开封附近地区地表灰尘重金属背景值及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对土壤和水环境等重金属背景值的研究已经很多,但是对地表灰尘重金属背景值的研究鲜见报道。开封市位于黄淮海大平原的核心位置,是河南省重要化工产业区,其城市周边地区是河南省重要粮食主产区。本文在野外调查采样、室内化验分析的基础上,开展了地表灰尘重金属背景值的研究。
     地表灰尘和土壤样点布设遵循少受人为干扰、均匀性和随机性原则。样点距离开封市区10km以上,距县城或乡镇5km以上,距农村居民点0.5km以上,距主要公路1km以上。样品采集地点选择古老坟茔地、规模成片林地、田间小路、规模较大的永久性田埂和沟渠堤岸、长期荒芜的地面等。本研究采集了开封附近地区地表灰尘样品96个,表层土壤样品49个。用ICP-MS检测了各样品Cu、Zn、Ni、Pb、Cr、Cd、V、Co、Ga、Sr和Sb等11种重金属含量。检测过程中运用加标回收试验和均数控制图进行质量控制,加标回收率在95%~105%之间,控制样品值均在上、下控制限之间,数据均符合质量要求。按《GB/T4883-2008》要求采用Grubbs检验法和偏度-峰度方法两分别对灰尘和土壤重金属检测数据进行检验,共剔除15个灰尘离群数据和2个土壤离群数据,获得到有效数据共1578个。
     按照土壤元素背景值研究方法,分别开展开封附近地区地表灰尘和土壤表层重金属背景值研究,并与我国不同区域的表层土壤背景值开展对比分析,最后基于灰尘背景值对开封市幼儿园地表灰尘重金属污染状况进行了评价。其主要结论如下:
     (1)采用W检验法、置信带法和偏度峰度法对灰尘样品和土壤样品数据进行分布状态的检验表明,V、Co、Ni和Sr呈正态分布;Cr、Cu、Zn、Cd和Pb呈对数正态分布;Ga和Sb呈偏态分布。。
     (2)对于呈正态分布的重金属,以算数平均值和标准差的计算表征其背景值及其范围;对于呈对数正态分布的重金属,以几何平均值和几何标准差的计算来表示其背景值及其范围;对于呈偏态分布的重金属,以中位数表示其背景值,以5-95%所对应的数据区间表示背景值范围。结果表明,研究区地表灰尘V、Cr、Co、Ni、Cu、Zn、Ga、Sr、Cd、Sb和Pb的背景值分别为85.12、46.51、9.72、26.43、20.54、77.21、36.30、24.99、0.304、1.20和24.58mg/kg,背景值范围分别为41.08~129.16、1.64~68.37、5.32~14.12、12.55~40.32、11.38~37.08、47.80~124.71、32.59~42.19、177.82~272.15、0.152~0.610、0.88~1.76和14.73~41.02mg/kg。
     (3)研究区地表灰尘Cu、Zn、Pb、Cd、Cr和Sb等重金属的背景值高于本区土壤背景值,分别是表土背景值的1.02、1.06、1.07、1.01、1.26、1.35倍。经差别显著性检验发现,灰尘和表土Sb和Cr的背景值差别显著(P<0.05),而其他重金属并无显著差别。地表灰尘Co、Sr、Ni和Ga等重金属的背景值低于表土背景值,分别是表土背景值的0.85、0.95、0.87、0.92倍,经差别性显著检验,均不存在显著性差别。与黄河下游潮土区和河南省表土重金属背景值相比,也得到了相似的结论。这可能是灰尘Cu、Zn、Pb、Cd、Cr和Sb等重金属主要赋存在较小的土壤颗粒物上,易发生空气迁移;而Co、Sr、Ni和Ga等重金属主要赋存在较大的土壤颗粒物上,不易发生空气迁移所致。另外也可能是由于第一类重金属受人类活动影响较显著,在土壤表面富累较多,经空气迁移和沉降后导致灰尘中的含量偏高,而表土背景值是0~20cm范围的均值造成的。
     (4)分别基于地表灰尘和黄河下游潮土背景值,利用地积累指数法(Igeo)和潜在生态风险系数法(RI)对开封市幼儿园地表灰尘重金属污染的评价结果显示,利用Igeo评价时,虽然基于两种标准的Cu和Pb污染等级没有变化,但基于灰尘背景值的Igeo均小一些;而基于灰尘背景值的Cr和Zn污染程度比基于土壤背景值低。利用RI评价时,所有重金属基于两种标准的评价结果均在一个等级,但是各点基于灰尘背景值的RI值均比基于表土背景值的RI值低4.32%~7.34%。用土壤背景值作为基准来参与地表灰尘的污染评价,结果出现偏高的现象,即高估了地表灰尘的污染程度,利用灰尘背景值参与地表灰尘的污染评价更加符合客观实际。
Researches on background values of heavy metal in soil and water are many at present, but study onbackground values of heavy metal in surface are less. Kaifeng is located in the North China Plain, and it isan important chemical industry area of Henan Province, the region surrounding the city is an importantmain grain producing area of Henan province. Based on field investigation and sampling and laboratoryanalysis, we carry out the study on background values of elements in surface dust.
     In accordance with the principle of less human disturbance, uniformity and randomness of sampledistribution,96dust samples and49soil samples in the region surrounding Kaifeng are collected. Thesampling points are selected from Ancient graves, large scale woodland, loaning, larger permanent fieldedges and canal banks and long-term desert ground, which are more than10kilometers away from KaifengCity and more than5kilometers from counties or towns,0.5kilometers from villages and1kilometer frommain road.11trace element contents of Cu, Zn, Ni, Pb, Cr, Cd are measured by ICP-MS. Recovery testand mean control chart are applicated in checking process for quality control, the recovery ratio is between95%and105%, the assurance sample values are all between upper and lower limit and meet the qualityrequirements. Referring to GB/T4883–2008, dust and soil heavy metal values are respectively checkedby Grubbs test and Deviation-kurtosis test,15discrete data of dust and2of soil are eliminated, and1578effective data are got.
     According to methods of the analysis of background values of elements in soils, we carry out thestudy on heavy metal background value in surface dust and soil in the region surrounding Kaifeng, and campare it with background value in surface soil of different regions in China, then assess the level ofheavy metal pollution in surface dust in kindergarten of Kaifeng, and the main conclusions are as follows:
     1. Data distribution test methods of W test, confidence band test and the Deviation-kurtosis test areused to check the distribution of11sets of data. The results show that V、Co、Ni and Sr show normaldistribution, Cr、Cu、Zn、Cd and Pb show log-normal distribution, and Ga and Sb skewed distribution.
     2. Arithmetic mean and standard deviation are used to describe the normally distributing elements’background value and their range, geometric mean and Geometric standard deviation are used to describethe log-normally distributing elements’ background value and their range, and median is used to describeskewed distributing elements’ background value and5-95%corresponding interval to describe their range.The results are as follows.
     The background value of V、Cr、Co、Ni、Cu、Zn、Ga、Sr、Cd、Sb and Pb respectively are85.12,46.51,9.72,26.43,20.54,77.21,36.30,24.99,0.304,1.20, and24.58,and the range41.08~129.16mg/kg,1.64~68.37,5.32~14.12,12.55~40.32,11.38~37.08,47.80~124.71,32.59~42.19,177.82~272.15,0.152~0.610,0.88~1.76and14.73~41.02mg/kg.
     3. The background values of Cu, Zn, Pb, Cd, Cr and Sb in surface dust are higher than the soilbackground value of the region, they are respectively1.02,1.06,1.07,101,1.26and1.35times of it.According to significance testing, the background value of Sb in surface dust and soil is significantlydifferent (p<0.05) from Cr, and there is no significant difference among the others. The backgroundvalues of Co, Sr, Ni and Ga in surface dust are lower, but not significantly, to that in surface soil, which arerespectively0.85,0.95,0.87and0.92times of that in surface soil. And camparing with the backgroundvalue of in moisture soil in area of the lower reaches of the Yellow River and surface soil in Henanprovince, we get a similar conclusion. It is probably because of that the heavy metals of Cu, Zn, Pb, Cr and Sb in surface dust are mainly attach on relatively minor soil particles so they are easily to occuratmosphere transport, and Co, Sr and Ga on relatively large soil particles so hardly to occur atmospheretransport. It is also probably because of that the first ones is more significantly influenced by humanactivities so accumulate more on the surface of soil and higher in surface dust after atmosphere transportand sedimentation but the surface background value is the mean value from0to20cm in soil.
     4. Respectively based on background values in surface dust and moisture soil of the lower reaches ofthe Yellow River, the condition of heavy metal pollution in dust in kindergarten of Kaifeng is assessed byIgeoand RI. The results show that when it is assessed by Igeobased on the two standards, the class ofpollution of both Cu and Pb is though not changed, but it is smaller based on background value in surfacedust, and the pollution of Cr and Zn based on background value in dust is less than that based onbackground value in soil. When it is assessed by RI, the pollution of all the heavy metals is within the sameclass based on the two standards, but it is4.32-7.34%lower based on background value in dust thanbackground value in soil. So it will be on the high side when surface dust pollution is aassessed based onsoil background value, in other words, it will be overvalued. Then it is more accordant with reality toassess the pollution of surface dust based on background value in surface dust.
引文
[1] Conner J J, Shacklette H T, Ebens R J, et al. Background geochemistry of some rock, soil, plant, andvegetables in the Conterminous United States[M]. Washington: United States Government PrintingOffice,1975.
    [2]徐光炽.地球化学[M].上海:上海科学技术出版社,1982,332.
    [3]缪天成,王惠琪,郑春江,等.环境背景值研究[J].中国环境科学,1990,10(4):255-262.
    [4]熊毅.环境中若干要素的自然背景值及其研究方法[M].北京:科学出版社,1982.
    [5]贺秀全.地下水环境背景值研究[J].地下水,1996,16(2):68-69.
    [6]中国环境保护总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [7]孟范平,傅柳松.灰尘理化性质及其对土壤和植被的影响[J].科学进展,1996,4(4):21-27.
    [8]张新民,柴发合,孙新章,等.大气降尘研究进展[J].中国人口·资源与环境,2008,18(专刊):658-662.
    [9] Jan W E, Claus B, Geert D. Review of deposition monitoring methods[J].Tellus,1994,46B(2):79-93.
    [10] Day J P, Hart M, Robinson S M. Lead in urban street dust[J]. Nature,1975,253:343-345.
    [11] Sutherland R A, Tolosa C A. Multi-element analysis of road-deposited sediment in an urban drainagebasin[J]. Honolulu Hawaii Environmental Pollution,2000,110(3):483-495.
    [12]杜佩轩,田晖,韩永明.城市灰尘概念、研究内容与方法[J].陕西地质,2004,22(1):73.
    [13]赵兴敏,赵蓝坡,花修艺.长春市大气降尘中重金属的分布特征和来源分析[J].城市环境与城市生态,2009,22(4):30-32.
    [14]李崇,李法云,张营,等.沈阳市街道灰尘中重金属的空间分布特征研究[J].生态环境,2008,17(2):560-564.
    [15] Bini C, Giacomo Sartori G, Wahsha M, et al. Background levels of trace elements and soilgeochemistry at regional level in NE Italy[J]. Journal of Geochemical Exploration,2010,109(1-3):125-133.
    [16] Fukue M, Yanai M, Sato Y, et al. Background values for evaluation of heavy metal contamination insediments[J]. Journal of Hazardous Materials,2006,136(1):11–119.
    [17]夏增禄.环境地球化学进展[M].北京:海洋出版社,1986.
    [18]中华人民共和国国家标准.土壤环境质量标准[S]. GB15168-1995.
    [19]熊又升,何圆球,王兴祥,等.小尺度区域红壤重金属含量背景值及其环境质量评价[J].华中农业大学学报,2006,25(5):524-529.
    [20]曹峰,李瑞敏,王轶,等.海河平原北部地区土壤地球化学基准值与环境背景值[J].地质通报,2010,29(8):1215-1219.
    [21]柴振林,吴学谦,魏海龙,等.浙江省食用菌重金属背景值及质量安全评价[J].林业科学,2009,45(12):59-64.
    [22]夏晨,李金柱,何中发.上海市浅层地下水环境地球化学背景值研究[J].上海地质,2006,1:24-28.
    [23]程志中,谢学锦.岩石中元素背景值变化对地球化学成矿预测的影响[J].中国地质,2006,33(2):411-417.
    [24]戴峰,李晓斐.上海地区13种金属土壤背景值初探[J].上海环境科学,2009,28(6):271-274.
    [25]曹雪琴,万军伟,陈雯,等.土壤元素背景值的研究──以南方某区域为例[J].安全与环境工程,2009,16(2):28-32.
    [26]王帅,王红旗,周庆涛,等.基于稳健统计的土壤环境背景值研究及应用[J].环境科学研究,2009,22(8):944-949.
    [27] Caravanosa J, Weiss A L, Blaisea M J, et al. A survey of spatially distributed exterior dust leadloadings in New York City[J]. Environmental Research,2006,100(2):165–172.
    [28] Sezgln N, Ozcan H K, Demir G, et al. Determination of heavy metal concentrations in street dusts inIstanbul E-5highway[J]. Environment International,2004,29(7):979-985.
    [29]游志校,杨成,刘鑫,等.贵阳市城市道路灰尘重金属铅污染及评价[J].城市环境与城市生态,2010,23(4):33-35
    [30]肯尼斯·派伊.(译者?)风扬粉尘及粉尘沉积物[M].台益和,张选阳译.北京:海洋出版社,1991.
    [31] Zoller W H, Gladney E S, Duce R A. Atmospheric concentration and source of trace metals at thesouth pole[J]. Science,1974,183(4121):199-201.
    [32] Querol X, Alastuey A, Chaves A, et a1. Sources of natural and anthropogenic sulphur around theTeruel powerstation,NE spain.Inferences from sulphur isotope geochemistry[J]. AtmosphericEnvironment,2000,34(2):333-345.
    [33] Jialiu X, Binbin Z, Minhua H. Study on the numerical modeling of particulate matter in Shanghai[J].Atmospheric Environment(Part A) General Topics,1992,26(15):2679-2688.
    [34] Waston J G, Zhu T, Chow J C, et a1. Receptor modeling application framework for particle sourceapportionment[J]. Chemosphere,2002,49(9):1093一1136.
    [35]朱坦,白志鹏,朱先磊,等.源解析技术在环境评价中的应用一区域大气污染物总量控制[J].中国环境科学,2000,20(s1): s2-s6.
    [36] Waston J G, Chow J C. Source characterization of major emission sources in the Imperial andMexicali Valleys along the US-Mexico border[J]. The Science ol the Total Environment,200l,276(1-3):33-47.
    [37] De Miguel E, Llamas J F, Chacon E. Origin and patterns of distribution of trace elements in streetdust:unleaded petrol and urban lead[J]. Atmospheric Environment,1997,31(17):2733-2740.
    [38] Anju D K. Heavy metals levels and solid phase speciation in street dusts of Delhi, India[J].Environmental Pollution,2003,123(1):95-105.
    [39] Oliva S R, Espinosa J F. Monitoring of heavy metals in topsoils,atmospheric particles and plant leavesto identify possible contamination sources[J]. Micorchemical Journal,2007,86(1):131-139
    [40]刘玉燕,刘浩峰,刘敏.乌鲁木齐市地表灰尘重金属含量及其健康风险[J].干旱区研究,2009,26(5):750-754.
    [41]李德成,王东红,彭安.北京西北郊降尘和降雨中稀土元素的浓度分布和来源的初步分析[J].环境科学学报,2001,21(5):640--642.
    [42]李春生,柴之芳,张宁.兰州城区某地自然降尘特性及其变化规律[J].核技术,1997,20(12):739-743.
    [43][AI-Rajhi M A, Seaward M R D. Metal levels in indoor and outdoor dust in Riyadh,Saudi Arabia[J].Environmental International,1996,22(3):315-324.
    [44] Banerjee.A D. Heavy metal levels and solid phase speciation in street dusts of Delhi India[J].Environmental Pollution,2003,123(1):95-105.
    [45]马建华,王晓云,侯千,等.某城市幼儿园地表灰尘重金属污染及潜在生态风险[J].地理研究,2011,30(3):486-495
    [46]徐欣.不同等级城镇居民点地表灰尘重金属含量与分布[D].开封:河南大学,2010.
    [47]王晓云.郑州市地面灰尘重金属季节变化及健康风险分析[D].开封:河南大学,2011.
    [48]李海雯,陈振楼,王军,等.基于GIS的上海城市灰尘重金属空间分布特征研究[J].环境科学学报,2007,27(5):803-810.
    [49]常静,刘敏,侯立军,等.城市地表灰尘的概念、污染特征与环境效应[J].应用生态学报,2007,18(5):1153-1158.
    [50]常静,刘敏,李先华,等.上海城市地表灰尘重金属污染累积过程与影响因素[J].环境科学,2008,29(12):3493-3488.
    [51]程书波,刘敏,欧冬妮,等.城市灰尘PAHs累积与迁移过程的影响因素研究[J].环境科学,2008,29(1):179-182.
    [52] Abeck D, Ring J. Epidemiology and prevalence of atopic dermatitis[J]. Joumal of the EuropeanAcademy of Dermatology and Venereology,1995,5(s1):182-S183.
    [53] Gautam.P B, Laha U, Appel E. Magnetic susceptibility of dust-loaded leaves as a proxy oftraffic-related heavy metal pollution in Kathmandu city, Nepal[J]. Atmospheric Environment,2005,39(2):2201-2211.
    [54] Chan M K, Chan L S, Ng? S L, et al. Heavy metal contents and magnetic properties of street dust intwo districts of different traffic density in Hong Kong[C]. International Conference on Environmentand Engineering Geophysics. Geophysical Solutions for Environment and Engineering. Wuhan(CN),2006:807-811.
    [55]黄丽,卢新卫,翟萌,等.西安城市公园灰尘重金属污染及其风险评价[J].城市环境与城市生态,2010,23(1):17-20
    [56]王晓云,马建华,侯千,等.开封市幼儿园地表灰尘重金属积累及健康风险[J].环境科学学报,2011,31(3):583-593.
    [57]常静,刘敏,李先华,等.上海地表灰尘重金属污染的健康风险评价[J].中国环境科学,2009,29(5):548-554.
    [58]李金香,虞统,赵越,等.北京市大气PM10环境背景值的计算方法探讨[J].环境科学学报,2007,27(9):1525-1533
    [59]翟贵华,贾春明,王晓东,等.长春市区环境空气中TSP环境背景值探讨[C].第七届全国大气环境学术会议.第七届全国大气环境学术会议论文集.北京:中国环境科学院大气所,1998:216-220.
    [60]张宁,康颖琦,刘晓文,等.甘肃省大气自然降尘背景值的调查和研究[J].甘肃环境研究与检测,2009,12(2):69-73.
    [61]万国江.环境质量的地球化学原理[M].北京:中国环境科学出版社,1988.
    [62]马建华,张丽,李亚丽.开封市城区上壤性质与污染的初步研究[J].土壤通报,1999,30(2):93-96.
    [63]开封市环境保护局.2010年开封市环境状况公报. http://www.kfhb.gov.cn/news/?91_734.html,2011-11-30.
    [64]李灿.开封城市土壤性质、重金属污染及变化分析[D].开封:河南大学,2007.
    [65]袁媛.开封市近地层大气颗粒物垂直分布特征研究[D].开封:河南大学,2010.
    [66]中华人民共和国国家标准.土壤质量铜、锌的测定火焰原子吸收分光光度法[S]. GB/T.17138-1997
    [67]中华人民共和国国家标准.数据的统计处理和解释正态样本离群值的判断处理[S]. GB/T4883-2008.
    [68]杨国治,杨学义.土壤背景值的频数分布与统计方法[J].环境科学,1983,4(3):20-25.
    [69]张英. SAS软件实用教程[M].北京:科学出版社,2009.
    [70]张文彤、闫洁. SPSS统计分析基础教程[M].北京:高等教育出版社,2004.
    [71]唐诵六.数据分布类型检验及其在土壤学中的应用—Ⅰ.偏度、峰度检验法及其计算机程序[J].土壤,1984,16(2):66-69.
    [72]唐诵六.数据分布类型检验及其在土壤学中的应用—Ⅱ.Shapiro—Wilk W检验法及其计算机程序[J].土壤,1984,16(3):66-69.
    [73]唐诵六.数据分布类型检验及其在土壤学中的应用—Ⅲ.Vistelius置信带法及其计算机程序[J].土壤,1984,16(4):66-69.
    [74] Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal,1969,2(3):108-118.
    [75] Chen T B, Wong M H, Wong W J C, et al. Assessment of trace metal distribution and contaminationin surface soil of Hong Kong[M]. Environmental Pollution,1997,96(1):61~68.
    [76] Li X D, Poon C S, Liu P S. Heavy metal contamination of urban soils and street dusts in Hongkong[J]. Applied Geochemistry,2001,16(11-12):1361~1368.
    [77]史贵涛,陈振楼,王利.上海城市公园灰尘重金属污染及其潜在生态风险评价[J].城市环境与城市生态,2006,19(4):40-43.
    [78] H kanson L. An ecological risk index for aquatic pollution control: a sedimentological approach[J].Water Research,1980,14(8):975~1001.
    [79]邵丰收,周皓韵.河南省主要元素土壤环境背景值[J].河南农业.1998,(10):29-29.
    [80]陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004,25(1):117-122.
    [81]侯千,马建华,王晓云,等.开封市幼儿园土壤重金属生物活性及潜在生态风险[J].环境科学,2011,32(6):1764-1771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700