遗传背景对痛风和/或高尿酸血症影响的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     随着生活水平和健康意识的提高,高尿酸血症和痛风的患病率呈逐年上升的趋势,流行病学和实验室研究均发现高尿酸血症与心血管疾病有密切联系。临床中观察到一个家庭中有三例女性出现绝经前发病的痛风,这和我们已经知晓的高尿酸血症和痛风的常见危险因素——女性通常在绝经后发病迥然不同,特别是其中一例发病年龄仅为16岁,提示遗传因素可能参与发病。
     遗传因素是高尿酸血症和痛风已知的重要危险因素,遗传背景可能是导致疾病个体化的原因之一。全基因组连锁分析(Genome-Wide Association Study, GWAS)发现了众多与血尿酸水平和痛风相关的位点,然而临床观察到的现象往往是遗传因素与环境因素共同作用的结果,且多数情况下环境因素所占权重更大,因此GWAS研究发现的遗传高危位点目前尚未应用于解释特定人群痛风和高尿酸血症的发生并指导临床实践。本次研究,我们旨在对于上述问题开展初步的探索。
     目的:
     1)通过对一个绝经前发病女性痛风家庭的遗传学研究,探索与高尿酸血症和痛风相关的遗传因素;
     2)在人群中初步探索痛风高危位点ABCG2SNP rs2231142遗传多态性对高尿酸血症的影响,以及其它危险因素对遗传因素影响的可能交互作用。
     方法:
     1)收集该家庭的病史、体格检查和实验室检查等临床资料,等位基因共享实验和外显子基因测序研究家族性青年性高尿酸性肾病的致病基因UMOD, RENIN, HNF1B和HNFJ3,以及Lesch-Nyhan综合征的致病基因HPRT1;外显子测序筛查痛风和高尿酸血症的相关位点ABCG2、SLC2A9、SLC22A12。
     2)利用我院2008年职工健康体检样本,选择去除肌酐清除率小于30ml/min/1.73m2的高尿酸血症样本(高尿酸血症组),在性别、年龄、肌酐清除率和体质指数匹配的尿酸正常者中按照1:1~1:2比例随机抽取正常对照(正常对照组),采用ARMS-PCR法检测rs2231142位点的基因型。配对回归分析和交互分析研究该人群中rs2231142的基因型分布、A基因频率、A等位基因对高尿酸血症的相关性以及其他因素与该位点的交互作用。
     结果:
     1)该家庭共四代,收集到完整临床信息和血样者共11人,男性6人,女性5人。痛风患者共3人,均为绝经前女性,男性成员均无痛风或高尿酸血症。等位基因共享实验显示RENIN基因在该家庭中存在共享,其他基因无共享,基因测序显示RENIN, UMOD无有意义突变。HPRT1基因测序无突变。先症者的ABCG2, SLC2A9和SLC22A12基因存在多个遗传多态性位点(single nucleotide polymorphism, SNP),其中包括一个高尿酸血症保护位点和高危危险rs2231137和rs2231142。该家庭中其他成员均存在上述位点。
     2)本研究对象总体高尿酸血症共296人,去除肌酐清除率<30ml/min/1.73m2者和不能完全匹配者后,高尿酸血症组共196人,正常对照288人。配对研究人群总体的rs2231142的A等位基因频率为30.79%,高尿酸血症组和尿酸正常组A等位基因频率存在显著差异(分别为39.03%和25.17%,p<0.01);A等位基因与高尿酸血症显著相关,OR=3.35(95%CI2.10-5.33,p<0.01);相比CC基因型,CA基因型和AA基因型发生高尿酸血症的OR分别为3.19(95%CI:1.99-5.12,p<0.01)和4.85(95%CI2.13-11.00,p<0.01);调整血脂、血压、血糖后,A等位基因的高尿酸血症相对风险为3.37(95%CI2.07-5.47,p<0.01)。亚组分析显示:在男性、青年男性、老年女性,慢性肾功能(CKD)3期肾功能者,BMI<28kg/m2者,A基因对高尿酸血症的影响更加明显,但这种影响在年轻女性中不明显。
     结论:
     1)在此例绝经前女性痛风家庭中,普遍存在高尿酸血症和痛风的危险位点,ABCG2SNP rs2231142,但排除了目前已知的单基因遗传病。
     2)在特定研究人群中将性别、年龄、肌酐清除率、体质指数均匹配后,ABCG2SNPrs2231142的A等位基因是高尿酸血症的独立危险因素,且随着A等位基因数目增多,高尿酸血症的风险呈增高趋势。性别、年龄、肌酐清除率和体质指数可能对A等位基因与高尿酸血症的相关性产生修饰作用。
     3)A基因与高尿酸血症的相关性在年轻女性中不明显,提示年轻女性中可能存在保护因素影响这种基因的作用。
Background
     With the improving quality of life, the world has seen increasing prevalence of gout and hyperuricemia. Both epidemiology and bench work have demonstrated significant association between hyperuricemia and cardiovascular disease. We found a family characterized with three female gout patients attacked before menopause, which was in contrast with the well-known risk factors of gout and hyperuricemia that women usually do not have gout until menopause, particularly one patient had gout attack as early as16years, highly implicating the involvement genetic factors.
     Genetic are important risk factors for hyperuricemia and gout, and possibly one of the reasons that cause the variation of gout disease. Genome-Wide Association Study (GWAS) have identified multiple loci associated with gout and hyperuricemia. However what we see in the clinic is often the result of both nature and nurture, and more often than not, nurture is more predominant. Therefore, there are still gap between the findings of GWAS and its application in a specific population, and even further to be transformed into clinical practice. In light of these, we performed the following series of work.
     Object:
     1) To explore the genetic factors related to gout and hyperuricemia in a female premenopausal gout family.
     2) To explore the association between gout risky loci ABCG2rs2231142polymorphism and hyperuricemia in a population, and the possible interaction between other risk factors and genetic factors.
     Method:
     1) Collecting medical history, physical examination and laboratory examination of this family. Allele sharing examination and exon sequencing were applied to study the causative genes of familial juvenile hyperuricemia nephropathy, including UMOD, RENIN, HNF1B and HNFJ3, as well as the causative gene of Lesch-Nayhn syndrome-HPRT1. ABCG2, SLC2A9, and SLC22A12were screened by exon sequencing.
     2) Based on the cohort of the2008faculty annual health examination of PUMCH, exclude hyperuricemia with GFR less than30ml/min/1.73m2(NHUA), normal uricemic control group (NUA) were randomly selected after matching with the NHUA group by sex, age, CKD and BMI. SNP rs2231142were identified by ARMS-PCR. Paired logistic regression and interaction analysis were used to study the genotype distribution of rs2231142, the A allele frequency, the association between A allele and hyperuricemia, and the interaction of other risk factors with the rs2231142risk A allele.
     Results:
     1) The family was composed of4generations with21family members, clinical information and genetic study was focused on11members, including6male members and5female members. All three gout patients were female, attacked before menopause; and none of the male family members were affected. RENIN gene was found to be shared in this family by allele sharing experiment, but was found to be normal by exon sequencing. UMOD was not shared and found to be spared with mutations by exon sequencing. HPRT1gene was proved to be normal. Multiple single nucleotide polymorphisms of gene ABCG2, SLC2A9and SLC22A12were found in the one patient, including one locus known to be highly associated with gout, the SNP rs2231142of the gene ABCG2. Nearly all of the family members carry this risk allele.
     2) A total of296were found to be hyperuricemia in the total cohort. After excluding those with GFR<30ml/min/1.73m2,196hyperuricemic samples were enrolled in the pair group (NHUA);288normal uricemic controls were selected (NUA), matched with hyperuricemic group by sex, age, CKD and BMI. The total A allele frequency of the pair group were30.79%. The A allele frequency was significantly higher in the NHUA group than the NUA group (39.03%v.s.25.17%, p<0.001). The A allele were significantly associated with hyperuricemia (OR=3.35,95%CI2.10-5.33, p<0.01); compared to CC genotype, the risk of hyperuricemia rendered by CA genotype and AA genotype were3.19(95%CI:1.99-5.12, p<0.01) and4.85(95%CI2.13-11.00, p<0.01). After adjustment of dyslipidemia, hypertension and hyperglycemia, the OR of A allele was3.37(95%CI2.07-5.47, p<0.01). Subgroup analysis showed that in young male, old female, those in CKD3and those with BMI<28kg/m2, the relative risk contributed by A allele was more significant, but the increased risk by A allele was not so obvious in young female.
     Conclusion:
     1) In this premenopausal gout family, all the known gout causative genes were excluded as the culprit of this family. ABCG2SNP rs2231142was found in both the female patients and male healthy members of this family.
     2) In this nested case-control study, after matching with sex, age, CKD and BMI, ABCG2SNP rs2231142A allele was proved to be an independent risk factor for hyperuricemia, and the risk of hyperuricemia tends to increase with increasing number of the risk A allele. Sex, age, CKD and BMI might modify the risk conducted by A allele.
     3) The risk conducted by A allele toward hyperuricemia was relatively insignificant in young female, indicating a protective factor that might overwhelm the risk of SNP rs2231142A allele.
引文
[1]Saag K G, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout[J]. Arthritis Res Ther,2006,8 Suppl 1:S2.
    [2]Roddy E, Doherty M. Epidemiology of gout[J]. Arthritis Res Ther, 2010,12(6):223.
    [3]Zeng Q Y, Chen R, Darmawan J, et al. Rheumatic diseases in China[J]. Arthritis Res Ther,2008,10(1):R17.
    [4]Choi H K, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease[J]. Circulation,2007,116(8):894-900.
    [5]Choi H K, Ford E S, Li C, et al. Prevalence of the metabolic syndrome in patients with gout:the Third National Health and Nutrition Examination Survey[J]. Arthritis Rheum,2007,57(1):109-115.
    [6]Grassi D, Ferri L, Desideri G, et al. Chronic hyperuricemia, uric Acid deposit and cardiovascular risk[J]. Curr Pharm Des, 2013,19(13):2432-2438.
    [7]Yamanaka H. Gout and hyperuricemia in young people[J]. Curr Opin Rheumatol,2011,23(2):156-160.
    [8]Kumar S, Gupta R, Suppiah R. Gout in women:differences in risk factors in young and older women[J]. N Z Med J,2012,125(1363):39-45.
    [9]Smith E U, Diaz-Torne C, Perez-Ruiz F, et al. Epidemiology of gout: an update[J]. Best Pract Res Clin Rheumatol,2010,24(6):811-827.
    [10]Choi H K, Zhu Y, Mount D B. Genetics of gout[J]. Curr Opin Rheumatol, 2010,22 (2):144-151.
    [11]Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study[J]. Lancet,2008,372(9654):1953-1961.
    [12]Stark K, Reinhard W, Grassl M, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease[J]. PLoS One,2009,4(11):e7729.
    [13]Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations[J]. Nat Genet,2013,45(2):145-154.
    [14]Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J]. PLoS Genet,2009,5(6):e1000504.
    [15]George R L, Keenan R T. Genetics of hyperuricemia and gout: implications for the present and future[J]. Curr Rheumatol Rep, 2013,15 (2):309.
    [16]Leah E. Genetics:Metabolic pathways newly implicated in gout epidemiology[J]. Nat Rev Rheumatol,2013,9(2):64.
    [17]Anzai N, Kanai Y, Endou H. New insights into renal transport of urate[J]. Curr Opin Rheumatol,2007,19(2):151-157.
    [18]Robert Terkeltaub, Edwards N L. Gout Diagnosis and Management of Gouty Arthritis and Hyperuricemia [M]. Professional Communications, Inc., 2010.
    [19]Cheng L S, Chiang S L, Tu H P, et al. Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25[J]. Am J Hum Genet,2004,75(3):498-503.
    [20]Matsuo H, Takada T, Ichida K, et al. ABCG2/BCRP dysfunction as a major cause of gout[J]. Nucleosides Nucleotides Nucleic Acids, 2011,30(12):1117-1128.
    [21]Matsuo H, Takada T, Ichida K, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1098-1104.
    [22]李发贵,楚轶,孟冬梅,等.ABCG2基因第5外显子C421A多态与中国汉族男性原发性痛风的相关性研究[J].中华医学遗传学杂志,2011,28(6):683-685.
    [23]Hu M, Tomlinson B. Gender-dependent associations of uric acid levels with a polymorphism in SLC2A9 in Han Chinese patients[J]. Scand J Rheumatol,2012,41(2):161-163.
    [1]Arromdee E, Michet C J, Crowson C S, et al. Epidemiology of gout:is the incidence rising?[J]. J Rheumatol,2002,29(11):2403-2406.
    [2]Zhu Y, Pandya B J, Choi H K. Prevalence of gout and hyperuricemia in the US general population:the National Health and Nutrition Examination Survey 2007-2008[J]. Arthritis Rheum,2011,63(10):3136-3141.
    [3]Cea S L, Rothenbacher D, Choi H K, et al. Contemporary epidemiology of gout in the UK general population[J]. Arthritis Res Ther,2011,13(2):R39.
    [4]Chen J H, Yeh W T, Chuang S Y, et al. Gender-specific risk factors for incident gout:a prospective cohort study[J]. Clin Rheumatol,2012,31(2):239-245.
    [5]Hak A E, Choi H K. Menopause, postmenopausal hormone use and serum uric acid levels in US women--the Third National Health and Nutrition Examination Survey[J]. Arthritis Res Ther,2008,10(5):R116.
    [6]Dirken-Heukensfeldt K J, Teunissen T A, van de Lisdonk H, et al. "Clinical features of women with gout arthritis." A systematic review[J]. Clin Rheumatol, 2010,29(6):575-582.
    [7]Robert Terkeltaub, Edwards N L. Gout Diagnosis and Management of Gouty Arthritis and Hyperuricemia[M]. Professional Communications, Inc.,2010.
    [8]Bhole V, de Vera M, Rahman M M, et al. Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort[J]. Arthritis Rheum, 2010,62(4):1069-1076.
    [9]Kumar S, Gupta R, Suppiah R. Gout in women:differences in risk factors in young and older women[J]. N Z Med J,2012,125(1363):39-45.
    [10]Maynard J W, McAdams D M, Baer A N, et al. Incident gout in women and association with obesity in the Atherosclerosis Risk in Communities (ARIC) Study[J]. Am J Med, 2012,125(7):717-719.
    [11]Leumann E P, Wegmann W. Familial nephropathy with hyperuricemia and gout[J]. Nephron,1983,34(1):51-57.
    [12]Saeki A, Hosoya T, Okabe H, et al. Newly discovered familial juvenile gouty nephropathy in a Japanese family[J]. Nephron,1995,70(3):359-366.
    [13]Bleyer A J, Hart T C. Genetic factors associated with gout and hyperuricemia [J]. Adv Chronic Kidney Dis,2006,13(2):124-130.
    [14]Medeiros M M, Silva G J, Daher E F. Tophus gout and chronic kidney disease in a young female patient:report of familial juvenile hyperuricemic nephropathy in three generations of the same family[J]. Rheumatol Int,2012,32(11):3687-3690.
    [15]Stiburkova B, Pospisilova E, Kmoch S, et al. Analysis of excretion fraction of uric acid[J]. Nucleosides Nucleotides Nucleic Acids,2006,25(9-11):1301-1304.
    [16]原发性痛风患者肾脏排泄尿酸减少分析[J].广东医学,2009,30(10):1492-1494.
    [17]Wei X, Xu R, Yang Z, et al. Novel uromodulin mutation in familial juvenile hyperuricemic nephropathy[J]. Am J Nephrol,2012,36(2):114-120.
    [18]Zivna M, Hulkova H, Matignon M, et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure[J]. Am J Hum Genet,2009,85(2):204-213.
    [19]Hodanova K, Majewski J, Kublova M, et al. Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41[J]. Kidney Int, 2005,68 (4):1472-1482.
    [20]Saeki A, Hosoya T, Okabe H, et al. Newly discovered familial juvenile gouty nephropathy in a Japanese family[J]. Nephron,1995,70(3):359-366.
    [21]Bingham C, El lard S, Van'T H W, et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-lbeta gene mutation[J]. Kidney Int,2003,63(5):1645-1651.
    [22]Nyhan W L. Lesch-Nyhan disease[J]. Nucleosides Nucleotides Nucleic Acids, 2008,27(6):559-563.
    [23]Kelley W N, Rosenbloom F M, Henderson J F, et al. A specific enzyme defect in gout associated with overproduction of uric acid[J]. Proc Natl Acad Sci U S A, 1967,57 (6):1735-1739.
    [24]Jinnah H A, Ceballos-Picot I, Torres R J, et al. Attenuated variants of Lesch-Nyhan disease[J]. Brain,2010,133(Pt 3):671-689.
    [25]De Gregorio L, Jinnah H A, Harris J C, et al. Lesch-Nyhan disease in a female with a clinically normal monozygotic twin[J]. Mol Genet Metab,2005,85(1):70-77.
    [26]Rinat C, Zoref-Shani E, Ben-Neriah Z, et al. Molecular, biochemical, and genetic characterization of a female patient with Lesch-Nyhan disease [J]. Mol Genet Metab,2006,87(3):249-252.
    [27]Smith E U, Diaz-Torne C, Perez-Ruiz F, et al. Epidemiology of gout:an update [J]. Best Pract Res Clin Rheumatol,2010,24(6):811-827.
    [28]Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study[J]. Lancet,2008,372(9654):1953-1961.
    [29]Yang Q, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors[J]. Circ Cardiovasc Genet,2010,3(6):523-530.
    [30]George R L, Keenan R T. Genetics of hyperuricemia and gout:implications for the present and future[J]. Curr Rheumatol Rep,2013,15(2):309.
    [31]Matsuo H, Takada T, Ichida K, et al. ABCG2/BCRP dysfunction as a major cause of gout[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1117-1128.
    [32]Nakanishi T, Ohya K, Shimada S, et al. Functional cooperation of URAT1 (SLC22A12) and URATvl (SLC2A9) in renal reabsorption of urate[J]. Nephrol Dial Transplant, 2013.
    [33]Cheng L S, Chiang S L, Tu H P, et al. Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25[J]. Am J Hum Genet, 2004,75 (3):498-503.
    [34]Vazquez-Mellado J, Jimenez-Vaca A L, Cuevas-Covarrubias S, et al. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout[J]. Rheumatology (Oxford),2007,46(2):215-219.
    [35]Yamanaka H. Gout and hyperuricemia in young people[J]. Curr Opin Rheumatol, 2011,23 (2):156-160.
    [36]Tu H P, Chen C J, Tovosia S, et al. Associations of a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders[J]. Ann Rheum Dis,2010,69(5):887-890.
    [37]Woodward O M, Kottgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout[J]. Proc Natl Acad Sci USA,2009,106(25):10338-10342.
    [38]Matsuo H, Takada T, Ichida K, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout[J]. Nucleosides Nucleotides Nucleic Acids, 2011,30(12):1098-1104.
    [39]李发贵,楚轶,孟冬梅,等ABCG2基因第5外显子C421A多态与中国汉族男性原发性痛风的相关性研究[J].中华医学遗传学杂志,2011,28(6):683-685.
    [40]Kerr I D, Haider A J, Gelissen I C. The ABCG family of membrane-associated transporters:you don't have to be big to be mighty[J]. Br J Pharmacol, 2011,164(7):1767-1779.
    [41]Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia[J]. Nat Commun,2012,3:764.
    [42]Nakanishi T, Ross D D. Breast cancer resistance protein (BCRP/ABCG2):its role in multidrug resistance and regulation of its gene expression[J]. Chin J Cancer, 2012,31(2):73-99.
    [43]Bailey-Dell K J, Hassel B, Doyle L A, et al. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene[J]. Biochim Biophys Acta,2001,1520(3):234-241.
    [44]Ee P L, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene[J]. Cancer Res,2004,64(4):1247-1251.
    [45]Krishnamurthy P, Ross D D, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme[J]. J Biol Chem, 2004,279(23):24218-24225.
    [46]Pradhan M, Bembinster L A, Baumgarten S C, et al. Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements[J]. J Biol Chem,2010,285(41):31100-31106.
    [47]Imai Y, Ishikawa E, Asada S, et al. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2[J]. Cancer Res, 2005,65(2):596-604.
    [1]Bowman G L, Shannon J, Frei B, et al. Uric acid as a CNS antioxidant[J]. J Alzheimers Dis, 2010,19(4):1331-1336.
    [2]Watanabe S, Kang D H, Feng L, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity [J]. Hypertension,2002,40(3):355-360.
    [3]Zhu Y, Pandya B J, Choi H K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008[J]. Arthritis Rheum, 2011,63(10):3136-3141.
    [4]Juraschek S P, Kovell L C, Miller E R, et al. Association of kidney disease with prevalent gout in the United States in 1988-1994 and 2007-2010[J]. Semin Arthritis Rheum,2013.
    [5]Johnson R J, Segal M S, Srinivas T, et al. Essential hypertension, progressive renal disease, and uric acid:a pathogenetic link?[J]. J Am Soc Nephrol,2005,16(7):1909-1919.
    [6]Choi H K, Ford E S, Li C, et al. Prevalence of the metabolic syndrome in patients with gout:the Third National Health and Nutrition Examination Survey[J]. Arthritis Rheum,2007,57(1):109-115.
    [7]Grassi D, Ferri L, Desideri G, et al. Chronic hyperuricemia, uric Acid deposit and cardiovascular risk[J]. Curr Pharm Des,2013,19(13):2432-2438.
    [8]Li C, Hsieh M C, Chang S J. Metabolic syndrome, diabetes, and hyperuricemia[J]. Curr Opin Rheumatol,2013,25(2):210-216.
    [9]Kuo C F, Yu K H, See L C, et al. Risk of myocardial infarction among patients with gout:a nationwide population-based study[J]. Rheumatology (Oxford),2013,52(1):111-117.
    [10]Simon J A, Lin F, Vittinghoff E, et al. The relation of postmenopausal hormone therapy to serum uric acid and the risk of coronary heart disease events:the Heart and Estrogen-Progestin Replacement Study (HERS)[J]. Ann Epidemiol,2006,16(2):138-145.
    [11]Saag K G, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout[J]. Arthritis Res Ther,2006,8 Suppl1:S2.
    [12]de Oliveira E P, Burini R C. High plasma uric acid concentration:causes and consequences[J]. Diabetol Metab Syndr,2012,4:12.
    [13]Robert Terkeltaub, Edwards N L. Gout Diagnosis and Management of Gouty Arthritis and Hyperuricemia[M]. Professional Communications, Inc.,2010.
    [14]Roddy E, Doherty M. Epidemiology of gout[J]. Arthritis Res Ther,2010,12(6):223.
    [15]Smith E U, Diaz-Torne C, Perez-Ruiz F, et al. Epidemiology of gout:an update[J]. Best Pract Res Clin Rheumatol,2010,24(6):811-827.
    [16]Hak A E, Choi H K. Menopause, postmenopausal hormone use and serum uric acid levels in US women--the Third National Health and Nutrition Examination Survey [J]. Arthritis Res Ther, 2008,10(5):R116.
    [17]Krishnan E. Reduced glomerular function and prevalence of gout:NHANES 2009-10[J]. PLoS One, 2012,7(11):e50046.
    [18]Choi H K, Atkinson K, Karlson E W, et al. Obesity, weight change, hypertension, diuretic use, and risk of gout in men:the health professionals follow-up study[J]. Arch Intern Med, 2005,165(7):742-748.
    [19]Cea S L, Rothenbacher D, Choi H K, et al. Contemporary epidemiology of gout in the UK general population[J]. Arthritis Res Ther,2011,13(2):R39.
    [20]Choi H K, Atkinson K, Karlson E W, et al. Obesity, weight change, hypertension, diuretic use, and risk of gout in men:the health professionals follow-up study[J]. Arch Intern Med, 2005,165(7):742-748.
    [21]马亚,曾学军,朱卫国,等.北京协和医院痛风门诊患者数据库的资料分析[J].基础医学与临床,2012(7):819-822.
    [22]Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study[J]. Lancet,2008,372(9654):1953-1961.
    [23]McCarthy M I, Abecasis G R, Cardon L R, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges[J]. Nat Rev Genet,2008,9(5):356-369.
    [24]Kerr I D, Haider A J, Gelissen I C. The ABCG family of membrane-associated transporters:you don't have to be big to be mighty[J]. Br J Pharmacol,2011,164(7):1767-1779.
    [25]Woodward O M, Kottgen A, Kottgen M. ABCG transporters and disease[J]. FEBS J, 2011,278(18):3215-3225.
    [26]Nakayama A, Matsuo H, Takada T, et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans[J]. Nucleosides Nucleotides Nucleic Acids, 2011,30(12):1091-1097.
    [27]Woodward O M, Kottgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout[J]. Proc Natl Acad Sci U S A, 2009,106(25):10338-10342.
    [28]Matsuo H, Takada T, Ichida K, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1098-1104.
    [29]Matsuo H, Takada T, Ichida K, et al. ABCG2/BCRP dysfunction as a major cause of gout[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1117-1128.
    [30]Yang Q, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors[J]. Circ Cardiovasc Genet, 2010,3(6):523-530.
    [31]Stark K, Reinhard W, Grassl M, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease[J]. PLoS One, 2009,4(11):e7729.
    [32]Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations[J]. Nat Genet,2013,45(2):145-154.
    [33]Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J]. PLoS Genet,2009,5(6):e1000504.
    [34]李发贵,楚轶,孟冬梅,等ABCG2基因第5外显子C421A多态与中国汉族男性原发性痛风的相关性研究[J].中华医学遗传学杂志,2011,28(6):683-685.
    [35]Hu M, Tomlinson B. Gender-dependent associations of uric acid levels with a polymorphism in SLC2A9 in Han Chinese patients[J]. Scand J Rheumatol,2012,41(2):161-163.
    [36]刘淑芬,李源杰,黄程锦,等.高尿酸血症与其他代谢异常的相关性[J].协和医学杂志,2010,01(2):150-154.
    [37]方卫纲,黄晓明,王玉,等.北京地区部分人群痛风的流行病学调查[J].基础医学与临床,2006(7):781-785.
    [38]别志欣,方卫纲,黄晓明,等.北京地区成人血清尿酸水平与代谢综合征的关系分析[J].基础医学与临床,2010,30(8):790-794.
    [39]Krishnan E, Lienesch D, Kwoh C K. Gout in ambulatory care settings in the United States[J]. J Rheumatol,2008,35(3):498-501.
    [40]Krishnan E, Lessov-Schlaggar C N, Krasnow R E, et al. Nature versus nurture in gout:a twin study[J]. Am J Med,2012,125(5):499-504.
    [41]聂广宁,王小云,杨洪艳,等.中国城市女性绝经年龄影响因素调查[J].中国妇幼保健,2011,26(8):1191-1193.
    [42]Yahyaoui R, Esteva I, Haro-Mora J J, et al. Effect of long-term administration of cross-sex hormone therapy on serum and urinary uric acid in transsexual persons[J]. J Clin Endocrinol Metab, 2008,93(6):2230-2233.
    [43]Ee P L, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene[J]. Cancer Res,2004,64(4):1247-1251.
    [44]Yasuda S, Itagaki S, Hirano T, et al. Effects of sex hormones on regulation of ABCG2 expression in the placental cell line BeWo[J]. J Pharm Pharm Sci,2006,9(1):133-139.
    [45]Wang H, Zhou L, Gupta A, et al. Regulation of BCRP/ABCG2 expression by progesterone and 17beta-estradiol in human placental Be Wo cells[J]. Am J Physiol Endocrinol Metab, 2006,290(5):E798-E807.
    [46]Pradhan M, Bembinster L A, Baumgarten S C, et al. Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements[J]. J Biol Chem, 2010,285(41):31100-31106.
    [47]Imai Y, Ishikawa E, Asada S, et al. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2[J]. Cancer Res,2005,65(2):596-604.
    [48]Matsuura F, Yamashita S, Nakamura T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects:visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity[J]. Metabolism,1998,47(8):929-933.
    [49]Fam A G. Gout, diet, and the insulin resistance syndrome[J]. J Rheumatol,2002,29(7):1350-1355.
    [50]Matsubara M, Chiba H, Maruoka S, et al. Elevated serum leptin concentrations in women with hyperuricemia[J]. J Atheroscler Thromb,2002,9(1):28-34.
    [51]Bedir A, Topbas M, Tanyeri F, et al. Leptin might be a regulator of serum uric acid concentrations in humans[J]. Jpn Heart J,2003,44(4):527-536.
    [52]Gao B, Zhou J, Ge J, et al. Association of maximum weight with hyperuricemia risk:a retrospective study of 21,414 Chinese people[J]. PLoS One,2012,7(11):e51186.
    [I]Grassi D, Ferri L, Desideri G, et al. Chronic hyperuricemia, uric Acid deposit and cardiovascular risk[J]. Curr Pharm Des, 2013,19(13):2432-2438.
    [2]Reduced Glomerular Function and Prevalence of Gout NHANES 2009-10[J].
    [3]叶德邵,赵东宝.尿酸盐转运体在原发性高尿酸血症中的研究进展[J].中华风湿病学杂志,2012,16(4):271-273.
    [4]Robert Terkeltaub, Edwards N L. Gout Diagnosis and Management of Gouty Arthritis and Hyperuricemia[M]. Professional Communications, Inc. 2010.
    [5]de Oliveira E P, Burini R C. High plasma uric acid concentration: causes and consequences[J]. Diabetol Metab Syndr,2012,4:12.
    [6]Anzai N, Jutabha P, Amonpatumrat-Takahashi S, et al. Recent advances in renal urate transport:characterization of candidate transporters indicated by genome-wide association studies[J]. Clin Exp Nephrol, 2012,16(1):89-95.
    [7]Choi H K, Zhu Y, Mount D B. Genetics of gout [J]. Curr Opin Rheumatol, 2010,22(2):144-151.
    [8]Krishnan E, Lessov-Schlaggar C N, Krasnow R E, et al. Nature versus nurture in gout:a twin study[J]. Am J Med,2012,125(5):499-504.
    [9]Kumar S, Gupta R, Suppiah R. Gout in women:differences in risk factors in young and older women[J]. N Z Med J,2012,125(1363):39-45.
    [10]Yamanaka H. Gout and hyperuricemia in young people[J]. Curr Opin Rheumatol,2011,23(2):156-160.
    [11]Yang Q, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors[J]. Circ Cardiovasc Genet,2010,3(6):523-530.
    [12]Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels[J]. Nature,2002,417(6887):447-452.
    [13]Eraly S A, Vallon V, Rieg T, et al. Multiple organic anion transporters contribute to net renal excretion of uric acid[J]. Physiol Genomics,2008,33(2):180-192.
    [14]Price K L, Sautin Y Y, Long D A, et al. Human vascular smooth muscle cells express a urate transporter[J]. J Am Soc Nephrol, 2006,17 (7):1791-1795.
    [15]Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion[J]. J Am Soc Nephrol, 2004,15(1):164-173.
    [16]Vazquez-Mellado J, Alvarado-Romano V, Burgos-Vargas R, et al. Homozygous frameshift mutation in the SLC22A12 gene in a patient with primary gout and high levels of serum uric acid[J]. J Clin Pathol, 2007,60(8):947-948.
    [17]Vazquez-Mellado J, Jimenez-Vaca A L, Cuevas-Covarrubias S, et al. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout[J]. Rheumatology (Oxford),2007,46(2):215-219.
    [18]Li T, Walsh J R, Ghishan F K, et al. Molecular cloning and characterization of a human urate transporter (hURAT1) gene promoter [J]. Biochim Biophys Acta,2004,1681(1):53-58.
    [19]Hosoyamada M, Ichida K, Enomoto A, et al. Function and localization of urate transporter 1 in mouse kidney[J]. J Am Soc Nephrol, 2004,15(2):261-268.
    [20]王蓓,袁鹰,李长贵,等.高脂血症对OLETF大鼠肾小管上皮细胞尿酸盐阴离子交换器表达的影响[J].实用医学杂志,2007,23(20):3160-3162.
    [21]Doshi M, Takiue Y, Saito H, et al. The increased protein level of URAT1 was observed in obesity/metabolic syndrome model mice[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1290-1294.
    [22]Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J]. PLoS Genet,2009,5(6):e1000504.
    [23]Graessler J, Graessler A, Unger S, et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population[J]. Arthritis Rheum, 2006,54(1):292-300.
    [24]王瑛,施雪莺,高泳.男性高尿酸血症与URAT1基因多态性的关系[J].检验医学,2012,27(1):30-33.
    [25]孟冬梅,韩琳,苗志敏,等.SLC22A12基因第8外显子和第8内含子多态与中国汉族人原发性高尿酸血症关联研究[J].中华医学遗传学杂志,2010,27(6):659-663.
    [26]韩琳,于清,胡东明,等.中国汉族人尿酸盐转运蛋白1基因启动子区多态性与原发性高尿酸血症的关联研究[J]. 中华内分泌代谢杂志,2012,28(1):36-39.
    [27]Nindita Y, Hamada T, Bahrudin U, et al. Effect of losartan and benzbromarone on the level of human urate transporter 1 mRNA[J]. Arzneimittelforschung,2010,60(4):186-188.
    [28]Iwanaga T, Sato M, Maeda T, et al. Concentration-dependent mode of interaction of angiotensin Ⅱ receptor blockers with uric acid transporter[J]. J Pharmacol Exp Ther,2007,320(1):211-217.
    [29]Nakamura M, Anzai N, Jutabha P, et al. Concentration-dependent inhibitory effect of irbesartan on renal uric acid transporters[J]. J Pharmacol Sci,2010,114(1):115-118.
    [30]Uetake D, Ohno I, Ichida K, et al. Effect of fenofibrate on uric acid metabolism and urate transporter 1[J]. Intern Med,2010,49(2):89-94.
    [31]Iwanaga T, Kobayashi D, Hirayama M, et al. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone[J]. Drug Metab Dispos,2005,33(12):1791-1795.
    [32]Wempe M F, Jutabha P, Quade B, et al. Developing potent human uric acid transporter 1 (hURAT1) inhibitors[J]. J Med Chem, 2011,54(8):2701-2713.
    [33]Richette P, Garay R. Novel drug discovery strategies for gout[J]. Expert Opin Drug Discov,2013,8(2):183-189.
    [34]Richette P. Debulking the urate load to feel better[J]. J Rheumatol, 2012,39(7):1311-1313.
    [35]Phay J E, Hussain H B, Moley J F. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9)[J]. Genomics,2000,66(2):217-220.
    [36]Manolescu A R, Augustin R, Moley K, et al. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity[J]. Mol Membr Biol,2007,24(5-6):455-463.
    [37]Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout[J]. Nat Genet,2008,40(4):437-442.
    [38]Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts [J]. PLoS Genet, 2007,3(11):e194.
    [39]Augustin R, Carayannopoulos M 0, Dowd L 0, et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking[J]. J Biol Chem, 2004,279(16):16229-16236.
    [40]Caulfield M J, Munroe P B,O'Neill D, et al. SLC2A9 is a high-capacity urate transporter in humans[J]. PLoS Med,2008,5(10):e197.
    [41]Mobasheri A, Neama G, Bell S, et al. Human articular chondrocytes express three facilitative glucose transporter isoforms:GLUT1, GLUT3 and GLUT9[J]. Cell Biol Int,2002,26(3):297-300.
    [42]Takiue Y, Hosoyamada M, Kimura M, et al. The effect of female hormones upon urate transport systems in the mouse kidney[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(2):113-119.
    [43]Hosoyamada M, Takiue Y, Shibasaki T, et al. The effect of testosterone upon the urate reabsorptive transport system in mouse kidney[J]. Nucleosides Nucleotides Nucleic Acids,2010,29(7):574-579.
    [44]Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATvl (SLC2A9) in humans[J]. J Biol Chem,2008,283(40):26834-26838.
    [45]Nakanishi T, Ohya K, Shimada S, et al. Functional cooperation of URATl (SLC22A12) and URATvl (SLC2A9) in renal reabsorption of urate[J]. Nephrol Dial Transplant,2013.
    [46]Kimura T, Amonpatumrat S, Tsukada A, et al. Increased expression of SLC2A9 decreases urate excretion from the kidney[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1295-1301.
    [47]Preitner F, Bonny 0, Laverriere A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy[J]. Proc Natl Acad Sci U S A, 2009,106(36):15501-15506.
    [48]Dinour D, Gray N K, Campbell S, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia[J]. J Am Soc Nephrol,2010,21 (1):64-72.
    [49]Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia[J]. Am J Hum Genet, 2008,83 (6):744-751.
    [50]Tu H P, Chen C J, Tovosia S, et al. Associations of a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders[J]. Ann Rheum Dis, 2010,69(5):887-890.
    [51]Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects[J]. Nat Genet, 2008,40(4):430-436.
    [52]Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study[J]. Lancet,2008,372(9654):1953-1961.
    [53]Hollis-Moffatt J E, Xu X, Dalbeth N, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island, and Caucasian case-control sample sets[J]. Arthritis Rheum,2009,60(11):3485-3492.
    [54]Urano W, Taniguchi A, Anzai N, et al. Association between GLUT9 and gout in Japanese men[J]. Ann Rheum Dis,2010,69(5):932-933.
    [55]Guan M, Zhou D, Ma W, et al. Association of an intronic SNP of SLC2A9 gene with serum uric acid levels in the Chinese male Han population by high-resolution melting method[J]. Clin Rheumatol,2011,30(1):29-35.
    [56]周丹秋,顾小叶,李佩蕾,等.中国男性痛风患者SLC2A9基因单核苷酸多态性与尿酸水平的关系[J].中华风湿病学杂志,2011,15(9):596-599.
    [57]Hollis-Moffatt J E, Gow P J, Harrison A A, et al. The SLC2A9 nonsynonymous Arg265His variant and gout:evidence for a population-specific effect on severity[J]. Arthritis Res Ther, 2011,13(3):R85.
    [58]Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter[J]. J Am Soc Nephrol,2007,18(2):430-439.
    [59]Bahn A, Hagos Y, Reuter S, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13) [J]. J Biol Chem, 2008,283(24):16332-16341.
    [60]Cheng L S, Chiang S L, Tu H P, et al. Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25[J]. Am J Hum Genet,2004,75(3):498-503.
    [61]Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout:a function-based genetic analysis in a Japanese population[J]. Sci Transl Med,2009,1 (5):5r-11r.
    [62]Nakayama A, Matsuo H, Takada T, et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans[J]. Nucleosides Nucleotides Nucleic Acids, 2011,30(12):1091-1097.
    [63]Woodward 0 M, Kottgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout[J]. Proc Natl Acad Sci U S A,2009,106(25):10338-10342.
    [64]Krishnamurthy P, Schuetz J D. Role of ABCG2/BCRP in biology and medicine[J]. Annu Rev Pharmacol Toxicol,2006,46:381-410.
    [65]Kerr I D, Haider A J, Gelissen I C. The ABCG family of membrane-associated transporters:you don't have to be big to be mighty[J]. Br J Pharmacol,2011,164(7):1767-1779.
    [66]Nakanishi T, Ross D D. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression [J]. Chin J Cancer,2012,31(2):73-99.
    [67]Ee P L, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene[J]. Cancer Res,2004,64(4):1247-1251.
    [68]Krishnamurthy P, Ross D D, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme[J]. J Biol Chem,2004,279(23):24218-24225.
    [69]Bailey-Dell K J, Hassel B, Doyle L A, et al. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene[J]. Biochim Biophys Acta, 2001,1520(3):234-241.
    [70]Yasuda S, Itagaki S, Hirano T, et al. Effects of sex hormones on regulation of ABCG2 expression in the placental cell line BeWo[J]. J Pharm Pharm Sci,2006,9(1):133-139.
    [71]Wang H, Zhou L, Gupta A, et al. Regulation of BCRP/ABCG2 expression by progesterone and 17beta-estradiol in human placental BeWo cells[J]. Am J Physiol Endocrinol Metab,2006,290(5):E798-E807.
    [72]Pradhan M, Bembinster L A, Baumgarten S C, et al. Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements[J]. J Biol Chem, 2010,285(41):31100-31106.
    [73]Imai Y, Ishikawa E, Asada S, et al. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2[J]. Cancer Res,2005,65(2):596-604.
    [74]Merino G, van Herwaarden A E, Wagenaar E, et al. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver[J]. Mol Pharmacol, 2005,67 (5):1765-1771.
    [75]Matsuo H, Takada T, Ichida K, et al. ABCG2/BCRP dysfunction as a major cause of gout[J]. Nucleosides Nucleotides Nucleic Acids, 2011,30(12):1117-1128.
    [76]Matsuo H, Takada T, Ichida K, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout[J]. Nucleosides Nucleotides Nucleic Acids,2011,30(12):1098-1104.
    [77]Hosomi A, Nakanishi T, Fujita T, et al. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2[J]. PLoS One, 2012,7(2):e30456.
    [78]Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia[J]. Nat Commun,2012,3:764.
    [79]Woodward 0 M, Kottgen A, Kottgen M. ABCG transporters and disease [J]. FEBS J,2011,278(18):3215-3225.
    [80]Phipps-Green A J, Hollis-Moffatt J E, Dalbeth N, et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets[J]. Hum Mol Genet,2010,19(24):4813-4819.
    [81]Hu M, Tomlinson B. Gender-dependent associations of uric acid levels with a polymorphism in SLC2A9 in Han Chinese patients[J]. Scand J Rheumatol,2012,41 (2):161-163.
    [82]李发贵,楚轶,孟冬梅,等.ABCG2基因第5外显子C421A多态与中国汉族男性原发性痛风的相关性研究[J].中华医学遗传学杂志,2011,28(6):683-685.
    [83]Iharada M, Miyaji T, Fujimoto T, et al. Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter[J]. J Biol Chem,2010,285(34):26107-26113.
    [84]Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate[J]. J Biol Chem,2010,285(45):35123-35132.
    [85]Hollis-Moffatt J E, Phipps-Green A J, Chapman B, et al. The renal urate transporter SLC17A1 locus:confirmation of association with gout[J]. Arthritis Res Ther,2012,14(2):R92.
    [86]Bakhiya A, Bahn A, Burckhardt G, et al. Human organic anion transporter 3 (h0AT3) can operate as an exchanger and mediate secretory urate flux[J]. Cell Physiol Biochem,2003,13(5):249-256.
    [87]李成乾,赵家军,王霞,等.VLDL对人尿酸盐转运蛋白hOATl基因表达的影响[J].山东大学学报(医学版),2008,46(6):579-581,585.
    [88]Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus [J]. J Biol Chem, 2004,279(44):45942-45950.
    [89]Tachibana K, Anzai N, Ueda C, et al. Regulation of the human PDZK1 expression by peroxisome proliferator-activated receptor alpha[J]. FEBS Lett,2008,582(28):3884-3888.
    [90]Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations[J]. Nat Genet,2013,45(2):145-154.
    [91]Anzai N, Jutabha P, Amonpatumrat-Takahashi S, et al. Recent advances in renal urate transport:characterization of candidate transporters indicated by genome-wide association studies[J]. Clin Exp Nephrol, 2012,16(1):89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700