impregnation. The development of preparing high quality graphite is restricted. Based on the fluid dynamics in porous media, the transportation phenomenon of heat and mass for binder pitch and the fluid flowing in roasting process are researched. Moreover, the characteristics of micro-structure in porous media after roasting process are analyzed. The percolation theory in the building process of micro-structure and the effect of micro-structure on the permeability rate of the porous media is discussed in the paper.
     The phenomenon of heat and mass transfers during the building pores process in graphite matrix is analysed firstly. Whole process is divided into four stages: pitch binder soften, liquid phase transfers, pyrolysis and polycondensation. The liquid phase transfer stage displays that heat and mass transfers in saturated porous media and the pores room is occuppied by liquid phase pitch. The other stages exhibit that heat and mass transfers in unsaturated porous media and the pores room is occuppied by liquid pitch, water vapour and volatile gas. Applying Whitaker volumetric average method, the controlling equations of heat and mass transfer in various stages are established and the physical meanings of the parameters are also described.
     In order to study the influence facors on forming the micro-pore structure in graphite, the graphite matrix are prepared under different technological conditions and the roasting tests are conducted. The micro-structure in the pores is measured with metallurgical test and injecting mercury test. The more attention is paid to the effects of the heating-up curves on pore structure. The results have shown that the faster heating rate leads to insufficient pyrolysis and lower coke yield of the coal tar pitch, which decreases the bonding among aggregate particles and makes the micro-pore structure without long range connection. Nevertheless, it is beneficial to complete the pyrolysis and polycondensation by means of decreasing heating rate and prolonging holding time, which make a reasonable distribution and realize the mutual connection in long range among the pores in the porous medium. Consequently, the roasting temperature curve follow the rules: faster heating at the beginning stage and the ending stage, slower heating at the middle stage, longer holding time. According to the rules, the heating rate is suitable in the range of 5℃/h and the holding time is no less than 36h.
     In the paper, the fractal theory is used to describe the irregular micro-pore structure in the graphite porous media, and the physical meaning on fractal dimension is researched. The results have shown that micro-pore structure of the graphite porous materials have typical fractal characteristics. The fractal dimension of pore ranges from 1.683 to 1.821, the fractal dimension of matrix ranges from 1.709 to 1.852, the fractal dimension of volume range from 2.833 to 2.958, the fractal dimension of grain boundary range from 1.09 to 1.21, the fractal dimension of tortuosity range from 1.146 to 1.169, and the different fractal dimension have illustrated various physical meanings. By logical equal portions(m), number of subtracted cubes(n), iteration times(i), Menger sponge model can be used to simulate the graphite porous media with given porosity and specific surface area according to the fractal dimension (D).
     Typical percolation characteristics are demonstrated in the preparation process of graphite porous media. The roasting process is the percolation process including the formation of the pore- the local connectivity of the pore - the formation of limited clusters - the long distance connectivity of various local clusters and the formation of infinity clusters. Metallurgical pictures of graphite porous medium after roasting were managed by renormalization group method and verified by injecting mercury test. The results shown that the graphite porous medium for filtration have percolation structure, the threshold pressure range from 13 to 18 psia, area porosity range from 0.508 to 0.575 and the volume porosity range from 0.273 to 0.324. The graphite porous media for impregnation haven’t percolation structure, threshold pressure range from 86 to 121 psia, area porosity range from 0.189 to 0.314 and the volume porosity range from 0.107 to 0.155.
     Based on the fractal theory, the permeability of the graphite porous media was studied in this work. The results were obtained that: (1) The permeability of porous media is related to the structural parameters, and the permeability is decided jiontly by all structural parameters, which is neither the single valued function nor the single increasing or diminishing trend. (2) As an important factor, tortuosity must be taken into account in prediction of the porous media. Compared with the result neglected the tortuosity, the permeability considering the tortuosity is closer to the actual value, and the relative errors range from 8.6 to13.56%.(3) The experimental results on the tortuosity is affected by the external factors such as capillary pressure, flow velocity and fluid properties.
     There are 49 figures, 12 tables and 170 references in this doctoral dissertation.
引文
[1]王启立,胡亚非,何敏.炭-石墨多孔材料制备工艺中的逾渗行为研究[J].润滑与密封,2009,34(11):16-19.
    [2] Bear J著,李竟生译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [3]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [4] A E Scheidggger著,王洪勋译.多孔介质中的渗流物理[M].北京:石油工业出版社,1982.
    [5]科林斯著,陈钟样,吴望一译.流体通过多孔材料的流动[M].北京:石油工业出版社,1984.
    [6]郭尚平.渗流力学几个方面的进展和建议[C].第六届全国流体力学会议论文集,北京,2001,11-22.
    [7]刘建军,裴桂红.我国渗流力学发展现状及展望[J].武汉工业学院学报,2002(3):99-104.
    [8]刘俊丽,刘曰武,黄延章.渗流力学的回顾与展望[J].力学与实践,2008,30(12):94-97.
    [9]胡雅乃.乳状液的渗流特征[J].重庆大学学报,2000,23(10):53-55.
    [10]李学文.乳状液在孔隙介质中渗流规律的研究[D].大庆:大庆石油学院,2004.
    [11]李传亮,孔祥言.多孔介质的流变模型研究[J].力学学报,2003,35(2):230-234.
    [12]石志良,朱维耀,单文文.多孔介质伴有相变多相流的热一流一固藕合数学模型[J].中国科学技术大学学报,2004,34(8):501-507.
    [13]徐曾和.渗流的流固耦合问题及应用[D].沈阳:东北大学,1998.
    [14]李祥春.煤城瓦斯渗流过程中的流固耦合问题[D].太原:太原理工大学,2002.
    [15]胡国新,田苓蔚.高温金属熔液在旋转多孔介质内的渗流传热过程[J].化工学报,2002, 53(7):705-710.
    [16] Wang Buxuan.On the Modeling of Fluid Flow in Porous Media[J].Journal of Shanghai Jiaotong University,1999,33(8):966-968.
    [17] S J Humby, M J Biggs,U Tuzun.Explicit numerical simulation of fluids in reconstructed porous media[J].Chemical Engineering Science,2002 (57) :1955–1968.
    [18] Harles-Henri Bruneau,Iraj Mortazavi.Numerical modelling and passive flow control using porous media[J].Computers & Fluids,2008 (37):488–498.
    [19]宋怀玲.几类地下渗流力学模型的数值模拟和分析[D].济南:山东大学,2005.
    [20]张勇,闻德荪.液态铝在多孔介质中低压渗流过程的模拟实验研究[J].实验力学,1994, 9(1):23-30.
    [21]刘政,龚平.金属基复合材料凝固过程计算机模拟[J].南方冶金学院学报,1999,20(2):78-84.
    [22]李军华.大坝渗流监测系统设计及渗流计算机模拟[D].郑州:郑州大学,2005.
    [23]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,33(11):44-47.
    [24] M A Mendes, J M Pereira, J Pereira. A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media[J].Combustion and Flame,2008 (153):525–539.
    [25] Boris Faybishenko. Chaotic dynamics in flow through unsaturated fractured media[J].Advances in Water Resources,2002 (25):793–816.
    [26]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社, 1995.
    [27] Philip J R,de Vries D A.Moisture movement in porous material under temperature gradients[J]. In Trans Ami Geophys Union,1957,38(2).222-232.
    [28] A V Luikov.Heat and Mass Transfer in capillary porous Bodies[J].Advances in Heat Transfer,1964(1):123-184.
    [29] Bear J,Bachmat Y.Introduction to Modeling of Transport Phenomena in Porous Media[M]. London:Kluwer AcademicPublishers,1990.
    [30] Matsumotoa Mamoru,Hokoib Shuichi,Hatanob Masanori.Model for simulation of freezing and thawing processes in building materials[J].Building and Environment,2001,36(6):733-742.
    [31]金仁喜,淮秀兰.多孔介质高强度传热传质的理论研究[J].工程热物理学报,2005,26(6):152-154.
    [32]杨世铭,肖宝成,杨强生.多孔介质内部热质传递的等效耦合扩散模型[J].上海交通大学报,1992,26(6):52-61.
    [33]徐英英,袁越锦,袁月定.土壤热质传递机理研究现状及发展趋势[J].湖北农业科学,2009,48(3):738-742.
    [34] Whitaker S.Coupled Transport in Multiphase Systems:A Theory of Drying[J].Advances in Heat Transfer,1998(31):1-104.
    [35] M. Quintarda,D Chenua,S Whitakerb.Nonlinear, multicomponent, mass transport in porous media[J].Chemical Engineering Science, v2006, 61(8):2643-2669.
    [36] J ALBERT0 OCHOA, S Whitaker.Heat transfer at the boundary between a porous medium and a homogeneous fluid[J].Journal of Heat and Mass Transfer, 1997, 40(11):2691-707.
    [37] Kerestecioglu A,Vieira R,Fairey P.Incorporation of the effective penetration depth theory into TRNSYS[R].In:Florida Solar Energy Center.Draft Report.1989.
    [38]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.
    [39]刘炳成,刘伟.自然环境下湿分分层土壤中热湿迁移规律的研究[J].太阳能学报,2004,25(3):299-304.
    [40] Mandelbrot B B.The fractal geometry of nature[M].San Francisco:Freeman,1982.
    [41] Mandelbrot著,文志英,苏虹译,分形对象—形、机遇和维数[M].世界图书出版公司,1999.
    [42] KATZ A J,THOMPSON A H.Fractal sand stone porous:implication for conductivity andformation[J].Phys RevLett,1985,54(3):1325-1328.
    [43] KROHN C E.Fractal measurements of sandstone,shales and carbonates[J].GeophysRes,1988,93(B4):3297-3305.
    [44]Tang Ming,Li Xiao.Study on fractal characteristics and performance of ultrafine slag grains[J].Key Engineering Materials,2006(302/303):242-247.
    [45] Diamond S.Aspects of concrete porosity revisited[J].Cement and Concrete Research,1999,29(1):1181-1188.
    [46] Shah S P,Wang K,Weiss J.Mixture proportioning for durable concrete[J].Concrete International.2000(9):73-78.
    [47]郑瑛,周英彪,郑楚光.多孔CaO孔隙结构的分形描述[J].华中科技大学学报,2001,29(3):82-84.
    [48]周宏伟,谢和平.多孔介质孔隙度与比表面积的分形描述[J].西安矿业学院学报,1997,17(2):97-102.
    [49]杨金玲,李德成,张甘霖.土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J].土壤学报,2008,45(3):414-420.
    [50] Martin M A,Montero E.Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions[J].Soil Tillage Res.,2002(64):113-123.
    [51] Tyler S W,Wheat craft SW.Fractal scaling of soil particle-size distributions:analysis and limitations[J].Soil Sci ScoAm J,1992(56):326-369.
    [52] Horgan G W.Mathematical morphology for analyzing soil structure from images [J].European Journal of Soil Science,1998(49):161-173.
    [53]胡小芳,胡大为,吴成宝.多孔介质粘土颗粒群的粒径分布分形维[J].华南理工大学学报,2006,34(5):99-102.
    [54]王恩元,何学秋.煤岩等多孔介质的分形结构[J].焦作工学院学报,1996,15(4):19-23.
    [55]李功伯,唐春安,徐小荷.岩石粉碎粒度G一S分布的分形几何描述[J].中国有色金属学报,1991,1(1):31-33.
    [56]毛灵涛,薛茹,袁则循.软土路基微结构扫描电镜图像的分形[J].长安大学学报,2007,27(2):31-34.
    [57] Winslow D N.Fractal character in cement and concrete[J].Cement and Concrete Research,1985,15(10):817-824.
    [58]韦江雄,余其俊,曾小星.混凝土中孔结构的分形维数研究[J].华南理工大学学报,2007,35(2):121-124.
    [59] Jiang Linhua,Guan Yugang.Pore structure and its effect on strength of high-volume fly ashpaste[J].Cement and Concrete Research,1999,29(4):631-633.
    [60] P M ADLER,J F THOVER.Transport in porous media[J].Fractal porous media,1993(13):41-78.
    [61]郁伯铭.分形介质的传热与传质分析[C].中国工程热物理年会第十届年会论文集,北京,2001:385-388.
    [62] Yu Boming,Cheng Ping.Fractal models for the effective thermal conductivity of bi-dispersed porous media [J].Thermophysics and Heat Transfer,2002,16(l):22-29.
    [63] Adrian S.Sabau,Y X Tao,G Vidhuvalavan.Effective Thermal Conductivity for Anisotropic Granular Porous Media Using Fractal Concepts[J].National Heat Transfer Conference, 1997(l1):121-128.
    [64] Pitchumani R,Yao S C.Correlation of Thermal Conductivities of Unidirectional Fibrous Composites Using Local Fractal Techniques[J]. Journal of Heat Transfer,1991,11(3):788-796.
    [65]陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报,1999,20(5):608-612.
    [66]张东辉.多孔介质扩散、导热、渗流分形模型的研究[D].南京:东南大学,2003.
    [67]张东辉,施明恒.多孔介质分形模型的难点与探索[C].中国工程热物理年会第十届年会会议论文集,北京,2001:494-498.
    [68]王唯威,淮秀兰,蔡军.基于分形理论的多孔介质导热分析[C].中国工程热物理学会第十一届学术会议论文集,北京,2005:595-598.
    [69]张新铭,彭鹏,曾丹苓,等.石墨泡沫新材料导热的分形模型[J].工程热物理学报,2006,27(1):81-83.
    [70] Tyler S W,Wheatcraft S W.Fractal process in soil water retention[J], Water Resource Res,1990(26):1047-1054.
    [71] Rieu M,Sposito G.Fractal Fragmentation:soil porosity and soil water properties of Theory[J],Soil Sci Sco Am J,1991(55):1231-1238.
    [72] Perfect E,Mclaughlin N B,Kay B D,et al. An improved fractal equation for the soil water retention curve[J].Water Resource Res,1996,32(2):281-88.
    [73] Thompson A H,Katz A J,Krohn C E.The microgeometry and transport properties of sandstones[J].Advances in Physics,1987,36(5):625-641.
    [74] A G Hunt.Percolative transport in fractal porous media[J].Chaos, Solitons and Fractals,2004 (19) :309–325.
    [75] Adler P M.Transports in fractal porous media[J].Journal of Hydrology,1996,18 (7):195-213.
    [76]刘晓丽,梁冰,薛强.多孔介质渗透率的分形描述[J].水科学进展,2003,14(6):769-773.
    [77]郁伯铭,邹明清.用分形一蒙特卡罗方法预测多孔介质的渗透率[J].中国科学技术大学学报,2004,34(8):286-291.
    [78] Yu Bo-ming.A fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding[J].Int.J.Heat and Mass Transfer,2001,44(2):2787-2789.
    [79]李留仁.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报,2004,28(3):105-110.
    [80]陈永平,施明恒.基于分形理论的多孔介质渗透率的研究[J].清华大学学报,2000,40(12):94-97.
    [81]刘俊亮,田长安,曾燕伟.分形多孔介质孔隙微结构参数与渗透率的分维关系.水科学进展[J],2006,17(6):812-817.
    [82] BROADBENT S R,HAMMERSLEY J M.Percolation process:lower bounds for the critical probability[J].Ann.Math.Statist.,1957(28):790–795.
    [83]刘伯谦,吕太.逾渗理论应用导论[M].北京:科学出版社,1997.
    [84] Simon R.The use of capillary tube networks in reservoir Performance studies(I) [J],Society of Petroleum Engineers Journal,1971(11):99-112.
    [85] Stinchcombe R B,Watson B P.Renormalization group method approach for percolation conductivity[J].J.Phys.,1976(9):21–47.
    [86] Sahimi M.Hydrodynamic dispersion near the percolation threshold:scaling and probability densities[J].Journal of Physics A,1987,20(18):1293-1300.
    [87] Sahimi M.Flow phenomena in rocks-from continuum models to fractals, percolation, cellular automata,and simulated annealing.Rev Mod Phys,1993(65):1393-534.
    [88] Sahimi M.Non-linear and non-local transport processes in heterogeneous media:from long-range correlated percolation to fracture and materials breakdown [J].Physics Reports 306 (1998) 213-395.
    [89] Berkowitz B,Balberg I.Percolation approach to the problem of hydraulic conductivity in porous media [J].Transport in Porous Media,1992(9 ):275–286.
    [90] Berkowitz B,Balberg I.Percolation theory and its application to groundwater hydrology [J].Water Resources Research,1993(29):775–794.
    [91] Andrade J S,Stanley H E,Havlin S.Percolation disorder in viscous and non-viscous flow-through porousmedia[J].Phys Rev E ,1995,51(6):5725-5731.
    [92] Stanley H E,Andrade,Havlin S.Percolation phenomena; A broad一brush introduction with some recent applications to porous media,liquid water,and city growth[J].Physical A,1999,266(1):5-16.
    [93] C s Mészáros, I Farkas,á.Bálint.A new application of percolation theory for coupled transport phenomena through porous media,Mathematics and Computers in Simulation:2001 (56) 395–404.
    [94] A G Hunt.Applications of percolation theory to porous media with distributed local conductances[J].Advances in Water Resources ,2001 (24) :279-307.
    [95]张东辉,苗孝芳,施明恒,等.逾渗模型阈值附近的非线性特性[J].自然科学进展,2006, 16(7):803-809.
    [96]王建方.逾渗理论在先驱体浸渍裂解法制备CMC工艺中的应用[J].宇航材料工艺,2006(4):40-43.
    [97]胡松,孙学信,熊友辉.煤焦颗粒分形结构逾渗行为研究[J].自然科学进展,2002,12(7):732-736.
    [98]冯增朝,赵阳升,吕兆兴.二维孔隙裂隙双重介质逾渗规律研究[J].物理学报,2007, 56(5):2796-2801.
    [99]杨瑞成.逾渗理论及聚合物脆韧转变逾渗模型[J].兰州理工大学学报,2005,31(1):26-30.
    [100]梁正召,唐春安,唐世斌等.岩石损伤破坏过程中分形与逾渗演化特征[J].岩土工程学报,2007,29(9):1386-1392.
    [101]金龙,王锡朝.岩石材料渐变破裂的重正化群方法研究[J].石家庄铁道学院学报,2001,14(4):47-50.
    [102]贾向明.填充型导电高分子复合材料的逾渗理论进展[J].中国塑料,2003,17(6):9-14.
    [103]刘志峰.随机多孔介质逾渗模型渗透率的临界标度性质[J].物理学报,2008,57(4):2011-2016.
    [104]刘志刚,张志梅,余大书.焙烧温度对石墨密封率的影响[J].炭素,2000(4):46-47.
    [105] O B TkaHoBa,李联文译.碳素材料焙烧过程的强化[J].轻金属,1992(3):45-47.
    [106] TЛМОлоКоВа,田国川译.沥青浸渍过的炭素坯料的焙烧制度对电极石墨质量的影响[J].炭素技术,1990(1):38-40.
    [107]熊建林.加压焙烧机理讨论[J].炭素技术,1990(1):14-20.
    [108]许斌,李铁虎.热聚合改质过程中煤沥青热解缩聚行为的研究[J].炭素,2002(2):1-4.
    [109]董喜贵,雷群芳,俞庆森.石油沥青质的热解动力学研究[J].浙江大学学报,2004,31(6):652-657.
    [110]许斌,郭德英.煤沥青热解缩聚行为的研究[J].武汉科技大学学报,2004,27(1):24-27.
    [111]陶著,许斌.应用差热和热失重分析对煤沥青热解过程的研究[J].炭素,2002(2):18-22.
    [112]肖春,侯卫权,邹武.沥青树脂热解缩聚行为和流变性能研究[J].炭素,2007(4):28-31.
    [113]许斌,古立虎,欧阳春发.炭材料生产用煤沥青的流变性能[J].炭素,2004(1):3-11.
    [114]许斌,欧阳春发,胡光洲.中温沥青和改质沥青流变性能研究[J].炭素,2002(4):3-7.
    [115]郝勇,闫奎兴.煤沥青流变性能初探[J].炭素技术,2005 (5):49-54.
    [116]胡光洲.氧化沥青的制备及其表征[D].武汉:武汉科技大学,2004.
    [117]项起贤.碳-石墨制品的添加剂[J].新型碳材料,2005,24(5):30-37.
    [118]谢有赞.炭石墨材料工艺[M].长沙:湖南大学出版社,1988.
    [119]王家襄.冷压炭一石墨制品焙烧开裂分析与对策[J].炭素,1996(4):19-22.
    [120]潘立慧,方庆舟,许斌.粘结剂用煤沥青的发展状况[J].炭素,2001(3):33-42.
    [121]许斌,古立虎,欧阳春发.炭材料生产用煤沥青的流变性能[J].炭素,2004(1):3-11.
    [122]刘锐剑.煤沥青流变性能的评价和分析[D].武汉:武汉科技大学,2008.
    [123]许斌,李铁虎.高性能炭材料生产用煤沥青的研究[J].武汉科技大学学报,2005,28(2):158-161.
    [124]古立虎.煤沥青流变性能及其改性研究[D].武汉:武汉科技大学,2004.
    [125] R B Lewis著.干燥原理及应用[M].上海:上海科技文献出版社,1986.
    [126]黄晓明.多孔介质相变传热与流动及其若干应用研究[D].武汉:华中科技大学,2004.
    [127]王娟.种子热泵变温干燥过程的实验及仿真研究[D].天津:天津大学,2007.
    [128] Nield D.A.Modelling high speed flow of a compressible fluid in a saturated porous medium[J]. Transport in Porous Media,1994,14(1):85-88.
    [129] Pascal J P, Pascal, H.Pressure diffusion in unsteady non-Darcian flows through porous media[J].European Journal of Mechanics,B/Fluids,1995,14(1):75-90.
    [130] Vafai K,Tien C L.Boundary and inertia effedits on flow and heat transfer in porous meida[J]. International Journal of Heat and Mass Transfer,1981,24(2):195-203.
    [131] Mandelbrot B B.The fractal geometry of nature[M].San Francisco:Freeman,1982.
    [132]张济忠.分形[M].北京:清华大学出版社,1995.
    [133] R F Alvarodo,V Alvarodo,H Gonzalez.Fractal dimensions form mercury instrusion capillary tests[C],APEC,Caracas,1992.
    [134]郑洲顺,曲选辉.PIM粉末颗粒的分形特征及其分形维数[J].中国机械工程, 2003,14(5):435-439.
    [135] A G Hunt.Percolative transport in fractal porous media[J].Chaos Solitons and Fractals, 2004(19) :309-325.
    [136]王启立,胡亚非,何敏.石墨多孔介质孔隙度与比表面积的分形描述[J].煤炭学报,2010(5):1725-1729.
    [137]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,9(1):15-23.
    [138] Richard Zallen.The physics of amorphous solids[M].A Wildly nterscience Publication, 1993:135-205.
    [139]王建方,陈朝辉,刘希丛,等.逾渗理论在先驱体浸渍裂解法制备CMC工艺中的应用[J].宇航材料工艺,2001(4):40-43.
    [140]杨瑞成,羊海棠,彭采宇等.逾渗理论及聚合物脆韧转变逾渗模型[J].兰州理工大学学报,2005,31(1):26-30.
    [141]崔家岭.威耳逊的临界点相变的重正化群理论[J].物理,2000,20(7):424-426.
    [142]于渌,郝柏林.相变和临界现象[M].北京:科学出版社,1992.
    [143]王浩,张东明,尹光志.重正化模型及其在岩石失稳破坏中的应用[J].重庆大学学报,2005,28(2):124-127.
    [144]黄继成,黄彭.运用重正化群方法对沥青混合料渗透性研究[J],同济大学学报,2007,35(7):904-908.
    [145]吴国雄,丁王飞,张洋.沥青混凝土路面开裂破坏的渗流模型分析[J].重庆交通大学学报,2009,28(6):1017-1012.
    [146]马致考.重正化群方法及应用[J].西北大学学报,1998,28(1):30-33.
    [147]周宏伟,谢和平.岩土介质渗流的重正化群研究[J].西安矿业学院学报,1998,18(2):98-103.
    [148]周宏伟,谢和平.描述孔隙介质孔隙空间分布的数学方法[J].西安矿业学院学报,1997,17(4):299-305.
    [149] Trucotte D L.Fractals and chaos in geology and geophysics[M].London:Cambridge University Press,1997.
    [150]吕兆兴.孔隙裂隙双重介质逾渗理论及应用研究[D].太原:太原理工大学,2008.
    [151]吕兆兴,冯增朝,赵阳升.孔隙介质三维逾渗机制数值模拟研究[J].岩石力学与工程学报, 2007,26(supp.2):4019-4023.
    [152] A Koponen,M Kataja,J Timonen.Tortuous flow in porous media[J]. Physical Review E,1996,54(1):406-410.
    [153] A Koponen,M Kataja,J Timonen.Permeability and effective porosity of porous media [J]. Physical Review E,1997,56(3):3319-3326.
    [154]周宏伟,谢和平.孔隙介质渗透率的重正化群预计[J].中国矿业大学学报,2000,29(3):244-248.
    [155]柴振华,郭照立,施保昌.利用多松弛格子Boltzmann方法预测多孔介质的渗透率[J].工程热物理学报,2010,31(1):107-109.
    [156]阎广武,胡守信,施卫平.用Lattice Boltzmann方法确定多孔介质的渗透率[J].计算物理, 1997,14(1):63-67.
    [157]邓英尔,黄润秋.岩石的渗透率与孔隙体积及迂曲度分形分析[C].第八次全国岩石力学与工程学术大会论文集,成都,2004:264-268.
    [158]郁伯铭.多孔介质输运性质的分形分析研究进展[C].中国工程热物理学会论文集,北京,2003:333-389.
    [159] Yu Bo-ming,James Lee,Han qiang Cao.A fractal in-plane permeability model for fabrics[J].Polymer Composites,2002,22(2):201-221. [ 160 ] Yu Bo-ming ,Cheng Ping . A fractal model for permeability of bi-dispersed porous media[J].Int. J.Hear and Mass Transfer,2002,45(l4):2983-2993.
    [161] Yu Bo-ming,Cheng Ping.Fractal models for the effective thermal conductivity of bi-dispersed porous media [J].Thermophysics and Heat Transfer,2002,16(l):22-29.
    [162]雷树业,王利群,贾兰庆.颗粒床孔隙率与渗透率的关系[J].清华大学学报,1998,38(5): 76-79.
    [163] Ahn K J,Seferis J C ,Berg J C.Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcement [J ].Polymer Composites, 1991,12 (3):146-152.
    [164] Steenkamer D A,Mcknight S H,Wilkins D J.Experimental characterization of permeability and fiber wetting for liquid moulding[J ].Journal of Material Science ,1995,30 (12) :3207-3215.
    [165] Lai Y H,Khomami B,Kardos J L.Accurate permeability characterization of preforms used in polymer matrix composite fabrication processes[J ].Polymer Composites,1997,18(3) :368-377.
    [166] Chan A W, Larive D E,Morgan R J.Anisotropic permeability of fiber preforms : constant flow rate measurement [J ].Journal of Composite Material,1993,27 (10):996-1007.
    [167] Lekakou C,Johaari M A K,Norman D,et al.Measurement techniques and effects on in2plane permeability of woven cloths in resin transfer moulding[J ].Composites:Part A,1996,27 (A1):401-408.
    [168]张守良,沈琛,邓金根.岩石变形及破坏过程中渗透率变化规律的实验研究[J].岩石力学与工程学报,2006,19(增1):885-888.
    [169] Ma Yu-lu,Shishoo R.Permeability characterization of different architectural fabrics[J].Jounral of Composite Materials,1999,33(8):729-750.
    [170]陈占清,缪协兴.影响岩石渗透率的因素分析[J ].矿山压力与顶板管理,2001(2):83-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700