轿车主动前轮转向与电子稳定性系统协调控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动前轮转向系统(Active Front Steering)与电子稳定性系统(Electronic StabilityControl)都能够改善车辆稳定性。由于AFS和ESC存在特性差异,因此在控制过程中必然存在干涉。为了解决此问题,充分发挥AFS和ESC各自的优势,更好的改善车辆的稳定性,需要对AFS和ESC进行协调控制。目前国内对电子系统的协调控制研究大多采用的集成度较低的分散式结构,此种结构的集成控制在改善车辆性能方面的效果不明显,国外采用的是集成度较高的集成式结构,集成式结构过于复杂,整合能力低。即使有些研究采用了分层控制,但是很少针对车辆状态的不同进行动态的协调控制。本文主要对AFS和ESC的协调控制策略进行了研究。具体内容如下:
     1)主动前轮转向系统与电子稳定性系统的特性分析
     分析AFS和ESC的结构和原理。对AFS和ESC的有效工作区域以及AFS、ESC对车辆稳定性的影响进行分析。为协调控制策略的研究奠定了理论基础。
     2)车辆稳定域的划分
     依据相平面的非稳定平衡点能够对车辆稳定域边界定量描述的特性,在相平面基础上划分稳定域。由于相平面的动力学方程是关于前轮转角、车速、路面附着系数的方程,所以稳定域随着上述三个因素的变化而不同。本文将车辆状态根据上述三个因素的不同划分为18种情况,将车辆当时的状态对应某种情况,采用遗传算法确定其非稳定平衡点,最终得到车辆的稳定域边界。
     3)主动前轮转向系统和电子稳定性系统协调控制区域的划分
     向内和向外偏移稳定域边界可以得到协调控制区域。由于控制区域边界受车速和前轮转角的影响,所以应用鲁棒性较好的模糊控制理论,以车速和前轮转角为输入,以表征偏移量的控制系数为输出对协调控制区域进行划分。
     4)确定目标横摆力矩
     滑模控制理论对系统参数外干扰及摄动具有很好的鲁棒性,适合稳定性控制,本文采用滑模控制理论计算保持车辆稳定的目标横摆力矩。
     5)对目标横摆力矩进行分配
     车辆在不同状态区域时,AFS和ESC承担的工作负荷不同,根据1)确定的车辆协调控制区域的划分原则,确定车辆当时所处的区域,对AFS和ESC的工作负荷进行合理的分配。
     为了验证AFS与ESC协调控制策略的有效性和优越性,在MATLAB/SIMULINK环境下搭建协调控制离线仿真平台,并在该平台下进行多种典型工况的离线仿真。结果表明:本文提出的AFS与ESC的协调控制策略进一步提高了车辆的稳定性。
     本文的创新点如下:
     1)考虑了车速、前轮转角、路面附着系数对车辆稳定域的影响,将上述三个因素引入到AFS与ESC协调控制中,进一步提高了协调控制的效果。
     2)应用遗传优化算法求解划分车辆稳定域的非稳定平衡点,解决了该非线性系统无法求解的问题。
     3)考虑了车速、前轮转角对协调控制区域划分的影响,采用鲁棒性较好的模糊控制动态地划分了协调控制区域,进一步提高了车辆的稳定性。
Both AFS and ESC have an important role in improving the stability of the vehicle.But there are differences in characteristic of AFS and ESC, so there is interference in theprocess of control. To resolve this question, and make best of the advantage of AFS andESC to further improve the stability of the vehicle.At present, the distributed structurewhich is low in integration is mostly used to study the coordination control of electronicsystem at home,this kind of control have little effect in improving the performance of thevehicle. The integrated structure which is high in integration is mostly used to study thecoordination control of electronic system at abroad, this kind of control is too complex andconformity ability is low, even if hierarchical structure is used in some studies, few studiesuse the dynamic control according to the state of the vehicle. the paper study on thecoordination control strategy.The main contents are as follows:
     1) Analysis of the characteristics of AFS and ESC
     The structure, the principle, the effect on the stability of AFS and ESC and theeffective area that AFS and ESC work are analyzed to lay a theoretical foundation for thestrategy of coordination control of AFS and ESC.
     2) The division of the stability region
     Due to the stability domain boundaries can be described by the non-stable equilibriumpoint of the phase plane quantitatively. The control region is divided based on the phaseplane. The stability region is different with the change of front wheel angle, vehicle speed,and road adhesion coefficient, since the kinetic equation of the phase plane is the equationof front wheel angle, vehicle speed, and road adhesion coefficient. The vehicle condition isdivided into eighteen kinds of conditions, the state of the vehicle can be cooresponded to atypical condition and the genetic algorithms is used to determine its non-stable equilibriumpoints which determine the stability region boundary.
     3) The division of the coordination control area of AFS and ESC
     The stability region boundary is translated inward and outward to get the coordinationcontrol area. the coordination control area is affected by the vehicle speed and the front wheel angle, so the Fuzzy control which has good robustness is applied, and the vehiclespeed and the front wheel angle are made as the inputs, and the control coefficients whichdetermine the offset are made as outputs to divide the coordination control area.
     4) The determine of the target yaw moment
     Since the sliding mode control theory has good robustness on system parameters andoutside interference, so the sliding mode control theory is applied to get the target yawmoment.
     5) The distribution of the target yaw moment
     The workload of AFS and ESC is different when the state of the vehicle is different.The area which the vehicle locates is determined based on the principle of division of theregion to distribute the workload of AFS and ESC.
     In order to validate the validity and advantage of the coordinated control strategy ofAFS and ESC, simulation platform on which the off-line simulation is carried out is built inMATLAB/SIMULINK environment. The simulation results show that this control strategyimproved the stability of the vehicle effectively.
     The innovation of this paper is as follows:
     1) The speed, the front wheel angle and the road friction coefficient are made as theinfluencing factor to recognize the dynamic coordination control stable region to enhancethe effect of the coordinated control.
     2) The genetic optimization algorithm is applied to resolve the nonlinear system.
     3)The speed and the front wheel angle which effect the division of the coordinationcontrol region are considered, The Fuzzy control which has good robustness is applied todivide the coordination control region to enhance the effect of the coordinated control.
引文
[1]丁亚康.汽车底盘集成及其控制技术研究[D].武汉:武汉理工大学汽车工程学院,2009.
    [2]聂佳梅.汽车ASS与EPS分层协调控制[J].系统仿真学报,2010(12):2886-2889.
    [3]武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海:上海交通大学自动化系,2008.
    [4]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007(5):420-425.
    [5] Fei Lai. Integrated Control Of Automotive Four Wheel Steering And Active SuspensionSystems Based On Unifrom Model[J].The Ninth International Conference onElectronic Measurement&Instruments,2009(3):551-556.
    [6]周慧会.汽车ESC/ASS、ESC/4WS的协调控制研究[D].合肥:合肥工业大学机械与汽车工程学院,2008.
    [7]李锐,马红星.车辆制动稳定性的模糊协调控制[J].重庆邮电大学学报(自然科学版),2011(4):458-463.
    [8] Zhu tianjun. Advanced Integrated Control Strategy Based on SBW and4WS[J].Pacific-Asia Conference on circuits,Communications and System,2009:512-515.
    [9] Heinz Leffler. Consideration of lateral and longitudinal vehicle stability by functionenhanced brake and stability control system[C].SAE,940832.
    [10]Ansgar Trachtler. Integrated Vehicle Dynamics Control Using Active Brake, Steeringand Suspension Systems [J]. International Journal of Vehicle Design,2004,36(1):1-12.
    [11]田杰,高翔.基于AFS和DYC协调控制的车辆稳定性研究[J].机械设计,201(010):18-21.
    [12]费贤松.联合主动转向和横摆力矩控制的汽车操纵稳定性研究[D].南京:南京航空航天大学能源与动力学院,2007.
    [13]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008(6):1-7.
    [14]陈全世,晏蔚光.一种基于前馈—反馈复合控制方式的制动稳定性控制方法[J].信息控制,2005(1):26-29.
    [15]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESC协调控制研究[J].汽车工程,2007(4):283-291.
    [16]余卓平,高晓杰.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006(9):844-848.
    [17]冯金芝,喻凡.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报,2002(2):15-19.
    [18]王金湘,陈南,皮大伟.基于横摆角速度变门限值的车辆稳定性控制策略及实车场地试验[J].汽车工程,2008(3):222-226.
    [19]王其东,王霞,陈无畏.汽车主动前轮转向和防抱死制动协调控制[J].农业机械学报,2008(3):1-4.
    [20]郭建华.双轴汽车电子稳定性协调控制系统研究.[D].长春:吉林大学汽车工程学院,2008.
    [21]郭建华,李幼德,李静.汽车防抱死系统与主动悬架联合控制研究[J].中国机械工程,2007(24):3014~3018.
    [22]Yoshikazu Hattori,Ken Koibuchi and Tatsuaki Yokoyama. Force and Moment Controlwith Nonlinear Optimum Distribution for Vehicle Dynamics[J]. InternationalSymposium on Advanced Vehicle Control,2002.
    [23]O.mokhiamarandm.A B E. Examination of different models following types of yawmoment control strategy for improving handling safety of a car-caralancombination[J].Automobile Engineering.2003,217(7).
    [24]B.L.boada,M.J.L,boadaandv,diaz. Yaw moment control for vehicle stability inacrosswind[J].Vehicle Design,2005,39(4):331-348.
    [25]O.mokhiamarandm.A B E. Examination of different models following types of yawmoment control strategy for improving handling safety of a car-caralancombination[J].Automobile Engineering.2003,217(7).
    [26]B.L.boada,M.J.L,boadaandv,diaz. Yaw moment control for vehicle stability inacrosswind[J].Vehicle Design,2005,39(4):331-348.
    [27]Mehmet Akadr and Jens C. Kalkkuhl,Design and Evaluation of an Intergrated ChassisController for Automotive Vehicle Emulation[J].IEEE Transactions on industrialElectrontcs,2009,56(9):3571-3579.
    [28]Shen X, Li D, Yu F. Study on vehicle chassis control integration based on generalactuator-plant structure[J].International Journal of Vehicle Autonomous Systems,2006,5(1):95-118.
    [29]Junjie He, David A. Crolla, Martin C. Levesley and Warren J. Manning. IntegratedActive Steering and Variable Torque Distribution Control for Improving VehicleHandling and Stability[J].SAE,2004-01-1071.
    [30]Junjie He, David A Crolla. Integrated Active Rear Steering and Variable TorqueDistribution Control for Improving Vehicle Handling and Stability [C].SAE2002-09-1026.
    [31]W.A.H Oraby,S.M.EI-Demerdash. Improvement of Vehicle Lateral Dynamics byActive Front Steering Control [C].SAE,2004-01-2081.
    [32]Nagai M, Shino M, Gao F. Study on integrated control of active front steer angle anddirect yaw moment[J]. JSAEReview,2002,23(3):309~315.
    [33]牛礼民.汽车底盘协同控制的多智能体技术[J].机械科学与技术,2010(12):1723-1726.
    [34]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006(2):105-113.
    [35]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究[D].长安:长安大学汽车学院,2008.
    [36]毛起禹.主动前轮转向综述[J].中国信息科技,2007(8):73-74.
    [37]Wolfgan Reinelt. Active Front Steering (Part2): safety and functionality [C].SAE,2004-01-1101.
    [38]孙宣峰,赵景波.前轮主动转向系统设计[J].拖拉机与农用运输车,2008(06):91-94.
    [39]高晓杰,余卓平.机械式前轮主动转向系统的原理与应用[J].汽车工程,2006(10):918-921。
    [40]张红党.汽车主动前轮转向系统的特性研究[D].镇江:江苏大学汽车与交通工程学院,2009.
    [41]况卫平.机械式前轮主动转向系统控制策略研究[D].沈阳:沈阳工业大学机械工程学院,2009.
    [42]余卓平,赵治国,陈慧.主动前轮转向对车辆操纵稳定性的影响[J].中国机械工程,2005(7):652-657.
    [43]原健钟.汽车主动转向系统研究[D].广州:华南理工大学机械与汽车工程学院,2010.
    [44]Takahiro Kojo. Development of Active front steering control system [C].SAE2005-01-0404.
    [45]祁永宁,陈南,李普.四轮转向车辆的直接横摆力矩控制[J].东南大学学报(自然科学版),2004(4):451-454.
    [46]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999
    [47]朱德军.车辆VSC的控制算法和硬件实现研究[D].南京:东南大学机械工程系,2005.
    [48]盖玉先,郭庆悌,宋健.汽车动力学稳定性的研究[J].哈尔滨工业大学学报,2006(12):2112-2115.
    [49]侯少鹏.汽车电子稳定性控制系统控制算法研究与仿真分析[D].长春:吉林大学汽车工程学院,2006.
    [50]柳致海.基于MPC的车辆稳定性控制研究[D].长春:吉林大学汽车工程学院,2011.
    [51]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社,1995.
    [52]王会义.汽车电子稳定性程序的控制算法[J].清华大学学报(自然科学版),2007(2):224-227.
    [53]张长冲. ESC-汽车电子稳定系统仿真研究[D].济南:山东大学机械工程学院,2007.
    [54]Junjie He, David A Crolla.Integrated Active Rear Steering and Variable TorqueDistribution Control for Improving Vehicle Handling and Stability [C].SAE,2002-09-1026.
    [55]Mokhiamar O, AbeM. Active Wheel Steering and Yaw Moment Control Combinationto Maximize Stability as Well as Vehicle RESConsiveness During Quick Lane Changefor Active Vehicle Safety [J]. Proceedings of the Institution of Mechanical Engineers.Part D, Journal of Automobile Engineering,2002,216(2):115-124.
    [56]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制[J].中国机械工程,2005(8):743~747.
    [57]徐娟.解耦控制理论在汽车转向与悬架集成系统中的应用[D].合肥:合肥工业大学机械与汽车工程学院,2005.
    [58]李亮,宋健.汽车动力学控制系统研究进展[J].世界科技研究与发展,2005(1):10-17.
    [59]曹金山.底盘综合控制系统GCC[J].重型汽车,2005(6):18-20.
    [60]Youseok Kou, Wanil Kim, SangHo Yoon, JeongWoo Lee and Dongshin Kim.Integration Chassis Control (ICC) Systems of Mando[C].SAE,2004-01-2044.
    [61]Yuming Hou,Jie Zhang,Yunqing Zhang,Liping Chen. Integrated Chassis Control UsingANFIS[J]. Proceedings of the IEEE International Conference on Automation andLogistics,2008:1625-1630.
    [62]张炜,黄宏成,夏祥洪. ESC-车辆新型主动安全系统[J].传动技术,2003(4):34-37.
    [63]Yasuji Shibahata. Progress and Future Direction of Chassis Control Technology[J].Annual Reviews in Control,2005,29(1):151-158.
    [64]Sohel Anwar. A Predictive Control Algorithm for a Yaw Stability ManagementSystem[C].SAE,2003-01-1284.
    [65]Jong Hyeon Park and Woo Sung Ahn. H∞Yaw-moment Control with Brakes forImproving Driving Performance and Stability[C]. Proceedings of the1999IEEE/ASME International Conference on Advanced Intelligent Mechatronics,1999:747-752.
    [66]SangHo Yoon, JiHyun Jung, BonKyung Koo and DongShin Kim. Development ofRollover Prevention System Using Unified Chassis Control of ESC and CDCSystems[C]. SAE,2006-01-1276.
    [67]Sohel Anwar. A Predictive Control Algorithm for a Yaw Stability ManagementSystem[C].SAE,2003-01-1284.
    [68]雷晓梅.用相平面法描述非线性系统[J].武警工程学院学报,2000(4):17-19.
    [69]Inagaki.S.,Kshiro,I.,Yamamoto,M.,Analysis on vehicle stability in critical corneringusing phase-plane method[C].SAE,9438411.
    [70]周红妮,陶建民.质心侧偏角和横摆角速度对车辆稳定性的影响研究[J],湖北汽车工业学院学报,2008(2):6-10.
    [71]张晨晨,夏群生,何乐.质心侧偏角对车辆稳定性影响的研究[J].汽车工程,2011(4):277-282.
    [72]刘丽.车辆三自由度平面运动稳定性的非线性分析及控制策略评价[D].长春:吉林大学交通工程学院,2010.
    [73]Goldberg D E. Genetic Algorithms in search, Optimization and machine learning
    [M].New York:Addison wesly publishing company inc,1989.
    [74]Kitano H. Genetic Algorithms [J].Journal of Japanese Society for ArtificalIntelligence,1992,7(1).
    [75]张学良等.遗传算法及其在机械工程中的应用[J].机械科学与技术,1997(1):51-56.
    [76]师汉民等.基因遗传算法的原理及其在机械工程中的应用[J].中国机械工程,1992(3):21-24.
    [77]胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001.
    [78]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    [79]张昌凡,何静.滑模变结构的智能控制理论与应用研究[M].北京:清华大学出版社,2005.
    [80]徐明法.基于最优滑模控制理论的车辆稳定性控制策略研究[D].长春:吉林大学汽车工程学院,2011.
    [81]祝辉,陈无畏.汽车悬架、转向和制动系统建模与相互影响分析[J].农业机械学报,2010(1):7-13.
    [82]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006.
    [83]刘巍.轻型汽车转向稳定性控制算法及硬件在环实验台研究[D].长春:吉林大学汽车工程学院,2007.
    [84]李建华.基于ESC控制系统的ABS控制策略研究及实验[D].长春:吉林大学汽车工程学院,2010.
    [85]饶志明.轻型汽车的电子机械制动与驱动防滑控制系统研究[D].长春:吉林大学汽车工程学院,2011.
    [86]张体环.混合动力客车制动力协调控制算法研究[D].长春:吉林大学汽车工程学院,2011.
    [87]陈德玲.主动前轮转向系统的控制研究[D].上海:上海交通大学机械与动力工程学院,2008.
    [88]陈振日.对汽车操纵稳定性现行评价指标的分析和建议[J].汽车技术,2006(9):5-8.
    [89]郭孔辉,付皓.车辆电子稳定性控制试验与评价方法的仿真应用[J].汽车技术,2008(10):1-3.
    [90]刘文萍.汽车操纵稳定性试验方法国内外标准对比[J].四川工业学院学报,2004(3)::7-9.
    [91]李向瑜,高振海,郭健.汽车装备电子稳定性程序后的性能评价方法[J].拖拉机与农用运输车,2008(4):1-3.
    [92]刘金琨.先进PID控制MATLAB仿真[M].电子工业出版社,2004.
    [93]孙颖.汽车电子稳定系统控制方法的研究和仿真[D].沈阳:东北大学机械工程与自动化学院,2008.
    [94]刘翔宇.基于直接横摆力矩控制的车辆稳定性研究[D].合肥:合肥工业大学机械与汽车工程学院,2010.
    [95]Bakker E,Nyborg L,Pace jka H B. Tyre modeling for use in vehicle dynamicsstudies[C].SAE,870421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700