官能化SEBS增韧尼6/蒙脱土纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对尼龙6(PA6)具有缺口冲击敏感性和低温及干态下冲击强度低等缺点,本论文对其进行增韧改性研究。选用了热塑性弹性体苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS),并将其分别与甲基丙烯酸缩水甘油酯(GMA)和马来酸酐(MAH)进行接枝,得到2种官能化接枝物SEBS-g-GMA和SEBS-g-MAH。然后,用官能化SEBS.以及官能化SEBS与聚碳酸酯(PC)协同对PA6进行增韧,同时以纳米有机蒙脱土(OMMT)为填料对PA6进行补强, GMA或环氧树脂(EP)为相容剂,制备了综合性能优异的高韧性工程塑料。采用XRD、SEM、TGA、DSC、FTIR、Molau实验、力学性能测试以及流变性能测试等多种测试手段,研究了官能化基团种类及接枝率、填料和相容剂的用量、以及各组分间的微交联反应体系对纳米复合材料形态、结构和性能的影响。
     首先将PA6与国内工业化生产的OMMT进行熔融共混,制备了PA6/OMMT纳米复合材料。通过力学性能测试发现,当OMMT含量为4wt%时,复合材料具有较高的强度和弯曲模量,但冲击强度较纯PA6有所降低。对复合材料进行小角X射线衍射扫描以及透射电镜观察,发现OMMT已经被PA6剥离,较均匀地分散在基体中。Molau实验结果表明OMMT以胶体形式均匀地分散在甲酸溶液中,不沉降、不分相。
     分别以GMA和MAH为功能单体,熔融挤出制备了官能化弹性体SEBS-g-GMA和SEBS-g-MAH,用滴定分析测定了两种接枝物的接枝率,分别为2.39%和1.2%。再分别以SEBS-g-GMA和SEBS-MAH为增韧剂、OMMT为填料,制备了尼龙6/弹性体/蒙脱土三元纳米复合材料。研究了三元纳米复合材料的力学性能、结晶性能和热稳定性以及分散相在基体中的分散状态。结果表明,三元纳米复合材料的性能介于尼龙6、尼龙6/弹性体之间,弹性体使得PA6/OMMT纳米复合材料的冲击强度提高。当弹性体含量达到约30%时,三元纳米复合材料发生脆-韧转变,在进行缺口冲击强度测试时试样已经不能完全断裂,冲击韧性大幅提高。同时复合材料的强度仍保持在纯PA6的90%以上,材料的硬度与韧性达到较好地平衡。
     将SEBS-g-GMA和SEBS-g-MAH对PA6复合材料的增韧效果作比较后发现,不同的接枝物导致了分散相在基体中有不同的分散状态。在组成、加工条件相同情况下,共混体系中SEBS-g-GMA的粒径远大于SEBS-g-MAH的粒径,其增韧的效果要差。少量的OMMT使得分散相粒子尺寸减小;较多量的OMMT能阻碍弹性体与PA6基体间的界面黏结,导致粒子尺寸增大,降低了材料的冲击性能。用SEBS-g-GMA增韧制备的PA6/SEBS-g-GMA及PA6/S EBS-g-GMA/OMMT复合材料,均不能溶解于甲酸中,试样颗粒悬浮在甲酸溶液的最上方;而SEBS-g-MAH增韧制备的PA6/SEBS-g-MAH及PA6/SEBS-g-MAH/OMMT复合材料可溶于甲酸,显示的为一牛奶状的悬浮物。用3种不同接枝率的SEBS-g-MAH增韧制备的PA6/SEBS-g-MAH/OMMT复合材料中,随着MAH接枝率的增大,分散相的粒径减小,但复合材料的冲击强度基本保持不变、与MAH的接枝率大小无关.SEBS一g-GMA和SEBS-g-MAH均降低了PA6的熔融温度并且对PA6的结晶有阻碍作用。
     通过两步共混加工,即先将PA6与OMMT共混后,再将挤出物与SEBS-g-MAH共混制备的三元纳米复合材料具有优异力学性能,其冲击强度比用一步加工法(即,共混组分混合后同时加入到挤出机中进行挤出)制备的复合材料的冲击强度高122%。一步共混加工时,另加入少量GMA或EP作为相容剂,所制备的纳米复合材料与两步加工制备的具有相近的力学性能,并且极大地提高了材料的断裂仲长率,得到一种高韧性的工程塑料。相容剂的加入,使得共混体系间产生了微交联反应,共混物不能完全溶解于甲酸溶液中,复合材料体系的黏度增大,提高了材料的储能模量和损耗模量。
     采用弹性体SEBS-g-MAH与PC复合增韧PA6,极大地提高了材料的冲击强度;同时用EP改善PC与基体PA6间的相容性,经反应挤出制备了高韧性的新型PA6工程塑料,当EP含量为1wt%时,冲击强度达到55.61kJ/m2,断裂伸长率达到306.4%,比纯PA的分别提高了313.2%和625.2%。这种新型增韧合金具有非常出色的机械性能,蒙脱土的引入进一步提高了复合材料的拉伸和弯曲性能。随着EP用量的增加,PA6与PC的相界面变的更加模糊,复合物的拉伸强度、弯曲强度及模量逐渐增大,冲击强度先增大后略下降。PC的加入有助于提高PA6/SEBS-g-MAH共混物的耐热性,相容剂EP使得体系中各相之间的界面黏结作用增强,进一步提高了材料的热分解温度。
The aim of this work is to toughen polyamide 6 (PA6) because notch sensitivity and brittleness in low temperature limit its application. A styrene-ethylene/butadiene-styrene triblock copolymers (SEBS) was functionalized respectively with glycidyl methacrylate (GMA) and maleic anhydride (MAH). PA6-based composites were prepared using the functionalized SEBS as a toughener, or adding polycarbonate at the same time, and one commercial organo-montmorillonite (OMMT) served as reinforcing filler. GMA or epoxy resin (EP) was used as a compatibilizer for the composites. Influence of the type of functional group, grafting degree, the contents of the filler and compatibilizer, and the micro-crosslinking among the components on the morphology, the structure and properties were investigated by all kinds of methods, e.g. XRD, SEM, TGA, DSC, FTIR, Molau test, mechanical properties test and rheology.
     Firstly, PA6/OMMT nanocomposites were prepared by means of melt blending. When the content of OMMT was 4wt%, the nanocomposite has a higher tensile strength, flexile strength and flexile modulus. But the impact strength was decreased. The exfoliated behavior was confirmed by XRD and TEM. PA6/OMMT blend could scatter uniformly in the formic acid solution without sedimentation and phase separation.
     The SEBS-g-GMA and SEBS-g-MAH were respectively prepared using GMA and MAH though melt extrusion. The grafting degrees were respectively 2.39% and 1.2%, which were decided by titration. SEBS-g-GMA and SEBS-g-MAH were used to prepare PA6/elastomer/OMMT nanocomposites. The mechanical properties, crystallization behavior, thermal stability and the morphology were investigated. The PA6/elastomer/OMMT had mechanical properties balanced between those of PA6 and PA6/elastomer blends. Brittle-ductile transition could happen when the content of elastomer was 30wt%, and the toughness improved rapidly. The tensile strength and flexile strength are above 90% of pure PA6. There is a clear trade-off between stiffness/strength versus toughness/ductility.
     SEBS-g-GMA and SEBS-g-MAH had the different morphology in the composites. The particle size of SEBS-g-GMA is much larger than that of SEBS-g-MAH. The toughening efficiency of SEBS-g-GMA was much lower than SEBS-g-MAH. The elastomer particle size decreased at low OMMT loading. With increasing the content of OMMT, OMMT weakened the interfacial adhesion between PA6 and functionalized elastomer leading to an increase in the elastomer particle size and a decrease in the impact strength of the composites. PA6-based composites toughened by SEBS-g-GMAdid not dissolve in the formic acid, and suspended in the upper of the tube. A milky and colloidal suspension was observed for PA6-based composites toughened by SEBS-g-MAH. The elastomer particle size clearly decreased with increasing MAH content. The impact strength remained almost constantly. SEBS-g-GMA and SEBS-g-MAH both decreased the melt temperature, and hindered the crystallization of the composites.
     The ternary composites were prepared by two different blending sequences (N1 and N2). The method N1 means PA6, elastomer, and OMMT were blended simultaneously. The method N2 means that the ternary composite was produced through the premixing of PA6 and OMMT first and then melt blending with elastomer. The composite (N2) has better mechanical properties. The notched impact strength of the one composite (N2) was 122% higher than that of the other composite (N1), even for the same formulation. For the ternary composites prepared via method Nl with the addition of GMA or EP, the tensile strength, flexural strength, and flexural modulus just slightly decreased, whereas the impact strength and elongation at break were significantly enhanced. The chemical reaction between PA6, SEBS-g-MAH, and the compatilizer could enhance the viscosity, storage modulus, and loss modulus. The blends couldn't dissolve in formic acid solution.
     The impact strength of PA6/SEBS-g-MAH/PC composite improved greatly compared with that of PA6/SEBS-g-MAH composite. Epoxy resin was used to improve the compatibility between PA6 and PC. Then adding EP (1wt%) to PA6/SEBS-g-MAH/PC alloy, the notched impact strength of alloy is 55.61kJ/m2 (increasing 313.2% as that of pure PA6) and the elongation at break is 306.4%(increasing 625.2% as that of pure PA6). Novel toughening alloy is gained with outstanding mechanical properties. In addition, the adding of OMMT improved the tensile and flexile properties of the composite remarkably. The interphase boundaries became increasingly indistinctive with the adding of EP, and the tensile and flexile strength increased. The notched impact strength increased firstly and then decreased. Polycarbonate would improve the thermal stability of the composites. The thermo-decomposing temperature rises obviously due to the crosslinking caused by the compatilizer EP.
引文
[1]Roy R, Komameni S, Roy D M. Cat ion-exchange properties of hydrated cements[J]. Mater. Res. Soc. Symp. Proc.,1984,32(2):347-359
    [2]朱世东,周根树,蔡锐,等.纳米材料国内外研究进展Ⅰ—纳米材料的结构、特异效应与性能[J].热处理技术与装备,2010,31(3):1-5
    [3]Timothy Dean Fornes. Polyamide-layered silicate nanocomposites by melt processing. PhD Dissertation of University of Texas,2003
    [4]Michael Alexandre, Philippe Dubois. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering,2000,28:1-63
    [5]Cho J.W., Paul D.R. Nylon 6 nanocomposites by melt compounding [J]. Polymer,2001,42: 1083-1094
    [6]Okada A, Fukushima Y, Kawasumi M, Inagaki S, Usuki A. etc. United Satate Patent No.4739007(1988) assigned to Toyota Motor Co., Japan
    [7]Usuki A., Kojima Y, Yoshitsugu, etc. Synthesis of nylon 6-clay hybrid[J]. Journal of Materials Research,1993,18:1179-1184
    [8]陈光明,李强,漆宗能.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报,1994,(4):1-10
    [9]Akane O, Kawasumi M, Kurauchi T, etc. Synthesis and characterization of a nylon 6-clay hybrids[J]. Polym. Prepr,1987,28:447-448
    [10]Kojima Y, Usuki A., Kawasumi M., Okada A, Kurauchi T., etc. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with a-caprolactam[J]. J. Polym. Sci. Pol. Chem.,1993,31:983-986
    [11]Kim G.M., Lee DH, Hoffman B, Kressler J. etc. Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites[J]. Polymer,2001, 42:1095-1100
    [12]Reichert P, Kressler J,Thomann R, etc. Nanocomposites based on a synthetic layer silicate and polyamide-12[J]. Acta Polym,1998,49:116-123.
    [13]张国胜,长烷基链尼龙的合成、晶体结构及用插层聚合法制备尼龙与蒙脱土复合物.上海交通大学博士学位论文,2003
    [14]Wu ZG, Zhou CX, Qi RR, Zhang HB. The synthesis and characterization of nylon 1012 nanocomposite[J]. J. Appl. Polym. Sci.,2002,83:2403-2410
    [15]Richard A. Vaia, Hope Ishii, and Emmanuel P. Giannelis. Synthesis properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates[J]. Chem. Mater.1993,5:1694-1696
    [16]Limin Liu, Zongneng Qi, Xiaoguang Zhu. Studies on nylon 6/clay nanocomposites by melt-intercalationproess[J]. Journal of applied polymer science,1999,71:1133-1138
    [17]Medellin-Rodriguez F.J., Burger C.,Hsiao B.S., Benjamin Chu, Vaia R., Shawn Philips. Time-resolved shear behavior of end-tethered nylon 6-clay nanocomposites followed by non-isothermal crystallization[J]. Polymer,2001,42(21):9015-9023.
    [18]Xiaohui Liu, Qiuju Wu. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites[J]. European polymer journal,2002,38:1383-1389
    [19]Lincoln D.M., Vaia R.A., Krishnamoorti R., Isothermal crystallization of nylon 6/clay nanocomposites[J]. Macromolecules,2004,37:4554-4561
    [20]Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites[J]. Polymer, 2003,44:3945-3961
    [21]Cho J.W., Paul D.R. Nylon 6 nanocomposites by melting compounding[J]. Polymer, 2001,42:1083-1094
    [22]Kojima Y, Usuki A, Kawasumi M, etc. Mechanical properties of nylon 6-clay hybrid[J]. J. Mater. Res.,1993,8(5):1185-1189
    [23]Holmes D.R., Bunn C.W., Smith D.J. The crystal structure of polycaproamide:nylon 6[J]. J. Polym. Sci.,1955,17:159-177
    [24]Murthy N.S. Metastable crystalline phase in nylon 6[J]. Polym. Commun.1991, 32301-305
    [25]Zhao X.Y., Wang M.Z. Structure and thermal behavior of nylon 6 nanocomposites[J]. J. Appl. Polym. Sci.2006,100:3116-3122
    [26]刘立敏,朱晓光,漆宗能.尼龙6/蒙脱土纳米复合材料的等温结晶动力学研究[J].高分子学报,1999,(3):274-279
    [27]Liu XH, Wu QJ. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites[J]. European Polymer Journal,2002,38:1383-1389
    [28]毕强听,萧耀南,李春成,张栋.高阻隔尼龙6/蒙脱土纳米复合材料薄膜的研制[J].扬州大学学报,2007,10(4):62-65
    [29]Liu LM, Qiao F, Zhu XG. Study on nylon 6/clay nanocomposites by melt-intercalation[J]. J. of Appl. Polym. Sci.,1999,71:1133-1138.
    [30]Lee CU, Bae K, Choi H K, etc. A study on the preparation of polyamide/clay nanocomposites[J]. Polymer-korea,2000,24(2):228-236
    [31]Pinnavaia T.J., Beall G.W. Polymer-clay nanocomposites[M]. John Wiley&Sons,2000
    [32]Dennis H R, Hunter D L, Chang D, Kim S, Whit J L, Cho J W, Paul D R. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites[J]. Polymer,2001,42:9513-9522
    [33]Fornes T D, Yoon P J, Keskkula H, Paul D R. Nylon 6 nanocomposites:the effect of matrix molecular weight[J]. Polymer,2001,42:9929-9940
    [34]Gonzalez-Montiel A., Keskkula H., Paul D.R. Impact-modified nylon 6/polypropylene blends:2. Effect of reactive functionality on morphology and mechanical properties [J]. Polymer,1995,36(24):4605-4620
    [35]王伟,朱莉群PE-g-MAH在PA6/HDPE塑料合金中增溶作用的研究[J].高分子材料,1997,9(3):4-7
    [36]吴培熙.聚酰胺共混改性进展[J].塑料,1996,(4)53-57
    [37]Oshinski A.J., Keskkula H., Paul D.R. Rubber toughening of polyamide with functionalized block copolymers:1.nylon-6[J]. Polymer,1992,33268-283
    [38]Oshinski A.J., Keskkula H., Paul D.R. Rubber toughening of polyamide with functionalized block copolymers:2.nylon-6,6[J]. Polymer,1992,33268-284-293
    [39]Cimmina S., Coppola F., D'Orazio F., Maflio L., etc. Ternary nylon-6/rubber/modified rubber blends:Effect of the mixing procedure on morphology, mechanical and impact properties[J]. Polymer,1986,27(12):1874-1884
    [40]Okada O., Keskkula H. Fracture toughness of nylon 6 blends with maleated ethylene/propylene rubbers[J]. Polymer,2000,41(2):8061-8074
    [41]Wu CJ, Kuo JF, Chen CY. Rubber toughened polyamide 6:The influences of compatibilizer on morphology and impact properties[J]. Polymer Engineering and Science,1993,33(20):1329-1335
    [42]Yu ZZ, Ou YC, Hu GH. Influence of interfacial adhesion on toughening of polyethylene-octene elastomer/nylon 6 blends[J]. Journal of Applied Polymer Science, 1998,69(9):1711-1718
    [43]Bhattacharyya A. R., Ghosh A. K, Misra A. Reactively compatibilised polymer blends:a case study on PA6/EVA blend system[J]. Polymer,2001,42(21):9143-9154
    [44]Borggreve R. J.M., Gaymans R.J., Schuijer J., Ingen Housz J.F. Brittle-tough transition in nylon-rubber blends:effect of rubber concentration and particle size[J]. Polymer,1987, 28(9):1489-1496
    [45]Lu M., Keskkula H., Paul D.R. Toughening of nylon 6 with core-shell impact modifiers: effect of matrix molecular weight[J]. Journal of Applied Polymer Science,1996,59(9): 1467-1477
    [46]Sun SL, Chen ZC, Zhang HX. Effect of reactive group types on the properties of core-shell modifiers toughened PA6[J]. Polymer Bulletin,2008,61(4):443-452
    [47]Kudva R.A., Keskkula H. Paul D.R. Properties of compatibilized nylon 6/ABS blends: part Ⅱ. Effects of compatibilizer type and processing history[J]. Polymer,2000, 41(1):239-258
    [48]Chiang C.R., Chang F.C. Polymer blends of polyamide-6 (PA6) and poly(phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) [J]. Polymer,1997, 38(19):4807-4817
    [49]Gatliglia E, Turtumo A. Pedemouto E. Blends of polyamide 6 with bisphenol-A polycarbonate. Ⅰ. Thermal properties and compatibility aspects[J]. J Appl Polym Sci, 1989,38:1807-1818.
    [50]Gatliglia E, Turtumo A. Pedemouto E. Blends of polyamide 6 with bisphenol-A polycarbonate. Ⅱ. Morphology-mechanical properties relationships[J]. J. Appl. Polym. Sci.,1990,41:1411-1423
    [51]李新法,沈百栓,杨进元等PC/PA1010共混物的流变性能[J].塑料工业,1993,(2):42-45
    [52]李新法,沈百栓,杨进元等PC/PA1010共混物的热行为[J].塑料工业,1993,(6):49-51
    [53]傅强,张琴,刘云风等PC/PA共混物的结晶结构与性能[J].高等学校化学学报,2000,21(4):659-664
    [54]Hyeong-Ki Choi, Yoon-Jong Cha,Yong-Moo Lee. Mechanical properties and morphology of polyamide-6/polycarbonate (75/25) blends with reactive compatibilizer[J]. Korea Polymer Journal,1996,4(1):45-53
    [55]Lee C H, Lee Y M, Choi H K, et al. Effect of a functional triblock elastomer on morphology in polyamide 6/polycarbonate blend[J]. Polymer,1999,40:6321-6327
    [56]陈军,吴唯,陈玉洁,等PA6/PC合金的网络结构化增韧[J].工程塑料应用,2010,38(2):5-9.
    [57]黎学东.塑料的刚性填料增韧[J].塑料,1995,24(5):7-12.
    [58]方海林,袁淑军.玻璃微珠改性尼龙6的研究[J].现代塑料加工应用,1997,9(4):19-20
    [59]田军,刘吉平,五泱泱,等PA6/OMMT/SiO2纳米复合材料的制备及力学性能研究[J].中国塑料,2006,20(5):22-24
    [60]Gonzalez I., Eguiazabal I., Nazabal J. Rubber-toughened polyamide 6/clay nanocomposites[J]. Composites Science and Technology,2006,66:1833-1843
    [61]Kelnar I., Khunova V, Kotek J., etc. Effect of clay treatment on structure and mechanical behavior of elastomer-containing polyamide 6 nanocomposite[J]. Polymer,2007,48(18): 5332-5339
    [62]Lorenzo MLD. Spherulite growth rates in binary polymer blends[J]. Prog. Polym. Sci., 2003,28(4):663-689
    [63]Piorkowska E, Galeski A, Haudin J-M. Critical assement of overall crystallization kinetics theories and predictions[J]. Prog. Polym. Sci.,2006,31:549-575
    [64]Tol RT, Mathot VBF, Reynaers H, Goderis B, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets part 4:polymorphous structure and (meta)-stability of PA6 crystals formed in different temperature regions[J]. Polymer,2005,462966-2977
    [65]Zhang R, Luo X, Ma D. Multiple melting endotherms from ethylene terephthalate—caprolactone copolyesters[J]. Polymer,1995,36:4361-4364
    [66]Cohen RE, Bellare A, Drezewinski MA. Spatial organization of polymer chains in a crystallizable diblock copolymer of polyethylene and polystyrene[J]. Macromolecules, 1994,272321-2323
    [67]Richardson PH, Richards RW, Blundell DJ, MacDonald WA, Mills P. Differential scanning calorimetry and optical microscopy investigations of the isothermal crystallization of a poly(ethylene oxide)-poly(methyl methacrylate) block copolymer[J]. Polymer,1995,36:3059-3069
    [68]Quiram DJ, Register RA, Marchand GR, Ryan AJ. Dynamics of structure formation and crystallization in asymmetric diblock copolymers[J]. Macro molecules,1997, 30:8338-8343
    [69]Balsamo V, Muller AJ, Gyldenfeldt FV, Stadler R. Ternary ABC block copolymers based on one glassy and two crystallizable blocks:polystyrene-block-polyethylene-block-pory(ε-caprolactone) [J]. Macromol. Chem. Phys.1998,199:1063-1070
    [70]Zhu L, Cheng SZD, Calhoun BH, Ge Q, Quirk RP, etc. Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer[J]. J. Am. Chem. Soc.,2000, 122:5957-5967
    [71]Shiomi T, Tsukada H, Takeshita H, Takenaka K, Tezuka Y. Crystallization of semicrystalline block copolymers containing a glassy amorphous component[J]. Polymer, 2001,42:4997-5004
    [72]Quiram DJ, Register RA, Marchand GR. Crystallization of asymmetric diblock copolymers from microphase-separated Melts[J]. Macromolecules,1997,30:4551-4558
    [73]Quiram DJ, Register RA, Marchand GR, Adamson DH. Chain Orientation in block copolymers exhibiting cylindrically confined crystallization[J]. Macromolecules,1998, 31:4891-4898
    [74]Rangarajan P, Register RA, Fetters LJ, Bras W, Naylor S, Ryan AJ. Crystallization of a weakly segregated polyolefin diblock copolymer[J]. Macromolecules,1995,28: 4932-4938
    [75]Weimann PA, Hajduk DA, Chu C, Chaffin KA, Brodil JC, Bates FS. Crystallization of tethered polyethylene in confined geometries[J]. J. Polym. Sci. Part B:Polym. Phys., 1999,372053-2068
    [76]王旭,黄锐.PP/纳米级CaCO3复合材料性能研究[J].中国塑料,1999,13(10):22-25
    [77]王旭,黄锐,金春洪,等.PP/弹性体/纳米CaCO3复合材料的研究[J].中国塑料,2000,14(6):34-38
    [78]王旭.聚合物基纳米粒子复合材料的研究,四川大学博士学位论文,2001
    [79]Tol RT, Mathot VBF, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 3: crystallization kinetics and crystallinity of micro- and nanometer sized PA6 droplets crystallizing at high supercoolings[J]. Polymer,2005,46:2955-2965
    [80]Kurauchi T, Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN [J]. J. Mater. Sci.,1984,19(5):1699-1709
    [81]Merz E H, Claver G C, Baer M. Studies on heterogeneous polymeric systems[J]. J. Polym. Sci.,1956,22(101)325
    [82]Newman S., Strclla S. Stress-strain behavior of rubber-re info rced glassy polymers[J]. Appl. Polym. Sci.,1965,92787-2810
    [83]Strella S. Rubber reinforcement of glassy polymers [J]. Polym. Sci. A2,1966,3527-531
    [84]Bucknall C B, Smith R R. Stress-whitening in high-impact polystyrene [J]. Polymer,1965, 6(8):437-446.
    [85]Bucknall C.B. Toughened plastics[M]. London:Applied science publishers,1977
    [86]Pearson R.A., Yee A.F. Toughening mechanisms in elastomer-modified epoxies[J]. Mater.Sci.,1986,212475-2488
    [87]Jang B Z, Uhlmann D R., Vander J.B. Ductile-brittle transition in polymers[J]. J. Appl. Polym. Sci.,1984,29(11):4409-3420
    [88]Okamoto Y, Miyagi H., Mitsui S. New cavitation mechanism of rubber dispersed polystyrene[J]. Macromolecules,1993,26:6547-6551
    [89]Frensch H, Harnischfeger P, Jungnickel BJ (1989) In:Utraky LA, Weiss RA(eds) Multiphase polymers:blends and ionomers. ACS symposium series 395. American Chemical Society. Washington DC, p101
    [90]Santana OO, Muller AJ. Homogeneous nucleation of the dispersed crystallisable component of immiscible polymer blends [J]. Polym. Bull,1994,32(4):471
    [91]Miyata S., Imashshi T, Anabuki H. Fire-retard ing polypropylene with magnesium hydroxide[J]. J.Appl. Polym. Sci.,1980,25:415-425
    [92]Scobbo J.J., Cometti P.L., Strom C.P. Quality control testing of crystalline/amorphous alloys:dynamic mechanical analysis, heat distortion temperature and vicat softening point[J]. SPE ANTEC,1995,41:4024-4030
    [93]Fornes T.D., Paul D.R. Modeling properties of nylon 6/clay nanocomposites using composite theories[J]. Polymer,2003, (44):4993-5013
    [94]Wu CJ, Kuo JF, Chen CY, Woo E. Effects of reactive functional groups in the compatibilizer on mechanical properties of compatibilized blends[J]. J. Appl. Polym. Sci. 1994,52:1695-1706
    [95]Wu S. A generalized criterion for rubber toughening:the critical matrix ligament thickness[J]. Appl. Polym. Sci.,1988,35:549-561
    [96]Margolina A., Wu S. Percolation model for brittle-tough transition in nylon/rubber blends[J]. Polymer,1988,29(12)2170-2173
    [97]Gilbert D.J., Donald A.M. Toughening mechanisms in high impact polystyrene [J]. J Mater Sci.,1986,21:1819-1823
    [98]李强,郑文革,漆宗能等.聚合物共混体系脆韧转变的逾渗阀值及其与分散度的关系[J].中国科学B辑,1992,22:236-242.
    [99]Epstein Bennett N, Wilmington. Tough thermoplastic nylon compositions. US Patent 4174358,1976
    [100]Borggreve R.J.M., Gaymans R.J., Eichenwald H.M. Impact behavior of nylon-rubber blends:5. Influence of the mechanical properties of the elastomer[J]. Polymer,1989, 30:71-77
    [101]Dijkstra K., Laak T, Gaymans R.J. Nylon-6/rubber blends:6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber) blends[J]. Polymer,1994,35315-322
    [102]Lazzeri A., Bucknall C.B. Dilatational bands in rubber-toughened polymers[J]. J. Mater. Sci.,1993,28:6799-6808
    [103]Bucknall C.B., Karpodinis A., Zhang X.C. A mode for particle cavitation in rubber-toughened plastics[J]. J. Mater. Sci.,1994,293377-3383
    [104]Kijkstra K., Van der Wal A., Gaymans R.J. Nylon-6/rubber blends:4. Cavitation and yield in nylon-rubber blends[J]. J. Mater. Sci.,1994,293489-3496
    [105]Jiang W. Interparticle distance-temperature-strain rate equivalence for the brittle-tough transition in polymer blends[J]. Polymer,1998,39:4437-4442
    [106]Jang W. Brittle-tough transition in PP/EPDM blends:effects of interparticle distance and temperature [J]. Polymer,1998,393285-3288
    [107]Filippi S., Yordanov H., Minkova L., etc. Reactive compatibilizer precursors for LDPE/PA6 blends,4a Maleic anhydride and glycidyl methacrylate grafted SEBS[J]. Macromolecular Materials and Engineering,2004,289:512-523
    [108]Vocke C., Anttila U., Heino M., etc. Use of oxazoline functional polyolefins and elastomers as compatibilizers for thermalplastic blends [J]. J. Appl. Polym. Sci. 1998,70,1923-1930
    [109]Vocke C., Anttilaa U., Seppala J. Compatibilizationofpolyethylene/polyamide 6 blends with oxazoline-functionalized polyethylene and styrene ethylene/butadiene styrene copolymer (SEBS) [J]. J. Appl. Polym. Sci.1999,72,1443-1450
    [110]Heino M., Kirjava J., Hietaoja P., etc. Compatibilization of polyethylene terephthalate/polypropylene blends with styrene-ethylene/butadiene-styrene (SEBS) block copolymers[J]. J. Appl. Polym. Sci.,1997,65:241-249
    [111]周丽玲,吴其哗,杨文君,等.刚性有机粒子对聚氯乙烯/氯化聚乙烯共混体系形态和增韧机理的研究[J].高分子学报,1996(1):87-90
    [112]闫瑞萍,梁善杰PP/EPDM/HDPE三元共混材料的微观形态结构及增韧机理分析[J].工程塑料应用,1994,22(3):31-34.
    [113]WEI Gang, HUANG Rui, SONG Bo. Toughening effect of ethylene—octene copolymer grafted maleic anhydride on poly(butylene terephthalate) [J]. China Synthetic Rubber Industry.2004,27(2):115-115
    [114]Russo P, Acierno D, Maio LD, Demma G. Thermal and mechanical characterization of films from nylon 6/EVOH blends[J]. Euro. Polym.J.,1999,35:1261-1268
    [115]Molau G. E.:Heterogeneous polymer systems, Ⅰ. polymeric oil-in-oil emulsions[J]. Journal of polymer science Part A:General Papers,1965,3:1267-1278
    [116]Aalaie J, Khanbabaie G, Khoshniyat AR, Rahmatpour A. Study on steady shear, morphology and mechanical behavior of nanocomposites based on polyamide 6[J]. J. of Macromolecular Sci., Part B:Physics,2007,46305-316.
    [117]钟明强,孙莉,罗炜.PA6/蒙脱土熔融插层复合材料结构与性能分析[J].合成树脂及塑料,2003,2(3):28-31
    [118]Holmes D R, Bunn C W, Smith D J. The crystal structure of polycaproamide:Nylon 6[J]. J. Polym. Sci.,1955,17:159-173.
    [119]Bradury E M, Brown L, Elliott A, et al. The structure of the gamma form of polycaproamide (Nylon 6) [J], Polymer,1965,6:465-482
    [120]Mutsumasa Kyotani, Shicenobu Mitsuhashi. Studies on crystalline forms of nylon 6. Ⅱ. Crystallization from the melt[J]. J. Polym. Sci.,1972,10:1497-1508
    [121]Fornes T.D. and Paul D.R. Structure and properties of nanocomposites based on nylon-11 and-12 compared with those based on nylon-6[J]. Macromolecules,2005, 37:7698-7709
    [122]李强,赵竹第,欧玉春,等.尼龙6/蒙脱土纳米复合材料的结晶行为[J].高分子学报,1997,(2):188-193
    [123]Aharoni SM.. n-Nylon, their synthesis, structure, and properties[M]. Chichester; New York:Wiley; 1997
    [124]Khanna YP, Reimschuessel AC, Banerjie A, Altman C. Memory effects in polymers. Ⅱ. Processing history vs. crystallization rate of nylon 6—observation of phenomenon and product behavior[J]. Polym. Eng. Sci,1988,28(24):1600-1606
    [125]Khanna YP, Kumar R, Reimschuessel AC. Memory effects in polymers. Ⅲ. Processing history vs. crystallization rate of nylon 6—comments on the origin of memory effect[J]. Polym. Eng. Sci.,1988,28(24):1607-1611
    [126]Khanna YP, Kumar R, Reimschuessel AC. Memory effects in polymers. Ⅳ. Processing history vs. crystallization rate—effect of polymer structure[J]. Polym. Eng. Sci.,1988, 28(24):1612-1615
    [127]Khanna YP, Reimschuessel AC. Memory effects in polymers. I. Orientational memory in the molten state; its relationship to polymer structure and influence on recrystallization rate and morphology[J]. J. Appl. Polym. Sci.,1988,35(8):2259-2268
    [128]Khanna YP. A barometer of crystallization rates of polymeric materials [J]. Polym. Eng. Sci.,1990,30(24):1615-1619
    [129]Liu L, Qi Z, Zhu X. Studies on nylon 6/clay nanocomposites by melt-intercalation process[J]. J. Appl. Polym. Sci, 1999,71:1133-1138
    [130]Liu TX, Liu ZH, Ma KX, et al. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites[J]. Compos. Sci. Technol., 2003,63331-337
    [131]Chiu FC, Lai SM, Chen YL, Lee TH. Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener[J]. Polymer,2005,46:11600-11609
    [132]李迎春,胡国胜,王志强,等.尼龙11/蒙脱土纳米复合材料的流变性能[J].高分子材料科学与工程,2004,20(3):152-154
    [133]Chao J W, Paul D R. Nylon 6 nanocomposites by melt compound ing [J]. Polymer,2001, 42:1038-1094
    [134]Hu guosheng, Wang Biaobing, Gao fengzheng. Investigation on the rheological behavior of nylon 6/11 [J]. Materials Science & Engineering A,2006,426263-265
    [135]吴其晔,巫静安.高分子材料流变学导论[M].北京,化学工业出版社,1994
    [136]于德梅.尼龙短纤维填充PVC体系流变性能研究[J].高分子材料科学与工程,1997,21(3):31-36
    [137]Yate III, John B, Ullman, Timothy J. Impact modification of polyphenylene ether-polyamide compositions. USP.4745157
    [138]周涛,成煦,张爱民.马来酸酐接枝SEBS对尼龙6/S EBS共混物聚集态结构的影响[J].高分子材料科学与工程,2004,20(1):112-116
    [139]Gallucci R R, Going R C. Preparation and reactions of epoxy-modified polyethylene[J]. J.Appl. Polym. Sci.,1982,27:425-437
    [140]Lu M, Keskkula H, Paul D R. Toughening of nylon 6 with grafted rubber impact modifiers[J]. J.Appl. Polym. Sci.,1995,58:1175-1188
    [141]Mori M, Uyama Y, Ikada Y. Surface modification of polyethylene fiber by graft polymerization[J]. J. Polym. Sci. Part A Polym. Chem.,1994,32:1683-1690
    [142]Liu N C, Xie H Q, Baker W E. Comparison of the effectiveness of different basic functional of groups for the reactive compatibilization of polymer blends[J]. Polymer, 1993,34:4680-4687
    [143]胡孝勇,郭祀远,郭熙桃,陈焕钦SEBS-g-MAH弹性体复合材料的制备与表征[J].塑料科技,2008,3648-51
    [144]何三雄,高保娇ATRP法在纳米硅胶粒子表面接枝聚甲基丙烯酸缩水甘油酯[J].高分子材料科学与工程,2007,23:100-103
    [145]Steller R T, Micewicz E, Meissner W. Reactive blending ofpolyamides with epoxidized elastomers[J]. J. ofAppl. Polym. Sci.,2007,104:2992-3000
    [146]Souheng Wu. Formation of dispersed phase in incompatible polymer blends:interfacial and rheological effects[J]. Polymer Engineering& Science,1987,27(5)335-343
    [147]Kusmono, Mohd Ishak Z A, Chow W S, et al., Influence ofSEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites[J]. Macromolecular Nanotechnology,2008,44:1023-1039
    [148]Bao S P, Tjong S C. Impact essential work of fracture of polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA elastomer[J]. Composites:Part A,2007,38: 378-387
    [149]Oshinski A J, Keskkula H, Paul D R. The role of matrix molecular weight in rubber toughened nylon 6 blends:2. Room temperature izod impact toughness[J]. Polymer, 1996,37:4909-4918
    [150]Chiu FC, Lai SM, Chen YL,Lee TH. Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener[J]. Polymer,2005,46:11600-11609
    [151]Covas JA,Machado AV. Rheology of PA-6/EPM/EPM-g-MA blends along a twin-screw extruder[J]. Advances in Polymer Technology,2000,19260-276
    [152]Oshinski AJ, Keskkula H, Paul DR. Rubber toughening of polyamides with functionalized block copolymers:1. nylon-6[J]. Polymer,1992,33268-283
    [153]Oshinski AJ, Keskkula H, Paul DR. Rubber toughening of polyamides with functionalized block copolymers:2.nylon-6,6[J]. Polymer,1992,33:284-293
    [154]Huang JJ, Keskkula H, Paul DR. Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers:morphology and izod impact behavior[J]. Polymer, 2004,45:4203-4215
    [155]Chiu FC, Fu SW, Chuang WT, Sheu HS. Fabrication and characterization of polyamide6,6/organo-montmorillonite nanocomposites with without a maleated polyolefin elastomer as a toughener[J]. Polymer,2008,49:1015-1026
    [156]Baldi F, Bignotti F, Tieghi G, Ricco T. Rubber toughening of polyamide 6/organoclay nanocomposites obtained by melt blending[J]. J. of Appl. Polym. Sci.,2006,99: 3406-3416
    [157]Hu H, Yu S, Wang M, Liu K. Tribological behavior of polyamide 66-based binary and ternary composites[J]. Polymer Engineering and Science,2009,492454-2458
    [158]Ahn Y C, Paul D R. Rubber toughening of nylon 6 nanocomposites[J]. Polymer,2006, 47:2830-2838
    [159]Wang K, Wang C, Li J,et al. Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites. [J] Polymer, 2007,482144-2154
    [160]Gonzalez I, Eguiazabal JI, Nazabal J. Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend:effects of clay loading on morphology and mechanical properties [J]. European Polymer Journal,2006,42: 2905-2913
    [161]Gonzalez I, Eguiazabrl I, Nazabal J. Compatibilization level effects on the structure and mechanical properties of rubber-modified polyamide-6/clay nanocomposites[J]. Journal of Polymer Science:Part B:Polymer Physics,2005,433611-3620
    [162]Gallego R, Garcia-Lopez D, Lopez-Quintana S, et al. Influence of blending sequence on micro- and macrostructure of PA6/mEPDM/EPDMgMA blends reinforced with organoclay[J]. J. of Appl. Polym. Sci.,2008,109:1556-1563
    [163]Kasari Aravind, Yu ZZ, Mai YW. Effect of blending sequence on microstructure of ternary nanocomposites [J]. Polymer,2005,46:5986-5991
    [164]Dasari A, Yu ZZ, Yang M, et al. Micro- and nano-scale deformation behavior of nylon 6-based binary and ternary nanocomposites [J]. Compos. Sci. Technol,2006,66: 3097-3114
    [165]Yu ZZ, Ou YC,Hu GH. Influence of interfacial adhesion on toughening of polyethylene-octene elastomer/nylon 6 blends[J]. J. of Appl. Polym. Sci.,1998, 69:1711-1718
    [166]Wang K., Wang C., Li J., Su J., Zhang Q., Du R., Fu Q.:Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites[J]. Polymer,2007,48:2144-2154
    [167]Jannerfeldt G., Boogh L., Manson J. A. E.:Tailored interfacial properties for immiscible polymers by hyperbranched polymers[J]. Polymer,2000,41:7627-7634
    [168]Wan T., Clifford M. J., Gao F., Bailey A. S., Gregory D. H., Somsunan R.:Strain amplitude response and the microstructure of PA/clay nanocomposites[J]. Polymer,2005, 46:6429-6436
    [169]Wu Q., Liu X., Berglund L. A.:FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites[J]. Polymer,2002,43:2445-2449
    [170]Pramoda K. P., Liu T., Liu Z., He C., Sue H-J.:Thermal degradation behavior of polyamide 6/clay nanocomposites[J]. Polymer Degradation and Stability,2003,81:47-56
    [171]Tjong SC, Li RK, Xie XL. Properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and polyamide 66 blends. Polymer Journal,2000,32:907-914
    [172]Ahn T. O., Hong S. C.:Nylon 6-polyethersulfone-nylon 6 block copolymer:synthesis and application as compatibilizer for polyethersulfone/nylon 6 blend[J]. Polymer,1997, 38:207-216
    [173]叶强,张爱民,周燎原SEBS接枝MAH改性PA6物理性能的研究[J].精细化工中间体,2005,35(4):64-66
    [174]Jian L., Zhou C., Gang W., Wei Y, Ying T.:Preparation and linear rheological behavior of polypropylene/MMT nanocomposites[J]. Polymer Composites,2003,24:323-331
    [175]Boucard S., Duchet, Gerard J. J. F., Prele P., Gonzalez S.:Processing of polypropylene-clay hybrids[J]. Macromolecular Symposia,2003,194241-246
    [176]Horiuchi S, Matchariyakul N, Yase K, Kitano T. Morphology development through an interfacial reaction in ternary immiscible polymer blends[J]. Macro molecules,1997,30: 3664-3670
    [177]Yang D, Shen Y, Feng Z. Prepriatsin China-Japan Bilateral Symposium on Polymer Science and Matrials (Guangzhou, China),1990, E52:420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700