辣椒抗根结线虫基因Me3的精细定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根结线虫是辣椒生产上一种极难防治的土传性病害,随着保护地蔬菜面积的增加,特别是日光温室的大面积推广,导致根结线虫危害日趋严重。同时,根结线虫的侵染又可加重枯萎病、根腐病等土传性真菌病害和部分细菌病害的发生。然而生产上常采用甲基溴熏蒸土壤或高毒、高残留化学杀线剂来防治根结线虫的危害,不仅会对蔬菜产品和环境造成严重的污染,而且会导致温室土壤严重退化。因此,培育辣椒抗根结线虫品种是最为经济有效的方法。
     常规的育种方法周期长,而迅速发展的分子标记技术大大地缩短了育种年限。因此,构建与抗根结线虫紧密连锁的分子标记,是进行辣椒抗根结线虫辅助育种的当务之急。
     本研究以含Me3基因的抗病自交系‘HDA149’(来源于PM687)为父本,感病自交系‘8214’为母本,构建了一个大小2133株的F2作图群体。在前人初步定位的基础上,采用群体分离分析法(Bulked Segregant Analysis, BSA),进行Me3基因的精细定位。获得的主要结果如下:
     1.本实验共用520对SSR引物、2对SCAR引物、2对SSCP引物和1对CAPS引物进行多态性引物初选,其中284对SSR引物和1对SSCP引物在两亲本间具有多态性,多态性比例为54.29%。
     2.通过抗池和感池两个DNA池,对初选筛出的285对引物进行PCR扩增分析,发现只有两对引物(SSCP_B322和EPMS658)在抗感池中具有稳定的多态性。
     3.用SSCP_B322和EPMS658引物对F2单株进行扩增分析,记录数据。利用作图软件JoinMap 3.0对数据进行连锁分析,发现SSCP B322和EPMS658标记与Me3基因连锁,位于Me3基因两侧,遗传图距分别为0.56 cM和1.33 cM。
     4.利用BC1S、BC1H和F3群体对SSCP B322和EPMS658标记进行了验证,证实两标记可有效用于辣椒抗根结线虫育种。
The root-knot nematodes is one of the most economically soil-borne diseases in pepper.It is diffcult to control. It caused severe damages with increasing the areas of protected vegetables, especially the solar greenhouses. At the same time, it also can aggravated Fusarium vasinfectum, Mycosphaerella pinoides,and other soil-borne fungal diseases and bacteriosis.The smoked soil of methyl bromide fumigation or highly toxic and high residual chemicals was used to controlling root-knot nematodes in production.However, they not only caused vegetable products degradation and polluted the environment serevely,but also led the greenhouse soil to extremely degenerate. So the use of resistant pepper cultivars was the most economic and effective method to control this disease.
     Conventional breeding methods need to consume long time, but the rapid development of molecular markers will greatly shorten the breeding term. Therefore,constructing the genetic linkage map of root-knot nematodes resistance genes is important for marker-assisted breeding in pepper.
     This study used the resistant inbred lines'HDA149'with Me3 gene as male parent and the susceptible inbred lines'8214'as female parent to build a mapping population which included 2133 F2 progenies. Based on the initial locating of predecessors, we constructed a fine mapping for Me3 gene by using BSA.The main results are as follows:
     1. This study used 520 pairs of SSR primers, two pairs of SCAR primers, two pairs of SSCP primers and one pair of CAPS primers to screen polymorphism. There were 284 pairs of SSR primers and 1 pairs of SSCP primers with polymorphism between two parents.The polymorphic ratio was 54.29%.
     2. There were only two pairs of primers (SSCP_B322 and EPMS658) with stable polymorphism between two pools,by using Resistant and susceptible pools to screen the 285 pairs of primers.
     3. F2 individuauls were amplified with these two pairs of primers, recording the analytic data.We constructed a molecuoar linkage map by using JoinMap3.0 softwar.SSCP_B322 and EPMS658 markers were located on both sides of Me3 e,with their genetic distances of 0.56 cM and 1.33 cM,respectively.
     4. SSCP_B322 and EPMS658 markers had been verified in BC1S、BC1H and F3 populations,which could be effectively used to root-knot nematode resistant breedding in pepper(Capsicum annuum L.).
引文
[1]邹学校.辣椒遗传育种学[M].北京:科学出版社,2009.
    [2]易图永.辣椒抗疫病相关基因的分析及QTL定位[D].湖南农业大学博士学位论文,2003.
    [3]胡勇胜.辣椒分子连锁图谱构建与抗疫病性状的QTL分析[D].湖南农业大学硕士学位论文,2007.
    [4]刘维志.植物病原线虫学[M].北京:中国农业出版社,2000.
    [5]茆振川.辣椒与根结线虫不亲和互作相关基因的分离及功能分析[D].西北农林科技大学博士学位论文,2007.
    [6]孙世伟,桑利伟.根结线虫防治研究进展[J].现代农业科技,2008,11:181~182.
    [7]张芸,胡铁军,师迎春.北京地区蔬菜根结线虫病发生特点及控制对策[J].中国农技推广,2005,2:43~45.
    [8]文廷刚,刘凤淮,杜小凤,等.根结线虫病发生与防治研究进展[J].安徽农学通报,2008,14(9):183~184.
    [9]顾晓慧,王立浩,毛胜利,等.辣椒根结线虫防治与抗性育种研究进展[J].中国蔬菜,2006,5:33~36.
    [10]黄三文,张宝尔,郭家珍,等.辣(甜)椒根结线虫的危害,防治和抗病育种[J].园艺学报,2000,27(增刊):515~521.
    [11]Bonas U, Lahaye T.Plant disease resistance triggered by pathogen-derived molecules:refined models of specific recognition[J].Current opinion in microbiology,2002,5(1):44-50.
    [12]Williamson V M.Plant nematode resistance genes[J].Current opinion in plant biology,1999, 2(4):327-331.
    [13]彭德良,唐文华.番茄抗根结线虫Mi基因研究进展[J].沈阳农业大学学报,2001,32(3):220-230.
    [14]李红双,李景富,许向阳,等.番茄抗根结线虫病基因的RAPD和SCAR标记[J].植物病理学报,2006,36(2):185-188.
    [15]Williamson V M, Hussey R S.Nematode pathogenesis and resistance in plants[J].The Plant Cell,1996,8(10):1735.
    [16]陈国华,杨宇红,谢丙炎.植物抗线虫基因工程新途径及其在分子育种中的应用[J].植物病理学报,2007,37(2):113-120.
    [17]Cai D, Kleine M, Kifle S, et al.Positional cloning of a gene for nematode resistance in sugar beet[J]. Science,1997,275(5301):832.
    [18]Jablonska B, Ammiraju J S S, Bhattarai K K, et al.The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1[J].Plant physiology,2007,143(2):1044.
    [19]Ammiraju J, Veremis J, Huang X, et al.The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6[J]. Theoretical and Applied Genetics,2003,106(3):478-484.
    [20]Ernst K, Kumar A, Kriseleit D, et al.The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region[J].The Plant Journal,2002,31(2):127-136.
    [21]Veremis J C,Roberts P A.Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence[J]. Theoretical and Applied Genetics,1996,93(5):950-959.
    [22]Jacobs J M E, Eck H J, Horsman K, et al.Mapping of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solanum vernei[J].Molecular Breeding, 1996,2(1):51-60.
    [23]Rouppe van der Voort J, Janssen G J W, Overmars H, et al.Development of a PCR-based selection assay for root-knot nematode resistance (Rmcl) by a comparative analysis of the Solanum bulbocastanum and S. tuberosum genome[J].Euphytica,1999,106(2):187-195.
    [24]Webb D M, Baltazar B M, Rao-Arelli A P, et al.Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437.654[J].Theoretical and Applied Genetics,1995, 91(4):574-581.
    [25]Williams K J, Fisher J M, Langridge P.Identification of RFLP markers linked to the cereal cyst nematode resistance gene (Cre) in wheat[J].Theoretical and Applied Genetics,1994, 89(7):927-930.
    [26]Williams K J, Willsmore K L, Olson S, et al.Mapping of a novel QTL for resistance to cereal cyst nematode in wheat[J].Theoretical and Applied Genetics,2006,112(8):1480-1486.
    [27]Lagudah E S, Moullet O, Appels R.Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat[J].Genome,1997,40(5):659-665.
    [28]Taylor C, Shepherd K W, Langridge P.A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR[J]. Theoretical and Applied Genetics,1998,97(5):1000-1012.
    [29]Seah S, Sivasithamparam K, Karakousis A, et al.Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley[J].Theoretical and Applied Genetics, 1998,97(5):937-945.
    [30]Kretschmer J M, Chalmers K J, Manning S, et al.RFLP mapping of the Ha2 cereal cyst nematode resistance gene in barley[J].Theoretical and Applied Genetics,1997,94(8): 1060-1064.
    [31]Garcia G M, Stalker H T, Shroeder E, et al.Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea[J].Genome,1996,39(5):836-845.
    [32]Hare W W.Inheritance of resistance to root-knot nematodes in pepper[J].Phytopathology, 1957,47(455-459.
    [33]Hare W W.Comparative resistance of seven pepper varieties to five root-knot nematodes [J].Phytopathology,1956,46(669-672.
    [34]Djian-Caporalino C, Pijarowski L, Fazari A, et al.High-resolution genetic mapping of the pepper(Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.)[J].Theoretical and Applied Genetics,2001, 103(4):592-600.
    [35]Djian-Caporalino C, Fazari A, Arguel M J, et al.Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome[J]. Theoretical and Applied Genetics,2007,114(3):473-486.
    [36]Chen R, Li H, Zhang L, et al.CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato[J].Plant cell reports,2007,26(7): 895-905.
    [37]蒲金基,曾会才.根结线虫对辣椒疫病发生及甲霜灵防效的影响[J].热带农业科学,2002,22(6):83~88.
    [38]朱玉丽.小麦抗白粉病基因Pm2和Pm5e的SSR分子标记研究[D].山东农业大学硕士学 位论文,2007.
    [39]王立浩,张宝玺,杜永臣.辣椒基因遗传定位及分子遗传图谱的研究进展[J].园艺学报,2005,32(6):1147~1154.
    [40]Sawada H, Takeuchi S, Matsumoto K, et al.A new tobamovirus-resistance gene, Hk, in Capsicum annuum[J].Journal-japanese society for horticultural science,2005,74(4):289.
    [41]Sugita T, Kinoshita T, Kawano T, et al.Rapid construction of a linkage map using high-efficiency genome scanning/AFLP and RAPD, based on an intraspecific, doubled-haploid population of Capsicum annuum[J].Breeding Science,2005,55(3):287-295.
    [42]Tomita R, Murai J, Miura Y, et al.Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences[J].Theoretical and Applied Genetics, 2008,117(7):1107-1118.
    [43]Kim H J, Han J, Yoo J H, et al.Development of a Sequence Characteristic Amplified Region Marker linked to the L∧ 4 Locus Conferring Broad Spectrum Resistance to Tobamoviruses in Pepper Plants[J].Molecules and cells,2008,25(2):205.
    [44]Matsunaga H, Saito T, Hirai M, et al.DNA markers linked to pepper mild mottle virus (PMMoV) resistant locus (L∧ 4) in Capsicum[J].Journal-japanese society for horticultural science,2003,72(3):218-220.
    [45]Caranta C, Lefebvre V, Palloix A.Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci[J]. Molecular Plant-Microbe Interactions,1997,10(7):872-878.
    [46]Chaim A B, Grube R C, Lapidot M, et al.Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum[J].Theoretical and Applied Genetics,2001,102(8):1213-1220.
    [47]Caranta C, Pflieger S, Lefebvre V, et al.QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper[J].Theoretical and Applied Genetics,2002, 104(4):586-591.
    [48]Murphy J F, Blauth J R, Livingstone K D, et al.Genetic mapping of the pvrl locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels[J].Molecular Plant-Microbe Interactions,1998, 11(10):943-951.
    [49]Caranta C, Thabuis A, Palloix A.Development of a CAPS marker for the Pvr4 locus:a tool for pyramiding potyvirus resistance genes in pepper[J].Genome,1999,42(6):1111-1116.
    [50]Grube R C, Blauth J R, Arnedo Andres M S, et al.Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum[J].Theoretical and Applied Genetics,2000,101 (5):852-859.
    [51]Arnedo-Andres M, Gil-Ortega R, Luis-Arteaga M, et al.Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper(Capsicum annuum L.)[J].Theoretical and Applied Genetics,2002,105(6):1067-1074.
    [52]Moury B, Pflieger S, Blattes A, et al.A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper[J].Genome,2000,43(1):137-142.
    [53]Sahin F, Miller S A.Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6[J].Plant disease,1998,82(7):794-799.
    [54]Tai T, Dahlbeck D, Stall R E, et al.High-resolution genetic and physical mapping of the region containing the Bs2 resistance gene of pepper[J].Theoretical and Applied Genetics,1999,99(7):1201-1206.
    [55]Tai T H, Dahlbeck D, Clark E T, et al.Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96(24):14153.
    [56]Pierre M, No 1 L, Lahaye T, et al.High-resolution genetic mapping of the pepper resistancelocus Bs3 governing recognition of the Xanthomonascampestris pv vesicatora AvrBs3 protein[J].Theoretical and Applied Genetics,2000,101(1):255-263.
    [57]Lefebvre V, Palloix A.Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease:a case study, the interaction pepper—Phytophthora capsici Leonian[J].Theoretical and Applied Genetics,1996,93(4):503-511.
    [58]Thabuis A, Palloix A, Pflieger S, et al.Comparative mapping of Phytophthora resistance loci in pepper germplasm:evidence for conserved resistance loci across Solanaceae and for a large genetic diversity[J].Theoretical and Applied Genetics,2003,106(8):1473-1485.
    [59]Ogundiwin E A, Berke T F, Massoudi M, et al.Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.)[J].Genome,2005,48(4):698-711.
    [60]Quirin E A, Ogundiwin E A, Prince J P, et al.Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper[J]. Theoretical and Applied Genetics,2005,110(4): 605-612.
    [61]Minamiyama Y, Tsuro M, Kubo T, et al.QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map[J].Breeding Science,2007,57(2):129-134.
    [62]易图永,谢丙炎,张宝玺,等.辣椒抗疫病性状遗传及其相关AFLP标记分析[J].农业生物技术学报,2007,15(5):847-854.
    [63]安静,胡勇胜,张宝玺,等.辣椒分子连锁遗传图谱的构建及抗疫病QTL定位[J].中国蔬菜,2007,10:9-12.
    [64]Lefebvre V, Daubeze A M, Rouppe van der Voort J, et al.QTLs for resistance to powdery mildew in pepper under natural and artificial infections[J]. Theoretical and Applied Genetics, 2003,107(4):661-666.
    [65]汪爱娥,丁克坚,马珂.辣椒炭疽病的研究进展[J].安徽农业科学,2005,22(3):508-509.
    [66]Pakdeevaraporn P, Wasee S, Taylor P W J, et al. Short Communication Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum [J].Plant Breeding,2005,124:206-208.
    [67]Voorrips R E, Finkers R, Sanjaya L, et al.QTL mapping of anthracnose(Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense[J]. Theoretical and Applied Genetics,2004,109(6):1275-1282.
    [68]陈青,张银东.与辣椒抗蚜性基因连锁的RAPD标记[J].园艺学报,2003,30(6):737-738.
    [69]Hendy H, Pochard E, Dalmasso A, et al.Transmission hereditaire de la resistance aux nematodes Meloidogyne Chitwood(Tylenchida) portee par 2 lignees de Capsicum annuum L. etude de descendances homozygotes issues d'androgenese[J]. Agronomie(Print),1985, 5(2):93-99.
    [70]Djian-Caporalino C, Pijarowski L, Januel A, et al.Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in in pepper(Capsicum annuum L.)[J].Theoretical and Applied Genetics,1999,99(3):496-502.
    [71]Pegard A, Brizzard G, Fazari A, et al.Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum[J]. Phytopathology,2005,95(2):158-165.
    [72]Casnone-Sereno P, Bongiovanni M, Djian-Caporalino C.New data on the specificity of the root-knot nematode resistance genes Me1 and Me3 in pepper[J]. Plant Breeding,2001, 120(5):429-433.
    [73]Souza Sobrinho N F, Nakane M I.Uma Avalia o do Canal de Credito no Brasil[J]. Encontro Nacional de Economia da ANPEC,2002.
    [74]Vito M.Errico A Genetics of resistance to root-knot nematodes(Meloidogyrne spp.) in Capsicum chacoense[J].C. chinense and C. frutescens,1993.
    [75]Fery R L, Dukes Sr P D, Thies J A.'Carolina Wonder'and'Charleston Belle':southern root-knot nematode-resistant bell peppers[J].HortScience:a publication of the American Society for Horticultural Science (USA),1998.
    [76]Wang L H, Gu X H, Hua M Y, et al.A SCAR marker linked to the N gene for resistance to root knot nematodes (Meloidogyne spp.) in pepper(Capsicum annuum L.)[J].Scientia Horticul-turae,2009,122(2):318-322.
    [77]Casnone-Sereno P, Bongiovanni M, Wajnberg E.Selection and parasite evolution:a reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita[J].Evolutionary Ecology,2007,21(2):259-270.
    [78]李荣华,夏岩石,刘顺枝,等.辣椒改进的CTAB提取植物DNA方法[J].实验研究与探索,2009,28(9):14-16.
    [79]Lee J M, Nahm S H, Kim Y M, et al.Characterization and molecular genetic mapping of microsatellite loci in pepper[J]. Theoretical and Applied Genetics,2004,108(4):619-627.
    [80]Sanwen H, Baoxi Z, Milbourne D, et al.Development of pepper SSR markers from sequence databases[J].Euphytica,2001,117(2):163-167.
    [81]Yi G, Lee J M, Lee S, et al.Exploitation of pepper EST-SSR and an SSR-based linkage map[J].Theoretical and Applied Genetics,2006,114(1):113-130.
    [82]Minamiyama Y, Tsuro M, Hirai M.An SSR-based linkage map of Capsicum annuum[J]. Molecular Breeding,2006,18(2):157-169.
    [83]Portis E, Nagy I, Sasvari Z, et al.The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping[J].Plant Science,2007, 172(3):640-648.
    [84]Nagy I, Stagel A, Sasvari Z, et al.Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.)[J].Genome,2007, 50(7):668-688.
    [85]胡勇胜,毛胜利,王立浩,等.辣椒SSR反应体系的优化[J].辣椒杂志,2007,季刊(22):17-19.
    [86]Bleve-Zacheo T, Bongiovanni M, Melillo M T, et al.The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection[J].Plant Science,1998,133(1):79-90.
    [87]Casnone-Sereno P, Bongiovanni M, Palloix A, et al.Selection for Meloidogyne incognita virulence against resistance genes from tomato and pepper and specificity of the virulence/ resistance determinants[J]. European Journal of Plant Pathology,1996,102(6):585-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700