基于模糊集合理论的颗粒目标分割和识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于图像处理的颗粒目标自动分割和识别是工农业生产中实现自动化检测的重要方法,利用模糊集合理论可以有效地解决目标分割和识别中的模糊问题,提高分割识别精度。本文针对模糊集合理论在颗粒目标分割和识别中的关键问题进行了深入研究,主要工作如下:
     1.针对模糊划分熵多阈值分割算法在确定最优阈值时易陷入局部最优解的问题进行分析,认为这是由于常用的遗传算法对模糊划分熵函数寻优时,易早熟的现象导致的。针对该问题,采用染色体编码、遗传参数设置、进化方向等方面改进后的遗传算法进行寻优,应用了一种改进遗传算法的模糊划分熵多阈值分割算法对颗粒目标图像进行分割。实验结果验证了该算法在颗粒目标图像分割上的可行性和优越性。
     2.针对模糊划分熵多阈值分割算法对目标像素比例大于10%的颗粒目标图像分割时,存在的噪声大、空间相关性差、运行时间随阈值数量增加而线性增长的问题,提出了一种递推的模糊划分熵多阈值颗粒分割算法。首先将图像总模糊熵公式中不同变量的组合计算转化为递推过程;然后保存部分不重复的递推结果用于后续计算;最后使用种群寻优算法快速确定最优阈值,并采用基于区域的图割算法对分割结果实施优化。实验部分首先对不同的种群寻优算法进行性能评估;然后将递推算法与不同的种群寻优算法相结搜索全局最优阈值,以验证递推算法的有效性;最后将此算法与常用的多阈值分割算法相对比,以证明提出算法的优越性。通过多幅骨料颗粒目标图像分割测试表明,运行时间随阈值数量的增加基本保持稳定,相比于无递推策略的模糊划分熵多阈值分割算法,运行时间提高约10倍-100倍,且较好地去除了噪声,强化了空间相关性,提高了分割精度。
     3.针对模糊划分熵多阈值分割算法对目标像素比例小于10%的模糊小颗粒目标图像分割时,存在的噪声大,背景干扰强,分割精度低的问题,提出了一种自适应模糊划分熵多阈值颗粒分割算法。首先采用迭代验证法确定隶属度函数窗宽;然后使用自动的图像划分算法将图像分为若干子图;最后采用基于人工蜂群寻优的递推模糊划分熵多阈值分割算法对各子图进行分割,并使用基于像素的迭代图割算法对分割后的结果实施优化。通过多幅人工仿真图像和真实FISH基因图像分割测试表明,常用的自适应分割算法和其它寻优策略的模糊划分熵多阈值分割算法的错误划分概率均大于8.00×10-2,而本文算法的错误划分概率小于7.00×10-2。
     4.针对不同颗粒目标的特征量具有模糊界限的问题,提出了基于模糊综合评判的目标识别方法。首先对分割优化后的结果进行形态学图像预处理;然后选择适当的特征量,建立相应的隶属度函数;最后确定各特征量的权重值,建立模糊关系矩阵,进行模糊综合评判。通过多幅骨料颗粒和FISH基因颗粒目标图像测试表明,本文算法的识别正确率大于95%。
     5.构建了一个较为完整的颗粒目标自动分割和识别系统。在系统的构建过程中,为了对不同种类的颗粒目标图像实现模糊划分熵分割算法的自动选择,采用模糊神经网络的方法来解决,即将颗粒目标图像在不同模糊划分数下获得的模糊熵值作为输入,各因素的模糊综合评判矩阵作为神经元,确定的模糊划分熵方法作为输出,经过大量样本的反复学习,最终获得基于模糊神经网络的自动分割方法选择模型。通过多幅颗粒目标图像的运行实例,验证了系统的有效性。
The automatic particle segmentation and recognition is widely used in industry andagriculture. It is an important method of automatic detection. In this work, fuzzy set theory isapplied and well solves the fuzzy problem of particle segmentation and recognition. It wellhelps to improve the accuracy of segmentation and recognition. Several problems of fuzzy settheory and its application in particle segmentation and recognition are studied intensely. Themain works are arranged as follow:
     1. The fuzzy partition entropy has been widely adopted as a global optimizationtechnique for finding the optimized thresholds for multilevel image segmentation. However, itusually involves the local optimum thresholds. The main reason is the applied geneticalgorithm easily lead to the premature phenomena. In order to solve this problem, theimproved GA has been adapted which improves encoding mechanism, genetic operators andevolutionary direction of conventional genetic algorithm. Many experiments are carried outon particle images to demonstrate the feasibility and efficiency of the improved scheme.
     2. The fuzzy partition entropy segmentation involves expensive computation as thenumber of thresholds increases and often yields noisy segmentation results since spatialcoherence is not enforced. In this paper, an iterative calculation scheme is presented forreducing redundant computations in entropy evaluation. The efficiency of threshold selectionis further improved through utilizing population optimization algorithm. Consequently,instead of performing threshold segmentation for each pixel independently, the presentedalgorithm over-segments the input image into small regions and uses the probabilities offuzzy events to define the costs of different label assignments for each region. The finalsegmentation results are computed using graph cut, which produces smooth segmentationresults. Experiment results indicate that the presented method is not only superior to the samefuzzy entropy methods with different optimizing strategies in terms of processing time, butalso outperforms widely-used multi-threshold segmentation methods in terms of thesegmentation quality of aggregate images. Furthermore, the iterative scheme can dramaticallyreduce the runtime and keep it stable as the number of required thresholds increases. Dependson the optimization methods and the number of thresholds, the speedup varies from10to100times.
     3. To solve the problem of noise and poor precision about fuzzy partition entropy approach for segmenting the small particle objects (the propotion of object pix number ismore than10%), a new adaptive fuzzy partition entropy algorithm for the multi-thresholdsegmentation is proposed. Firstly, a threshold zone is obtained automatically by the iterativevalidation algorithm. After that, the particle images are divided into several differentsub-images by the automatic block algorithm. Finally, the fuzzy partition entropy based onthe population optimized algorithm is adopted to find out the best thresholds for eachsub-image. And the segmentation results are computed using graph cut for smoothing thesegmentation results. After being evaluated by various types of real FISH images andsimulated images, the misclassification error of other common algorithms are above8.00×10-2,while the one of proposed algorithm is less than7.00×10-2.
     4. To solve the fuzzy boundary problem of different characteristic parameters, a fuzzycomprehensive evaluation algorithm for particle recognition is presented. Firstly, themorphological image preprocessing method has been adopted to eliminate the adhesionparticles. After that, the characteristic parameters are extracted from the candidate particleobjects, and corresponding membership functions are built up. Finally, the fuzzycomprehensive evaluation has been applied to identify the particle objects in combinationwith characteristic weights and fuzzy relation matrix. The experiment results show that theproposed method produces more accurate results than the results acquired by the commonrecognition methods and the accuracy is up to95%.
     5. A completed particle segmentation and recognition system is designed. The fuzzyneural network is adopted to determine the suited fuzzy partition entropy method for differentparticle images. In order to implement the function of automatic decision, the fuzzy entropyvalues which under different fuzzy partition numbers are set as the input of the neural network.The fuzzy comprehensive evaluation matrix is used as nerve cell. And the determined fuzzypartition entropy method is designed as output. After learning a large number of samples, themodel of automatic algorithm selection can be acquired. Experiment results show that thesystem can work effectively in particle segmentation and recognition.
引文
[1] Borgefors G. On digital distance transforms in three dimensions[J]. Computer Visionand Image Understanding,1996.64(3):368-376
    [2] Corkidi G., Diaz U. R., Folch M. J., et al. COVASIAM: an image analysis method thatallows detection of confluent microbial colonies and colonies of various sizes forautomated counting[J]. Applied and environmental microbiology,1998.64(4):1400-1404
    [3]凌云,王一鸣,孙明,等.基于机器视觉的大米外观品质检测装置[J].农业机械学报,2005.36(9):89-92
    [4]孙明,王一鸣,凌云,等.基于色调的黄粒米检测方法[J].农业机械学报,2005.36(8):78-81
    [5]杨晓敏,罗立民.人体白细胞自动分类方法与系统实现[J].计算机学报,1994.17(2):130-136
    [6]张斌,赵卫东,马世雄,等.人类显带染色体的图象分析与识别系统[J].中国图象图形学报,1996.1(5):428-432
    [7]周莹莉,曾立波,刘均堂,等.基于图像处理的菌落自动计数方法及其实现[J].数据采集与处理,2003.18(4):460-464
    [8]沙爱民,王超凡,孙朝云.一种基于图像的沥青混合料矿料级配检测方法[J].长安大学学报:自然科学版,2010.30(5):1-5
    [9] Vincent L., Soille P. Watersheds in digital spaces: an efficient algorithm based onimmersion simulations[J]. IEEE transactions on pattern analysis and machineintelligence,1991.13(6):583-598
    [10] Shafarenko L., Petrou M., Kittler J. Automatic watershed segmentation of randomlytextured color images[J]. Image Processing, IEEE Transactions on,1997.6(11):1530-1544
    [11] Shiji A., Hamada N. Color image segmentation method using watershed algorithm andcontour information[A]. IEEE International Conference on Image Processing [C].IEEE,1999:305-309
    [12] Lezoray O., Cardot H. Cooperation of color pixel classification schemes and colorwatershed: a study for microscopic images[J]. IEEE Transactions on Image Processing,2002.11(7):783-789
    [13] Ji S., Park H. W. Image segmentation of color image based on region coherency[A].IEEE International Conference on Image Processing (ICIP)[C]. IEEE,1998:80-83
    [14] Saarinen K. Color image segmentation by a watershed algorithm and region adjacencygraph processing[A]. IEEE international Conference on Image processing (ICIP)[C].IEEE,1994:1021-1025
    [15] Barni M., Rossi S.,Mecocci A. A fuzzy expert system for low level imagesegmentation[A]. IEEE international Conference on Signal Processing (EUSIPCO)[C].European: IEEE,1996:1725-1728
    [16] Liu J., Yang Y. H. Multiresolution color image segmentation[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1994.16(7):689-700
    [17] Haralick R. M., Shapiro L. G. Image segmentation techniques[J]. Computer vision,graphics, and image processing,1985.29(1):100-132
    [18] Kanai Y. Image segmentation using intensity and color information[A]. InternationalConference on Visual Communications and Image Processing[C]. IEEE,1998:709-720
    [19]杨家红,刘杰,钟坚成,等.结合分水岭与自动种子区域生长的彩色图像分割算法[J].中国图象图形学报,2010.15(1):63-68
    [20]牟涛,陈文斌,沈一帆.一种融合区域生长与图论的图像分割方法[J].计算机工程与应用,2005.41(19):32-34
    [21] Cramariuc B., Gabbouj M., Astola J. Clustering based region growing algorithm forcolor image segmentation[A].13th International Conference on Digital SignalProcessing Proceedings (DSP)[C]. IEEE,1997:857-860
    [22] Deng Y., Manjunath B. Unsupervised segmentation of color-texture regions in imagesand video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001.23(8):800-810
    [23] Wang Y., Yang J., Peng N. Unsupervised color–texture segmentation based on softcriterion with adaptive mean-shift clustering[J]. Pattern Recognition Letters,2006.27(5):386-392
    [24] Yu S. Y., Zhang Y., Wang Y. G., et al. Unsupervised color-texture imagesegmentation[J]. Journal of Shanghai Jiaotong University (Science),2008.13:71-75
    [25]段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005.31(3):415-419
    [26] Nevatia R. A color edge detector and its use in scene segmentation[J]. IEEETransactions on systems, Man, and Cybernetics,1977.7(11):820-826
    [27] Shiozaki A. Edge extraction using entropy operator[J]. Computer vision, graphics, andimage processing,1986.36(1):1-9
    [28] Kass M., Witkin A., Terzopoulos D. Snakes: Active contour models[J]. Internationaljournal of computer vision,1988.1(4):321-331
    [29] Chiou G. I., Hwang J. N. A neural network-based stochastic active contour model(NNS-SNAKE) for contour finding of distinct features[J]. IEEE Transactions onImage Processing,1995.4(10):1407-1416
    [30] Gunn S. R., Nixon M. S. A robust snake implementation; a dual active contour[J].PatternAnalysis and Machine Intelligence, IEEE Transactions on,1997.19(1):63-68
    [31] Williams D. J., Shah M. A fast algorithm for active contours and curvatureestimation[J]. CVGIP: Image understanding,1992.55(1):14-26
    [32] Lam K. M., Yan H. Fast greedy algorithm for active contours[J]. Electronics Letters,1994.30(1):21-23
    [33]李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000.11(6):751-757
    [34] Xu C., Prince J. L. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions onImage Processing,1998.7(3):359-369
    [35] Yang L., Meer P., Foran D. J. Unsupervised segmentation based on robust estimationand color active contour models[J]. IEEE Transactions on Information Technology inBiomedicine,2005.9(3):475-486
    [36] Dumitras A.,Venetsanopoulos A. N. Angular map-driven snakes with application toobject shape description in color images[J]. IEEE Transactions on Image Processing,2001.10(12):1851-1859
    [37]徐丽燕,刘复昌,曹国,等.基于边缘流与区域归并的彩色图像分割方法[J].光电子.激光,2011.22(10):1582-1587
    [38]刘新,潘振宽,李新照,等.医学图像分割技术中变形模型方法的研究综述[J].计算机应用研究,2006.23(8):14-18
    [39]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002.24(6):91-94
    [40] Otsu N. A threshold selection method from gray-level histograms[J]. Automatica,1975.11(285-296):23-27
    [41]刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993.19(1):101-105
    [42] Ohlander R., Price K., Reddy D. R. Picture segmentation using a recursive regionsplitting method[J]. Computer Graphics and Image Processing,1978.8(3):313-333
    [43]范九伦,雷博.二维直线型最小误差阈值分割法[J].电子与信息学报,2009.31(8):1801-1806
    [44] Guo G., Yu S., Ma S. Unsupervised segmentation of color images[A]. InternationalConference on Image Processing (ICIP)[C]. IEEE,1998:299-302
    [45]杜奇,向健勇,袁胜春.一种改进的最大类间方差法[J].红外技术,2003.25(5):33-36
    [46]吴佳鹏,二维条码识读技术及其应用研究[D].天津:天津大学,2010
    [47]李牧,闫继宏,朱延河,等.一种改进的大津法在机器视觉中的应用[J].吉林大学学报:工学版,2008.38(4):913-918
    [48] Kapur J., Sahoo P. K., Wong A. A new method for gray-level picture thresholdingusing the entropy of the histogram[J]. Computer vision, graphics, and imageprocessing,1985.29(3):273-285
    [49] Carron T., Lambert P. Fuzzy color edge extraction by inference rules quantitativestudy and evaluation of performances[A]. International Conference on ImageProcessing[C]. IEEE,1995:181-184
    [50] Wang W. J. New similarity measures on fuzzy sets and on elements[J]. Fuzzy sets andsystems,1997.85(3):305-309
    [51] Chien B. C., Cheng M. C. A color image segmentation approach based on fuzzysimilarity measure[A]. IEEE International Conference on Fuzzy Systems[C].IEEE,2002:449-454
    [52] Nayar S. K., Ikeuchi K., Kanade T. Surface reflection: physical and geometricalperspectives[J], IEEE Transactions on Pattern Analysis and Machine1991,13(7):611-634
    [53] Martin D., Fowlkes C., Tal D., et al. A database of human segmented natural imagesand its application to evaluating segmentation algorithms and measuring ecologicalstatistics[A]. IEEE International Conference on Computer Vision(ICCV)[C].IEEE,2001:416-423
    [54] Tamura H., Mori S., Yamawaki T. Textural features corresponding to visualperception[J]. Systems, Man and Cybernetics, IEEE Transactions on,1978.8(6):460-473
    [55]王林桂.多频谱技术的发展和应用[J].舰船电子对抗,2003.5:5-10
    [56] Freund Y., Schapire R. E. A desicion-theoretic generalization of on-line learning andan application to boosting[A]. International Conference on Computational learningtheory[C]. Springer,1995:23-37
    [57] Bauer E., Kohavi R. An empirical comparison of voting classification algorithms:Bagging, boosting, and variants[J]. Machine learning,1999.36(1-2):105-139
    [58] Schapire R. E., Singer Y. BoosTexter: A boosting-based system for textcategorization[J]. Machine learning,2000.39(2-3):135-168
    [59]沈清,汤霖.模式识别[M].湖南:国防科技大学出版社,1991:50-65
    [60] Li L. J., Fei F. L. Optimol: automatic online picture collection via incremental modellearning[J]. International journal of computer vision,2010.88(2):147-168
    [61] Cohen I., Sebe N., Gozman F., et al. Learning Bayesian network classifiers for facialexpression recognition both labeled and unlabeled data[A]. IEEE Computer SocietyConference on Computer Vision and Pattern Recognition[C]. IEEE,2003:595-601
    [62] Yao J., Zhang Z. Semi-supervised learning based object detection in aerial imagery[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,(CVPR)[C]. IEEE,2005:1011-1016
    [63]周颜军,王双成,王辉.基于贝叶斯网络的分类器研究[J].东北师大学报(自然科学版),2003.35(2):21-27
    [64]张朝晖,陆玉昌,张钹.利用神经网络发现分类规则[J].计算机学报,1999.22(1):108-112
    [65]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000.26(1):32-42
    [66] Atanassov K. T. More on intuitionistic fuzzy sets[J]. Fuzzy sets and systems,1989.33(1):37-45
    [67] Zadeh L. A. Fuzzy sets[J]. Information and control,1965.8(3):338-353
    [68]韩建栋,向健勇,尹超.一种基于小波的图像模糊熵阈值分割算法[J].红外技术,2004.26(3):29-32
    [69] Pal N. R., Pal S. K. Higher order fuzzy entropy and hybrid entropy of a set[J].Information Sciences,1992.61(3):211-231
    [70] Cheng H. D., Chen C., Chiu H., et al. Fuzzy homogeneity approach to multilevelthresholding[J]. IEEE Transactions on Image Processing,1998.7(7):1084-1086
    [71] Cheng H., Chen Y., Jiang X. Thresholding using two-dimensional histogram and fuzzyentropy principle[J]. IEEE Transactions on Image Processing,2000.9(4):732-735
    [72] Huang L. K., Wang M. J. Image thresholding by minimizing the measures offuzziness[J]. pattern recognition,1995.28(1):41-51
    [73] Cuevas E., Zaldivar D., Pérez-Cisneros M. A novel multi-threshold segmentationapproach based on differential evolution optimization[J]. Expert Systems withApplications,2010.37(7):5265-5271
    [74]袁红刚,孙卫东.基于多阈值分类与逆向求证的红外序列图像弱小目标检测方法[J].中国图象图形学报,2009.14(8):1583-1589
    [75] Tao W. B., Tian J. W., Liu J. Image segmentation by three-level thresholding based onmaximum fuzzy entropy and genetic algorithm[J]. Pattern Recognition Letters,2003.24(16):3069-3078
    [76] Sanyal N., Chatterjee A., Munshi S. An adaptive bacterial foraging algorithm for fuzzyentropy based image segmentation[J]. Expert Systems with Applications,2011.38(12):15489-15498
    [77] Machado J., Costa A. C., Quelhas M. D. Analysis and visualization of chromosomeinformation[J]. Gene,2012.491(1):81-87
    [78] Avci E., Avci D. An expert system based on fuzzy entropy for automatic thresholdselection in image processing[J]. Expert Systems with Applications,2009.36(2):3077-3085
    [79]叶少珍,张钹,吴鸣锐,等.一种基于神经网络覆盖构造法的模糊分类器[J].软件学报,2003.14(3):429-434
    [80] Cheng H., Chen J. R., Li J. Threshold selection based on fuzzy c-partition entropyapproach[J]. pattern recognition,1998.31(7):857-870
    [81] Cheng H., Chen Y. H., Sun Y. A novel fuzzy entropy approach to image enhancementand thresholding[J]. Signal Processing,1999.75(3):277-301
    [82] Goldberg D. E., Holland J. H. Genetic algorithms and machine learning[J]. Machinelearning,1988.3(2):95-99
    [83] Park J. B., Park Y. M., Won J. R., et al. An improved genetic algorithm for generationexpansion planning[J]. IEEE Transactions on Power Systems,2000.15(3):916-922
    [84] Drezner Z. A new genetic algorithm for the quadratic assignment problem[J].INFORMS Journal on Computing,2003.15(3):320-330
    [85] Deb K., Agrawal S., Pratap A., et al. A fast elitist non-dominated sorting geneticalgorithm for multi-objective optimization: NSGA-II[J]. Lecture notes in computerscience,2000.19(17):849-858
    [86] Shi X., Liang Y., Lee H., et al. An improved GA and a novel PSO-GA-based hybridalgorithm[J]. Information Processing Letters,2005.93(5):255-261
    [87] Benabdelkader S., Boulemden M. Recursive algorithm based on fuzzy2-partitionentropy for2-level image thresholding[J]. PatternRecognition,2005.38(8):1289-1294
    [88] Tang Y., Mu W., Zhang Y., et al. A fast recursive algorithm based on fuzzy2-partitionentropy approach for threshold selection[J]. Neurocomputing,2011.74(17):3072-3078
    [89] Li X. L., Shao Z. J., Qian J. X. An optimizing method based on autonomous animats:fish-swarm algorithm[J]. System Engineering Theory and Practice,2002.11:32-38
    [90] Karaboga D., Basturk B. A powerful and efficient algorithm for numerical functionoptimization: artificial bee colony (ABC) algorithm[J]. Journal of global optimization,2007.39(3):459-471
    [91] Boykov Y. Y., Jolly M. P. Interactive graph cuts for optimal boundary®ionsegmentation of objects in ND images[A]. Conference on Computer Vision(ICCV)2001[C]. IEEE,2001:105-112
    [92] Boykov Y., Funka L. G. Graph cuts and efficient ND image segmentation[J].International journal of computer vision,2006.70(2):109-131
    [93] Tsai H. C., Lin Y. H. Modification of the fish swarm algorithm with particle swarmoptimization formulation and communication behavior[J]. Applied Soft Computing,2011.11(8):5367-5374
    [94] Karaboga D. An idea based on honey bee swarm for numerical optimization[J].Erciyes Univ. Press, Erciyes,2005
    [95] Chen C. W., Luo J., Parker K. J. Image segmentation via adaptive K-mean clusteringand knowledge-based morphological operations with biomedical applications[J]. IEEETransactions on Image Processing,1998.7(12):1673-1683
    [96] Papamarkos N., Gatos B. A new approach for multilevel threshold selection[J].CVGIP: Graphical Models and Image Processing,1994.56(5):357-370
    [97] Vicente S., Kolmogorov V., Rother C. Graph cut based image segmentation withconnectivity priors[A]. Conference on Computer Vision and Pattern Recognition(CVPR)[C]. IEEE,2008:1-8
    [98] Besag J., York J., Mollié A. Bayesian image restoration, with two applications inspatial statistics[J].Annals of the Institute of Statistical Mathematics,1991.43(1):1-20
    [99] Murthy C. A., Pal S. K. Histogram thresholding by minimizing graylevel fuzziness[J].Information Sciences,1992.60(1):107-135
    [100]金立左,夏良正,杨世周.图象分割的自适应模糊阈值法[J].中国图象图形学报,2000.5(5):390-395
    [101]宁顺刚,白万民,喻钧.基于灰度共生矩阵的图像分割方法研究[J].电子科技,2009.22(11):69-71
    [102] Garg N., Vazirani V. V., Yannakakis M. Approximate max-flow min-(multi) cuttheorems and their applications[J]. SIAM Journal on Computing,1996.25(2):235-251
    [103] Comeau J. W., Costantino S., Wiseman P. W. A guide to accurate fluorescencemicroscopy colocalization measurements[J]. Biophysical Journal,2006.91(12):4611-4622
    [104] Shen T. H., Lin H. K., Scaglioni P. P., et al. The mechanisms of PML-nuclear bodyformation[J]. Molecular cell,2006.24(3):331-339
    [105] Di Cataldo S., Ficarra E., Acquaviva A., et al. Automated segmentation of tissueimages for computerized IHC analysis[J]. Computer methods and programs inbiomedicine,2010.100(1):1-15
    [106] Russell R. A., Adams N. M., Stephens D. A., et al. Segmentation of fluorescencemicroscopy images for quantitative analysis of cell nuclear architecture[J].Biophysical journal,2009.96(8):3379-3389
    [107] Bu G., Zhang Y. Grey fuzzy comprehensive evaluation based on the theory of greyfuzzy relation[J]. Systems Engineering-theory&Practice,2002.4:141-144
    [108] Pock T., Schoenemann T., Graber G., et al. A Convex Formulation of ContinuousMulti-label Problems[A]. The10th European Conference on Computer Vision: PartIII[C]. Springer-Verlag,2008:792-805
    [109] Groen F., Verbeek P. Freeman-code probabilities of object boundary quantizedcontours[J]. Computer Graphics and Image Processing,1978.7(3):391-402
    [110] Asai H. T. Linear regression analysis with fuzzy model[J]. IEEE Trans. Systems ManCybern,1982.12:903-907
    [111] Tolias Y. A., Panas S. M. Image segmentation by a fuzzy clustering algorithm usingadaptive spatially constrained membership functions[J]. IEEE Transactions onSystems, Man and Cybernetics, Part A: Systems and Humans,1998.28(3):359-369
    [112] Hayashi Y., Buckley J. J., Czogala E. Fuzzy neural network with fuzzy signals andweights[J]. International Journal of Intelligent Systems,1993.8(4):527-537
    [113]沈乔楠,安雪晖,于玉贞.基于视觉信息的堆石质量评价[J].清华大学学报:自然科学版,2013.5(1):48-52
    [114] Safavian S. R., Landgrebe D. A survey of decision tree classifier methodology[J].IEEE Transactions on Systems, Man and Cybernetics,1991.21(3):660-674
    [115]王爱民.神经网络应用于模糊综合评价的研究[J].系统工程理论与实践,1995.10(23):23-27
    [116] Yuan J., Bae E., Tai X. C. Astudy on continuous max-flow and min-cut approaches[A].International Conference on Computer Vision and Pattern Recognition (CVPR)[C].IEEE,2010:2217-2224
    [117] Liu J., Yang Y. H. Multiresolution color image segmentation[J]. Pattern Analysis andMachine Intelligence,1994.16(7):689-700

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700