导热沥青混凝土路面太阳能集热及融雪化冰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑色沥青路面具有很强的吸收太阳能的能力,利用沥青路面吸收太阳能成为了一项新型的能源利用技术;此外,在低温冰雪天气中,用夏季收集并储存的热量来给建筑物供暖制冷和加热道路进行融雪化冰,实现热量的跨季节应用。因此,该技术不仅可以大大缓解我国能源紧张并提高道路交通的安全畅通,而且还可以有效降低路面温度和缓解城市热岛效应,减轻夏季高温天气中车辙、推移、泛油等病害的产生。沥青道面换热器是实现太阳能集热和融雪过程的关键构造体,在实现并提高集热和融雪功能之前必须保证道路本身的功能和路用性能。
     本文首先提出了集热和融雪化冰沥青道路的结构形式,对集热和融雪用沥青路面建筑材料进行了设计和制备,包括复合导热相填料制备导热沥青胶浆和导热沥青混凝土、利用页岩陶粒制备隔热层沥青混凝土等。对沥青路面建筑材料的力学性能进行了系统试验和优化研究,评价导热相填料对沥青胶浆和沥青混凝土性能的影响,检验了页岩陶粒沥青混凝土的路用性能。结果表明针对导热沥青混凝土的路用性能,宜采用石墨作为导热相填料,但需要控制掺量。
     第二,基于传热学和气象学的基本原理,分析沥青路面太阳能集热及融雪的传热机理和热工过程,解析影响沥青路面集热和融雪的路面材料、结构特性和环境气候条件等基本概念,界定影响沥青混凝土路面换热的关键参数。对复合材料的各种导热模型进行归纳和总结,采用瞬态平板热源法精确测量沥青胶浆及沥青混凝土的热学参数,确定了导热沥青胶浆和沥青混凝土的导热机理,提出适合导热沥青胶浆和沥青混凝土导热系数的计算预估模型。
     第三,由于沥青路面太阳能集热和流体加热路面融雪化冰会改变沥青路面温度变化规律,给沥青路面带来额外的水温耦合冲击。在设定的冻融条件下进行多次冻融循环试验,研究导热沥青混凝土性能的变化规律,评价导热沥青混凝土耐水温耦合冲击的性能;模拟路面结构制备了组合式车辙板采用结构自诊断的方法评价温度的重复变化对混凝土性能及路面功能的影响;提出了适合导热沥青混凝土抗水温耦合冲击的检测方法和指标。
     第四,参考相关国标并结合沥青混凝土制备和成型的实际情况对混凝土太阳能集热和融雪的室内试验装置进行设计,包括试验数据采集处理系统、温度流量测控系统、辐照度测量控制系统三大部分。建立了一个沥青混凝土换热大板来模拟路面的融雪,利用低温流体加热沥青路面在冰雪天气中进行融雪研究,主要通过实验测量融雪率、基本特征点的温度变化、融化时间以及表面温度场等数据,讨论实际道路管道融雪化冰的热工特性和融化规律,对融雪过程进行性能评价。虽然换热工质温度为25℃时,融雪时间长,但是仍然可以应用于道路的融雪化冰;提高换热工质的温度可以有效地降低融雪的时间,但从有效利用工业低温余热、地热和降低热量损失角度出发,在实际应用过程中没有必要一味地增大换热工质的温度。融雪过程中路表无雪率和管道与管道之间区域的升温过程可以分为四个阶段:初始期、线性期(稳定期)、加速期和后加速期;导热沥青混凝土可以明显加速融雪的速度,使融雪的时间降低30%以上,并且能有效提高沥青路面的换热效率和融雪的效率。
     第五,通过集热试验验证了试验装置和方法能模拟集热条件,同时可进行沥青混凝土试块进行温度场测试;测试结果的精度满足室内可控条件下对沥青混凝土太阳能集热性能评价的要求。根据沥青路面所处的实际气候条件,借助实验装置模拟气候条件在室内对路面温度场进行测量;获得沥青路面温度的变化过程、温度的垂直分布、温度变化速率以及温度梯度等结果,分析结果表明导热沥青混凝土对路面温度场有很大影响,路面埋管的最佳深度为2.5cm~5cm。
     在室内和大气环境中利用沥青混凝土换热板进行太阳能集热试验,测量集热器内部温度的变化过程;评价不同流量对降低路面温度的效果以及路面初始温度对路面升温过程的影响。结果表明了沥青混凝土路面太阳能集热技术可以较大幅度地降低路面温度;随着流量的提高,路面表面温度呈线性关系降低,出口水温下降而单位面积集热量逐渐增加,集热效率增大。在室内持续辐照条件下导热沥青混凝土集热效率达37.5%-47.7%;换热管道间距为30cm,在自然辐照环境中导热沥青混凝土的全天平均集热效率仍相对于普通沥青混凝土可达29.7%。
Asphalt solar collectors are becoming a new way of harnessing solar energy due to its excellent heating-absorption property. While in the low-temperature weather, the heat energy collected in summer can be developed for the heating and cooling of adjacent buildings as well as to melt the snow and ice on the asphalt pavement. As a result, this technology not only can solve the problems of energy sources and impove road safety, but also can effectively reduce the pavement temperature and urban heat island effect, reduce the damages of bleeding, traction, rutting and other usually happened on asphalt pavement during summer. Heat exchanger in asphalt pavement is a key component in heat collection process of solar energy and ice-snow melting process. Before realize and improve the fuction of solar collection and ice-snow melting on asphalt pavement, the fuction of roadways and pavement performance must be guaranteed.
     The asphalt pavement structural form is proposed, which will be applied in pavement solar collection and ice-snow melting. Pavement construction materials is designed and prepared, including the preparation of thermal conductive asphalt concrete by adding thermal conductive fillers, preparation of heat insulation asphalt concrete with expanded shale and so on. System testing and optimization study on mechnical properties of pavement construction materials are used to evaluate the effect of conductive fillers on asphalt mortar and asphalt concrete, inspect the pavement performance of asphalt concrete with expanded shale. The results show that it is better for conductive asphalt concrete to use graphite as conductive filler, but the content of graphite should be controlled.
     Secondly, Based on fundamentals of heat transfer theory and meteorology, analyzes principles and thermal process of asphalt pavement solar collection and ice-snow melting. Such basic concepts as pavement materials with an influence on asphalt solar collection and ice-snow melting, its structure characteristics as well as different environments and types of climate as are still explained in this paper in order to define key parameters that have effects on asphalt concrete's heat exchang performance. The thermal parameters of asphalt mortar and asphalt concrete are measured by transient plant source method. Comparing some typical thermal conductive model with experimental data of filled thermal composites, the thermal conductive principle in filled asphalt mortar and conductive asphalt concrete are identified and the proper calculation models for predict the thermal conductivity of filled asphalt mortar and conductive asphalt concrete are proposed.
     Thirdly, the solar collection and ice-snow melting process will change the variation laws of pavement temperature and accelerate the impact of the coupled thermal and water on asphalt pavement.The study in the following aspects:the repeated freezing-thawing cycles test is used to evaluate the resistance capacity of the coupled impact of thermal and water; the full-depth asphalt concrete slab with thermal conductive layer is prepared to simulate the asphalt pavement structure and self-monitoring method to assess the effect of the variation of temperature on asphalt concrete properties and structure; the proper testing method and specifications for conductive asphalt concrete to evaluate the resistance capacity of the coupled impact of thermal and water.
     Fourthly, with reference to relative national standards and the actual situation of preparation and formation of asphalt concrete, the design of the laboratory testing system for solar energy collection and ice-snow melting, including that of the data acquisition and processing unit, the temperature\flow measure and control unit and radiation test and control system are stated in this study. An experimental system with large asphalt concrete slab for snow melting experiments is built in field and low-temperature heating fuild is used to study snow melting performance. In discussing the behavior of heat and mass transfer and evaluating snow melting performance, it is mainly involved in confirming the surface free-area ratio, temperature variation at feature locations, the snow melting time and surface temperature distribution.
     Despite the entire snowmelt time is longer than expected and higher fluid temperature is a positive way to improve the performance of melting system, it is acceptable for us to use asphalt solar collector for snow melting. Especially, it is feasible that low temperature water about25℃is used for snow melting. During practical design and applications, to utilize low temperature water is of significance to reduce the waste of energy and it is unnecessary to keep a too high fluid temperature. The variations of free-area ratio and temperature at lacation between pipes during snow melting process generally include four stages:the starting period, accelerated period, stable period and post-acceleration. The conductive asphalt concrete can accelerate the heat transmission and improve the snow melting efficiency. The time of snow melting decreases about30%with the thermal conductivity of asphalt concrete.
     Lastly, it is proved that factual solar collecting circumstance can be simulated and temperature distribution test of the asphalt concrete slab is practical through heat-extracting test. The accuracy of the test results under the laboratory situation meets the demand of evaluating sample asphalt concrete's solar energy collecting performance. With the aid of equipment, the climatic conditions of pavement are simulated so that the temperature distribution can be measured. It can be concluded through such results as the whole changing process of the pavement temperature, the temperature vertical distributions and the temperature change rate and temperature gradient that thermal conductive asphalt concrete has a great influence on pavement temperature distribution, which helps to deduce that the optimum depth of pipe-laying is2.5cm-5cm.
     Solar energy collection experiments using asphalt concrete slabs are operated in laboratory and atmospheric environment. The change process of internal temperature of the collector is measured, the effects of various flows on deducing pavement temperature are evaluated and the effects of initial temperature on the temperature changes are assessed during collection. The experiments mentioned above prove that solar energy collecting of asphalt concrete pavement can considerably reduce surface temperature:with the increase in flow, pavement surface temperature witnesses a linearity decrease; the thermal energy gain per unit area and collection efficiency rises gradually as the outleting water temperature drops. Under the given indoor conditions, the collection efficiency reaches37.5%~47.7%in conductive asphalt concrete slabs, while the daily average efficiency of29.7%in conductive asphalt concrete slabs due to the pipe spacing increases to30mm and under the atmospheric radiation condition.
引文
[1]2009-2010年中国能源消费结构深度研究及投资分析报告[R].北京:中国研究报告网,2009.9.
    [2]罗运俊,何梓年.太阳能利用技术[M].北京:化学工业出版社,2005.
    [3]李波.导热沥青混凝土及其性能研究[D].硕士学位论文.武汉:武汉理工大学,2008.5.
    [4]郑瑞澄.民用建筑太阳能热水系统工程技术手册[M].北京:化学工业出版社,2006.
    [5]国家统计局.“十一五”经济社会发展成就系列报告[R].北京:国家统计局,2011.3.
    [6]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004.
    [7]常魁和.公路沥青路面养护新技术[M].北京:人民交通出版社,2001.
    [8]徐世法,季节,罗晓辉,高建立.沥青铺装层病害防治与典型实例[M].北京:人民交通出版社,2005.
    [9]公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度).2010.
    [10]黄勇.路面融雪化冰及太阳辐射吸热研究[D].博士学位论文,长春:吉林大学,2010-12.
    [11]吴少鹏,李波,朱教群等.一种导热型沥青路面太阳能集热系统及其应用.中国,发明专利ZL200610019477.x.[P].2006-6-27.
    [12]BIJSTERVELD W T V, HOUBEN L J M, SCARPAS A, et al. Using Pavement as Solar Collector on Pavement Temperature and Structural Response[J]. Transportation Research Record:Journal of the Transportation Research Board,2001,1778:140-148.
    [13]LOOMANS M, OVERSLOOT H, DE BONDT A H, et al. Design Tool for the Thermal Energy Potential of Asphalt Pavements[C]. Proceedings of Eighth International Building Performance Simulation Association Conference, Eindhoven, Netherlands:the IBPSA 2003 conference,2003:745-752.
    [14]RAJIB B M, CHEN B L, SANKHA B M, et al. Capturing Solar Energy from Asphalt Pavements [C]. Proceedings of International Symposium on Asphalt Pavements and Environment 2008, Zurich, Switzerland:ISAP,2008:161-172.
    [15]吴少鹏,王金山,朱教群等.导热型沥青混凝土屋顶太阳能蓄热系统.中国,发明专利ZL200610019475.0[P].2007-1-17.
    [16]吴少鹏,陈明宇,张园等.混凝土太阳能集热及融雪化冰用试验装置.中国,发明专利ZL 200910062073.2[P].2009-5-15.
    [17]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D].硕士学位论文.辽宁 大连理工大学,2007.
    [18]李国平,韩伟华.当前道路融雪方法及未来发展趋势[J].科技信息,2008,21:55.
    [19]王华军.流体加热道路融雪传热传质特性研究[D].博士学位论文.天津:天津大学,2007.
    [20]范杰,马颖.除雪剂在除雪中的应用及对环境危害的防治重庆交通学院学报[J].2007,26(3):78-81.
    [21]洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性[J].建筑技术,2000,31(02):102-104
    [22]骆虹,罗立斌,张晶.融雪剂对环境的影响及对策[J].中国环境监测,2004,20(1):55-57.
    [23]陈建滨,董红星.环保型道路融雪剂的研制[J].化学工程师,2004,10:65-66.
    [24]崔龙锡.蓄盐类沥青混合料研究[D].硕士学位论文.重庆:重庆交通大学,2010.
    [25]王锋,韩森,张洪伟等.盐化物融雪沥青混合料的应用研究[J].公路,2009,3:176-179.
    [26]张洪伟.橡胶颗粒除冰雪沥青路面的研究[D].硕士学位论文.西安:长安大学,2009.
    [27]张洪伟,陈伦坤,张宝龙等.抗冻结沥青混凝土路面国内外研究现状与进展[J].公路,2011.1:135-139.
    [28]周纯秀.冰雪地区橡胶颗粒沥青混合料应用技术的研究[D].博士学位论文.哈尔滨:哈尔滨工业大学,2006.
    [29]周纯秀,谭忆秋.橡胶颗粒沥青混合料除冰雪性能的影响因素[J].建筑材料学报,2009,12(6):672-675.
    [30]厉永举,高一平等.日本扎幌市道路抗冻结路面铺设方法[J].内蒙古交通与运输,2001,(4).
    [31]Mizuma, H Ozawa, N. Road Heating System Utilizing Natural Energy, a Way It Should by[C]. New Challenges for Winter Road Service. XIth International Winter Road Congress, 2002.
    [32]李炎锋,武海琴,王贯明等.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报,2006,32(3):217-222.
    [33]车广杰.碳纤维发热线用于路面融雪化冰的技术研究[D].硕士学位论文,大连:大连理工大学,2008.12
    [34]Katarzyna Zwarycz. Snow Melting and Heating Systems Based on Geothermal Heat Pumps at Goleniow Airport Poland [R]. Geothermal Training Programme Reports Iceland:The United Nations University,2002.
    [35]Tonya L.Boyd. New Snow Melt Projects in Klamath Falls, OR[J]. Geo-Heat Center Quarterly Bulletin.2003:12-15.
    [36]Oregon Department of Transportation. Grading, structure and paving"a"canal bridges (Klamathfalls) section, Wall Street and Eberlein Avenue, Klamath County[R]. Contract No.12745,2003.
    [37]John W Lund. Pavement Snow Melting[R]. Bulletin of Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR,2000.
    [38]Ami Ragnarsson. Utilization of geothermal energy in Iceland [C]//International Geothermal Conference Session# 10, Reykjavik, Iceland:Sep,2003.
    [39]Walter J Eugster, Jurg Schatzmann. Harnessing Solar Energy for Winter Road Clearing on Heavily Loaded Expressways[C]. Proceeding of Xlth PIARC International Winter Road Congress, Sapporo, Japan, January,2002.
    [40]Kinya Iwamoto, Shigeyuki Nagasaka. Prospects of snow melting systems using underground thermal energy storage in JAPAN[C]. Proceedings of Annual Conference of The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan,2000.
    [41]Koji Morita, Makoto Tago. Operational Characteristics of The Gaia Snow-Melting System in Ninohe Iwate Japan:Development of a Snow-Melting System Which Utilizes Thermal Functions of the Ground [C]. P roceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan:May 28-June 10,2000.
    [42]Yasuhiro Hamada, Makoto Nakamura, Hideki Kubota. Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy[J].Applied Energy,2007,84 (2).
    [43]L David Minsk. Heated Bridge Technologies, No. FHWA-RD-99-158 [R]. USA:Department of Transportation and Federal Highway Administration, July,1999.
    [44]Xiaobing Liu. Development and experimental validation of simulation of hydronic snow melting systems for bridges[D]:Doctor of Philosophy. Oklahoma State University, USA, May,2005.
    [45]CHIASSON A D, SPIDER J D, BEES S J, et al. A Model for Simulating the Performance of a Pavement Heating System as a Supplemental Heat Rejecter With Closed-loop Ground-Source Heat Pump Systems [J]. ASME Journal of Solar Energy Engineering,2000, 122(4):183-191.
    [46]REES S J, SPIDER J D, XIAO X. Transient Analysis of Snow-Melting System Performance [J]. ASHRAE Transactions,2002,108(2):406-423.
    [47]Sean Lynn Hockersmith. Experimental and computational investigation of snow melting on heated horizontal surfaces[D]:Bachelor of Science. Oklahoma State University. Stillwater, Oklahoma.1999.
    [48]Katarzyna Zwarycz. Snow melting and heating systems based on geothermal heat pumps at Goleniow airport, Porland[R].Geothermal Training Programme,2002.
    [49]Geir Eggenl, Geir Vangsnes. Heat Pump for District Cooling and Heating at OSLO Airport Gardermoen [C]//The IEA 8th Heat Pump Conference, Las Vegas, USA:May,2006.
    [50]高一平.利用太阳能的路面融雪系统[J].国外公路,1997,17(4):53-55.
    [51]林密.地下蓄能和太阳能复合系统工程应用分析[D].硕士学位论文.长春:吉林大学,2007.6.
    [52]林密,高青,马纯强等.热流体路面融雪化冰过程基本传热分析[C].中国高校工程热物理学会第十三届学术会议论文集B-08048,中国厦门,2008.5
    [53]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D].硕士学位论文.辽宁:大连理工大学,2007.12.
    [54]WENDEL I L. Paving and Solar Energy System and Method:United States,4132074 [P]. 1979-01-02.
    [55]Sedgwick R.H.D.and Patrick M.A.The use of a ground solar collector for swimming pool heating[J]. In Proceedings ISES Congress, Brighton,1983, Vol.1:632-636.
    [56]Turner R.H.. Concrete slabs as winter solar collectors[C].In Proceedings ASME Solar Energy Conference,1986:9-13.
    [57]Turner R.H.. Concrete slabs as summer solar collectors[C].In Proceedings International Heat Transfer Conference,1987:683-689
    [58]Nayak J.K.,Sukhatme S.P.,Limaye R.Gand Bopshetty S.V.. Performance studies on solar concrete collectors[J].Solar Energy,1989,42(1):45-56.
    [59]Bopshetty S.V.and Nayak J.K.. Performance analysis of a solar concrete collector[J].Energy Convers.Manage,1992,33(11):1007-1016.
    [60]M.A. Al-saad, B.A. Jubran and N.A. Abu-faris. Development and testing of concrete solar collectors [J]. International Journal of Sustainable Energy,1994 16(1):27-40.
    [61]E.BILGEN,M.-A.RICHARD. Horizontal concrete slabs as passive solar collectors [J]. Solar Energy.2002 Vol.72,No.5:405-413.
    [62]Ashley Burnett Abbott. Analysis of Thermal Energy Collection from Precast Concrete Roof Assembilies[D]. Virginia Polytechnic Institute and State University,2004.
    [63]Marwa Hassan,Yvan Beliveau. Performance Testing of an Integrated Solar Collector System[C].Construction Research Congress,2009.
    [64]RAJIB B M, CHEN B L, SANKHA B M, et al. Capturing Solar Energy from Asphalt Pavements[C]. Proceedings of International Symposium on Asphalt Pavements and Environment 2008, Zurich, Switzerland:ISAP,2008:161-172.
    [65]HASEBEL M, KAMIKAWA Y and MEIARASHI S. Thermoelectric Generators using Solar Thermal Energy in Heated Road Pavement [C].25th International Conference on Thermoelectrics, Newyork:IEEE,2006:697-700.
    [66]LOOMANS M, OVERSLOOT H, DE BONDT A H, et al. Design Tool for the Thermal Energy Potential of Asphalt Pavements [C]. Proceedings of Eighth International Building Performance Simulation Association Conference, Eindhoven, Netherlands:the IBPSA 2003 conference,2003:745-752.
    [67]Ooms Netherlands Holding bv. Road Energy System[DB]. Internet:[2011-6-1]. www.ooms.nl.
    [68]BIJSTERVELD W T V, DE-BONDT A H.Structural Aspects of Pavement Heating and Cooling Systems[C]. Proceedings of 3rd International Symposium on Finite Elements.Amsterdam, Netherlands:ISFE,2002:1-15.
    [69]Sullivan C.G., De Bondt A., Rob Jansen, Henk Verweijmeren. Innovation in the production and commercial use of energy extracted from asphalt pavements [C].6th Annual International Conference on Sustainable Aggregates, Asphalt Thechnology and Pavement Engineering, United Kingdom:2007.
    [70]REBECCA Carr, ERIC D, JOHN F, et al. Scotland's Renewable Heat Strategy: Recommendations to Scottish Ministers:Renewable Heat Group (RHG) Report [R]. Edinburgh:the Scottish Government,2008.
    [71]Inter-seasonal Heat Transfer —IHTTM. Asphalt Solar Collector[DB].Internet:[2011-6-1]. www.icax.co.uk.
    [72]MARK H. Renewable Energy Technology to Offset Emissions and Improve Road Safety [J]. Renewable Energy Focus.2005,6(4):7.
    [73]Asphalt collector and solar thermal collectors. Asphalt collectors in Belgium [DB]. [2011-6-1]:www.groundmed.eu/hp_best_practice_database/database/568/.
    [74]Marusz OWCZAREK, Roman DOMANSKI. Application of dynamic solar collector model for evaluation of heat extraction from the road bridge.The 9th International Conference on Thermal Energy Storage[J], Warsaw I Poland, Vol.1,2003.
    [75]Chen, Baoliang, S Bhowmick and Rajib B Mallick. A laboratory study on reduction of heat island effect of pavements[C]. Association of Asphalt Paving Technologists(AAPT),2009 annual meeting, March 15-18,2009.
    [76]刘研.道路固体结构集热蓄能过程分析及其传热研究[D].博士学位论文.长春:吉林大学,2010.12.
    [77]王虹.基于融雪化冰的传导沥青路面优化设计及粘弹性响应分析[D].博士学位论文.武汉:武汉理工大学,2010.5.
    [78]WU S P, LI B, XIAO Y, et al. The Effect of Thermal Conductive Additions on Thermal Properties of Asphalt Mixtures [C]//International Symposium on Asphalt Pavements and Environment 2008, Zurich, Switzerland:ISAP,2008:153-160.
    [79]L.D. Minsk. Electrically conductive asphalt for control of snow and ice accumulation [J]. Highway Research Board,1968,227:57-63.
    [80]P.L. Zaleski, D.J. Derwin, W.H. Flood. U.S. Patent 5707171 (1998). Electrically Conductive Paving Mixture and Paving System.
    [81]Rebecca Lynn Fitzgerald. Novel Application of Carbon Fiber for Hot Mix Asphalt Reinforcement and Carbon-Carbon Pre-fonns [D]. USA:Michigan Technology University, 2000.
    [82]S.P. Wu, L.T. Mo, Z.H. Shui, Z. Chen, Investigation of the conductivity of asphalt concrete containing conductive fillers, Carbon,43 (2005) 1358-1363.
    [83]B.S. Huang, X.W. Chen, X. Shu, Effects of electrically conductive additives on laboratory-measured properties of asphalt mixtures, Journal of Materials in Civil Engineering, 21 (2009)612-617.
    [84]Shaopeng Wu, Liantong Mo., Zhonghe Shui. Piezoresistivity of Graphite Modified Asphalt-based Composites [J]. Key Engineering Materials,2003,249:391-396
    [85]Xiaoming Liu, Shaopeng Wu, Qunshan Ye, et al. Properties evaluation of asphalt-based composites with graphite and mine powders [J]. Construction and Building Materials,2008, 22(3):121-126.
    [86]Shaopeng Wu, Xiaoming Liu, Qunshan Ye, et al. Self-monitoring electrically conductive asphalt-based composite containing carbon fillers [J]. Transactions of Nonferrous Metals Society of China,2006,16 (2):512-516
    [87]张园.多相复合导电沥青混凝土的制备与性能研究[D].硕士学位论文.武汉:武汉理工大学,2010.5.
    [88]张水燕,宋艳茹,张连革等.道路沥青温度疲劳规律研究的概况[J].石油沥青,2005,19(2):55-59.
    [89]田小革,郑健龙,许志鸿等.低加载频率下沥青混合料的疲劳效应[J].中国公路学报;2002,15(1):19-21.
    [90]王金昌,朱向荣.低温下沥青混凝土道路温度应力的新评价[J].公路.2004,4:60-63.
    [91]沈金安.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004.
    [92]杨文锋.沥青混合料抗水损害能力研究[D].硕士学位论文.武汉:武汉理工大学,2005.
    [93]Prithvi S., Kandhal, Carl W.. Water damage to asphalt overlay:Case histories. NCAT Report No.89-1, Feb.1989:20-22.
    [94]吴钊.冻融循环对沥青混合料性能的影响研究[D].硕士学位论文,武汉理工大学,2010,4.
    [95]包秀宁,李燕枫,王哲人;沥青混合料水损害实验方法探究;广州大学学报(自然科学 版);2003,4:157-159.
    [96]罗志刚,周志刚,郑健龙;沥青路面水损害问题研究现状;长沙交通学院学报;2003,9:39-44.
    [97]中华人民共和国交通部.JTJ052-2000.公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000-11.
    [98]CHADBOURN B A, NEWCOMB D E, VOLLER V R, et al. An Asphalt Paving Tool for Adverse Conditions [R]. Minneapolis, Minnesota:Minnesota Department of Transportation, 1998:145-154.
    [99]Kavianipour A, Beck J V. Thermal Property Estimation Utilizing the Laplace Transform with Application to Asphaltic Pavement [J]. International Journal of Heat and Mass Transfer,1967, 20:259-267.
    [100]MRAWIRA D M, LUCA J. Thermal Properties and Transient Temperature Response of Full-Depth Asphalt Pavements, No.1809 [R]. Washington, DC:Transportation Research Record,2004:160-171.
    [101]陈则韶,葛新石,顾毓沁.量热技术和热物性测定[M].合肥:中国科技大学出版社,1990.
    [102]DAVID H T, VAUGHAN R V, EUL-BUM L, et al. A multi-layer Asphalt Pavement Cooling Tool for Temperature Prediction during Construction [J]. International Journal of Pavement Engineering,2001,2(3):169-185.
    [103]JORDAN P G,THOMAS M E. Prediction of Cooling Curves for Hot-Mix Paving Materials by a Computer Program:Transport and Road Research Laboratory Report 729 [R]. Crow Thome, UK:Transport and Road Research Laboratory,1976:125-136.
    [104]TEGELER P A, DEMPE SEY B J, A Method of Predicting Compaction Time for Hot-Mix Bitumenous Concrete[C]//Asphalt Paving Technology 1973, American:Association of Asphalt Paving Technologists Technical Session 42,1973:499-523..
    [105]LUCA J, MRAWIRA D. New Measurement of Thermal Properties of Superpave Asphalt Concrete[J]. Journal of Materials in Civil Engineering,2005,17(1):73-79.
    [106]ASTM C177-2010. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus [S].2010-01-01.
    [107]逯彦秋.钢桥桥面铺装层温度场的研究[D].博士学位论文.哈尔滨:哈尔滨工业大学,2007.
    [108]近藤佳宏.日本土木工程学会论文集[R].上海:同济大学道路与交通研究所,1976.
    [109]秦健,孙立军.国外沥青路面温度预估方法综述[J].中外公路,2005,25(6):19-23.
    [110]Huber G.A. Weather Database for the Superpave Mix Design System[R]. Strategic Highway Research Program, SHRP-A-648A, National Research Council, Washington, DC,1994.
    [111]方福森.路面工程[M].北京:人民交通出版社,1993.
    [112]韩子东.道路结构温度场研究[D]:[硕士学位论文].西安:长安大学,2001.
    [113]Barber E.S. Calculation of maximun pavement temperature from weather reports [R]. Transportation Research Record, Washington, D.C.,1957,168:1-18.
    [114]Christison J.T., K.O. Anderson. The Response of Asphalt Pavement to Low Temperature Climatic Environment[C]. Proceeding of the 3th International Conference on the Structure Design of Asphalt Pavement, London, England, September 11-15,1972.
    [115]Hermansson Ake. Simulation Model for Calculating Pavement Temperature Including Maximum Temperature[J]. Transportation Research Record,2000,1699:134-141.
    [116]Yavuzturk C., Ksaibati K. and Chiasson A.D. Assessment of Temperature Fluctuations in Asphalt Pavements Due to Thermal Environmental Conditions Using a Two Dimenstional, Transient Finite-Difference Approach[J]. Journal of Materials in Civil Engineering,2005,17: 465-475.
    [117]Minhoto M.J.C., Pais J.C.and Paulo A.A. Predicting Asphalt Pavement Temperature with a Three-Dimensional Finite Element Method[R]. Transportation Research Record, Washington, D.C.,2005,1919:96-110.
    [118]吴赣昌.半刚性路面温度应力分析[M].北京:科学出版社,1995.
    [119]贾璐.沥青路面高温温度场数值分析和实验研究[D]:[硕士学位论文].长沙:湖南大学,2004.
    [120]张兴军,白成亮.沥青路面温度应力有限元分析[J].华东公路,2006,5:83-86.
    [121]罗桑,李勇,舒富民,陈磊磊.沥青路面结构非线性瞬态温度场数值模拟[J].交通与计算机,2008,26(1):92-95.
    [122]罗桑,钱振东,白琦峰.沥青路面结构非线性瞬态温度场模型研究[J].交通运输工程与信息学报,2009,7(3):33-39.
    [123]中华人民共和国交通部JTG E42-2005公路工程集料试验规程[S].北京:人民交通出版社,2004-11.
    [124]中华人民共和国交通部JTJ F40-2004公路沥青路面施工技术规范[S].北京:人民交通出版社,2004-9.
    [125]刘英俊,刘伯元.塑料填充改性[M].北京:中国轻工业出版,1998.
    [126]Perviz Ahmedzade, Burak Sengoz. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete [J]. Journal of Hazardous Materials,2009,165:300-305.
    [127]德尔蒙特(美).碳纤维和石墨纤维复合材料技术[M].北京:科学出版社,1987.
    [128]薛永杰.钢渣沥青马蹄脂混合料制备与性能研究[D].硕士学位论文.湖北:武汉理工大学,2005-5.
    [129]中华人民共和国国家标准.GB 18242-2008.弹性体改性沥青防水卷材[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会:2008.9.
    [130]高性能沥青路面-Superpave技术实用手册,江苏省交通科学研究院,江苏:南京,2002-5.
    [131]林绣闲.论Superpave组成配比的特色[J].华东公路,2002,134:3-7
    [132]磨炼同.导电沥青混凝土的制备与研究[D].武汉:武汉理工大学,2004.6.
    [133]中华人民共和国交通部JTG/T F40-02-2005,微表处和稀浆封层技术指南[S].北京:人民交通出版社,2005.
    [134]Lehmann H.L., Adam Verdi. Use of expanded clay aggregate in bituminous construction[J]. Highway Research Board Proceeding,1959,38:398-407.
    [135]Bob M., Gallaway P.E.. Expanded shale, clay and slate reference manual for asphalt pavement systems [M]. Salt Lake City:Expanded Shale, Clay, and Slate Institute,1998.
    [136]张登良.沥青路面工程手册[M].北京:人民交通出版社,2003.
    [137]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [138]吴少鹏.西部交通科技开发项目:层状硅酸盐改性沥青及其混合料路用性能研究与应用报告[R].武汉:武汉理工大学,2009.
    [139]韩君.耐紫外老化沥青的制备与性能研究[D].博士学位论文.武汉:武汉理工大学,2011.5.
    [140]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000.
    [141]American Society for Testing and Materials. Standard viscosity-temperature chart for asphalts[S]. ASTM D2493.
    [142]Saeed Sadeghpour Galooyak, Bahram Dabir, Ali Ehsan Nazarbeygi, et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite Composites[J]. Construction and Building Materials,2010,24:300-307.
    [143]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].南京:东南大学出版社,2003.
    [144]Bahia H.U. et al. Characterization of Modified Asphalt Binders in Superpave Mix Design[R]. Washington DC:National Cooperative Highway Research Program Report,2001.
    [145]Airey G.D. Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens[J]. Fuel,2003,82(14):1709-1719.
    [146]刘立新.沥青混合料粘弹性力学及材料性原理[M].北京:人民交通出版社,2006.
    [147]American Society for Testing and Materials. Standard test method for viscosity determination of asphalts at elevated temperatures using a rotational viscometer[S]. ASTM D2493,1993.
    [148]Shenoy A. Model-fitting the Master Curve of the Dynamic Shear Rheometer Data to Extract a Rut-controlling Term for Asphalt Pavements [J]. Journal of Testing and Evaluation,2002, 30(2):95-112.
    [149]张肖宁.沥青及沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006,1.
    [150]Bahia H.U., Anderson D. A. The SHRP Binder Rheological Parameters:Why are They Required and How do They Compare to Conventional Properties? [R]. Transportation Research Record,1995,1488:32-39.
    [151]王旭东.沥青路面材料动力特性与动态参数[M].北京:人民交通出版社,2002.
    [152]杨世铭.传热学基础[M].北京:清华大学出版社,1981.
    [153]F P Incropera, D P Dewitt, T L Bergman, A S Lavine. Fundamentals of Heat and Mass Transfer:Sixth Edition in Chinese [M]. Beijing:Chemistry Industry Press,2007.
    [154]中华人民共和国国家标准.GB/T 2423.24-1995电工电子产品环境试验第2部分:试验方法试验Sa:模拟地面上的太阳辐射[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会:1996-8.
    [155]Jordan R.E., J.P.Hardy, F.E.Perron, D.J.Fisk. Air permeability and capillary rise as measures of the pore structure in snow:an experimental and theoretical study [J]. Hydrological Processes,1999,17:1733-1753.
    [156]张朝晖ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005.
    [157]ANSYS Users Manuals for ANSYS 10.0, Analysis Guides.
    [158]Yen,Y.Review of intrinsic thermophysical properties of snow,ice and sea ice[J]. Northern Engineer,1991.23(1):187-218.
    [159]赵兰萍,徐烈,李兆慈.固体界面间接触导热的机理和应用研究[J].低温工程,2000,116(4):29-34.
    [160]Thermal conductivity[DB]. Internet:[2011-6-1]. Information on: http://en.wikipedia.org/wiki/Thermal_conductivity.
    [161]严作人.层状路面体系的温度场分析[J].同济大学学报,1984,13(6):210-214.
    [162]贾璐,孙立军,黄立葵等.沥青路面温度场数值预估模型[J].同济大学学报(自然科学版),2007,35(8):1039-1043.
    [163]俞建荣,陈荣生,金志强.用沥青砼罩面的碾压砼路面板温度应力分析[J].东南大学学报,1996.26(4):101-105.
    [164]E.R.G埃克特等.传热与传质分析[M].北京:科学出版社,1985.
    [165]Colbeck S., Akitaya E.,Armstrong R.,et al. International classification for seasonal snow on the ground[S].Int.Comm. Snow and Ice(IAHS),World Data Center A for Glaciology,U.of Colorado,Boulder,CO.1990.
    [166]Adlam.T N.snow melting[M].New York:The Industrial Press,1950.
    [167]Abels H.Observations on the daily course of snow temperatures and the determination of the thermalconductivity of snow as a function of its density[J]. Report.Meteorol.,1982.16:1-53.
    [168]Matthew Sturm.Snow and climate[C].Annual meeting of OLCGFairbanks, Nov.2003. Report.Meteorol.,1982.16:1-53.
    [169]Thomas D., G. S. Dieckmann. Sea ice-an introduction to itsphysics, biology, chemistry and geology[M]. Blackwell Science, London,2003. Report.Meteorol.,1982.16:1-53.
    [170]Warren S G. Optical properties of snow[J]. Reviews of Geophysics and Space Physics,1982, 20(2):67-89.
    [171]A.Roesch, H.Gilgen, M.Wild, A.Ohmura. Assessment of GCM simulated snow albedo using direct observations[J].Journal Climate Dynamics,1999,15(6):405-418.
    [172]P.I.Copper, E.A.Christie, R.V.Dunkle. A Model of Measuring Sky Temperature [J]. Solar Energy,1981,26(1):153-159.
    [173]Bliss R.W. Atmospheric radiation near the surface the ground [J].Solar Energy, 1961.5(3):103-120.
    [174]Swinbank W.C.Long-wave radiation from clear skies [J]. Quarterly Journal of Royal Meterological,1963,89:339-348.
    [175]Ramsey J., H.Chiang.A study of the incoming long-wave atmospheric radiation from a clear sky[J]. Journal of Applied Meteorology,1982.21:566-578.
    [176]V.Melchior.New formulate for the equivalent night sky emissivity [J]. Solar energy,1982, 28:489-503.
    [177]刘森元,黄远峰.天空有效温度的探讨[J].太阳能学报,1983,4(1):63-68.
    [178]Daguenet M.Les Schoirs solaries[M]. Unesco:Theorie et Pratique,1985.
    [179]Roulet and Vandaele. Airflow pattern within buildings measurement techniques[R]. The Air Infiltration and Ventilation Center Technical Note,1991,34.
    [180]Aubinet. Long wave sky radiation parameterization[J].Solar energy,1994,53(2):147-154.
    [181]P. Berdahl, M. Martin. Emissivity of clear skies [J]. Solar Energy,1984,32(5):663-664.
    [182]Dhirenda K. P., Paclen J., Lee R. B., et al. Effects of Atmospheric Emissivity on Clear Sky Temperature [J]. Atmospheric Environment,1995,29(16):2201.
    [183]Ramsey J, M J Hewett, T H Kuehn, S D Petersen. Updated Design Guidelines for Snow Melting Systems[J]. ASHRAE Transactions,1999,105(1):1055-1065.
    [184]McAdams W.H.Heat Transmission 3rd Ed[M].McGraw Hill,1954.
    [185]N.S.Sturrock.Localised boundary layer heat transfer from external building surfaces[D]. University of Liverpool,1971.
    [186]CIBS.CIBS Guide Book A.Section A3[M].London.1973.
    [187]K.Nicol.The energy balance of an exterior windows surface[J]. Building and Environment. 1977.12:215-219.
    [188]Kimura K.Scientific basis of air conditioning[M]. London:Applied Science Publishers Ltd, 1977.
    [189]Clarke J A. Energy simulation in building design[D]. University of Strathclyde. Glasgow, Scotland:Adam Hilger Ltd,1985.
    [190]S.Sharples.Full-scale measurements of convective energy losses from exterior building surfaces [J]. Building Environment,1984,19:31-38.
    [191]Yazdania M, J Klems.Measurement of the exterior convective film coefficient for windows in low-rise buildings[J].ASHRAE Transactions,1994.100(1):1087-1096.
    [192]Loveday D.L., Taki A.H. Convective heat transfer coefficients at a plane surface on a full-scale building facade[J]. Int.J.Heat Mass.Transfer,1996,39:1729-1742.
    [193]Clear R.D., Gartland L., Winkelmann EC. An empirical correlation for the outside convective air-film coefficient for horizontal roofs[J], Energy and Buildings,2003.35: 797-811.
    [194]Sartori. Convection coefficient equations for forced air flow over flat surfaces[J]. Solar Energy,2006.80:1063-1071.
    [195]J Klems. Measurement of fenestration net energy performance:condiseration leading to the development of Mobile Window Thermal Test(MOWITT)facility[C]//Proceedings of ASME Winter Meeting,New Orleans,Lawrence Berkeley Laboratory Report,1984.
    [196]Winterton, R. H. S., Int. J. Heat Mass Transfer,41,809,1998.
    [197]Silas E., Gustafsson et al. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity of Solid Materials [J]. Review of Scientific Instruments,1990,62(3): 797-804.
    [198]Marita L., Allan, Stephen P. Kavanaugh. Thermal Conductivity of Cementitious Grouts and Impact on Heat Exchanger Length Design for Ground Source Heat Pumps [J]. HVAC&R Research,1999,5(2):87-98.
    [199]Hot Disk AB. Hod Disk热常数分析仪操作指导手册[DB]. Internet:[2011-7-28]. www.k-analys.se.
    [200]T. Log et al. Transient Plane Source (TPS) Technique for Measuring Thermal Transport Properties of Building Materials [J]. Fire and Materials,1995,19(1):43-49.
    [201]郭剑锋.炭黑填充胶的导热机理及逾渗效应[D].硕士学位论文.青岛:青岛科技大学,2008.4.
    [202]李侃社,王琪.聚合物复合材料导热性能的研究[J].高分子材料科学与工程,2002, 18(4):10-15.
    [203]Maxwell, J. C. A Treatise on Electricity and Magnetism. Clarendon Press, Oxford, UK, second edition,1881.
    [204]Russell H. W.. Principles of Heat flow in porous insulators. Journal of American Ceremic Society,1935,18:1-5.
    [205]Agari Y, Uno T. Estimation on thermal conductivities of pilledpolymer[J]. Journal of Applied Polymer Science,1986,32(5):705-708.
    [206]Bruggeman, D. A. G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Annalen der Physik, Leipzig,1935,24,636-679.
    [207]H.Fricke, Phys.Rev.1924,24:575
    [208]R.L.Hamilton, etc.Ind. Eng. Chem. Fund.,1962,1:187
    [209]Cheng S. C., Vachon R. I.. Thermal conductivity of two and three-phase solid heterogeneous mixtures[J]. Int. J. HeatMass. Transfer,1969,12:249.
    [210]Lewis T, NielsenL.Dynamic mechanic properties of particulate-filled composites[J].Appl. Polym.Sci.1970,14:1-449.
    [211]Y.agari, A.Ueda, S.Nagai. Thermal Conductivity of Composites in Several Types of Dispersion Systems[J]. Journal of Applied Polymer Science.1991(42):1665-1669.
    [212]J.Z.Liang, GS.Liu. A new heat transfer model of inorganic particulate-filled polymer composites [J]. Journal of Materials Science.2009(44):4715-4720.
    [213]牛铭,杨利文,陈昊.一种改进的单纯形算法[J].河海大学常州分校学报,2007,21(1):15-18.
    [214]Universal Systems, Inc. X-ray computed tomography (CT) [DB]. Internet:[2011-8-12]. http://universal-systems.com/index.php.
    [215]Jason Bausano, R. Christopher Williams, Transitioning from AASHTO T283 to the Simple Performance Test Using Moisture Conditioning [J], Journal Of Materials In Civil Engineering, 2009.
    [216]吉林省交通厅.公路工程抗冻设计与施工技术指南[S].北京:北京大学出版社,2006.5.
    [217]刘小明.导电沥青混凝土的机敏特性研究[D].博士学位论文,武汉理工大学,2007.
    [218]Q. Zheng, Y. Song. Reversible nonlinear conduction behavior for high-density polyethylene graphite powder composites near the percolation threshold[J]. Journal of Polymer Science: Part B, Polymer Physics,2001,39:2833-2842.
    [219]中华人民共和国国家标准.GB/T 2424.14—1995《电工电子产品环境试验第2部分: 试验方法太阳辐射试验导则》[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会:1995.
    [220]军用设备环境试验方法太阳辐射试验:GJB150.7-86[S].国防科学技术工业委员会,1987.
    [221]中华人民共和国国家标准.GB/T 4271-2007.太阳能集热器热性能试验方法[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会:2008-6.
    [222]中华人民共和国国家标准.GB/T 6424-2007.平板型太阳能集热器[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会:2008-6.
    [223]中华人民共和国国家标准.GB 4797.4-1989电工电子产品自然环境条件太阳辐射与温度[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会:1990.
    [224]Soalr Energy-Specification and classification of instrument for measuring hemispherical solar and direct solar radiation:9060[S]. International Organization for Standardization, 1990-11.
    [225]British-Adopted European Standard. Thermal solar systems and components - Solar collectors - General requirements:BS EN 12975-1-2006[S]. British Standards Institution: 2006.8.
    [226]湖北省气象与生态自动监测网.武汉24小时气象数据[DB]. [2010-1-7]: http://zdz.hbqx.gov.cn/zhindex.php.
    [227]X.B. Liu, S. J. Rees, J.D. Spitler, Modeling snow melting on heated pavement surface: experimental validation, Applied Thermal Engineering 27(2007) 1125-1131.
    [228]刘光耀.数字图像采集与处理[M].北京:电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700