室内空气质量控制中关键检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,室内空气质量问题已成为全球关注的热点。改善室内空气质量的首要前提是对室内空气污染物的检测,主要包括甲醛(HCHO)、苯系物、总挥发性有机物、氡气、石材放射、氨的检测等,其中对室内首要污染物——甲醛的检测更成为重中之重。现如今控制室内空气质量问题的主要途径是在空调上安装室内空气检测、净化装置,但空调散热器铝箔本身可能散发的难闻气味也会反过来污染室内空气质量。实现对室内甲醛和空调散热器铝箔散发气味的实时、准确的现场检测和识别是控制室内空气质量的两个关键检测技术。本文针对室内甲醛、空调散热器铝箔气味的检测,主要从甲醛敏感材料的制备、甲醛传感器性能、基于传感器阵列与BP神经网络的电子鼻对二元混合气体中0.06ppm甲醛的识别、空调散热器铝箔气味检测系统等几方面进行了系统的研究。
     用化学共沉淀法制备了SnO_2-NiO粉体,各种表征分析表明:该粉体属于纳米级,依据NiO的掺杂浓度和粉体煅烧温度的不同其晶粒尺寸在11nm~39nm范围内变化。低浓度NiO的掺杂使金属氧化物表面的吸附氧数量增加,表面活性位相应增加,还原性气体甲醛与吸附氧的反应加快,大大提高了对甲醛气体的气敏性能。低浓度的NiO掺杂也有效地抑制了SnO_2晶粒的生长,晶粒尺寸减小,比表面积增大,有利于对氧的吸附和气体表面反应。煅烧温度越高晶粒尺寸越大。NiO低浓度掺杂时XRD中只出现了SnO_2衍射峰,没有任何Ni物种的衍射峰出现,低浓度的NiO可能被隔离在SnO_2的表面。当纳米粉体中Sn与Ni的原子比达到4:5,经600℃煅烧后,XRD中出现了NiO衍射峰,体系发生了两相分离。
     调和SnO_2-NiO粉体涂覆在微热板敏感区经退火后制成甲醛传感器,用自行搭建的气体传感器自动测试系统对甲醛传感器的测试表明:低浓度NiO掺杂的SnO_2-NiO甲醛传感器的电特性行为表现为n型。该传感器对痕量甲醛响应灵敏、选择性好、稳定性好。最佳工作温度为300℃,在300℃下加热功率为180mW。其响应时间和恢复时间随着甲醛气体的浓度不同而变化。环境温度对传感器影响较大;相对湿度超过30%时对甲醛传感器的影响很小。空气中O_2的浓度对0.06ppmHCHO及其干扰气的响应几乎没有影响。
     基于气体传感器阵列与BP神经网络的电子鼻实现了对二元混合气中0.06ppmHCHO和低浓度干扰气体的定量识别。传感器阵列由所研制的甲醛和其他几种掺杂不同贵金属的SnO_2薄膜传感器构成。用主成分分析法对传感器阵列信号进行压缩降维后,构建了BP神经网络对0.06ppmHCHO进行了有效识别,结果表明:对单一成分的0.06ppmHCHO的识别率为88.8%,而在乙醇、甲苯、α-派烯、VOCsmixture等干扰气体存在时,对0.06ppmHCHO的识别率分别为92%、89.3%、90.0%和96.7%。该识别率可与文献报道的电子鼻对不同种类、不同浓度的气体的识别率相比拟。电子鼻能有效地识别二元混合气体中0.06ppmHCHO。
     针对空调散热器铝箔散发的气味研发了空调散热器铝箔气味检测系统。该系统具有重复性,可在现场实时检测。设定的阈值随环境温湿度的变化而变化。传感器阵列由所研制的甲醛传感器和其他4只商售传感器构成。采用sum of deltV数据处理方法和神经网络相结合的两级数据处理模式。实测数据表明:当sum of deltV的值与设定阈值的差值的绝对值大于0.1时,可只用sum of deltV数据处理方法对空调散热器铝箔散发的气味直接进行判定;当sum of deltV的值与设定的阈值很接近时,即两者的差值的绝对值小于0.1时,需用神经网络做进一步的判定。Sum of deltV数据处理方法和神经网络相结合的判定结果与气味专家的判定结果完全吻合。该检测系统已被国际某知名大公司用于生产线的产品质量检测。
At present,Indoor air quality(IAQ) problems have become the focal point of worldwide attention.It is an important prerequisite to detect indoor air pollutants for improving IAQ, which include formaldehyde(HCHO),benzene series,TVOC,radon gas,radiation,ammonia, et al.The detection of HCHO as the first pollutant is the most important.The main means of controlling IAQ is to install indoor air detection and purification unit on air-condition now. But bad odor from air-condition radiator aluminum plates will severely harm people health. Exact detecting and recognizing indoor HCHO and the odor from air-condition radiator aluminum plates in real time on the spot are two key detection technologies to control IAQ. The fabrication of material which is sensitive to HCHO,properties of HCHO sensor, electronic nose based on gas sensor array and BP neural network to recognize 0.06ppm HCHO in binary mixtures and system developed to detect the odor from air-condition radiator aluminum plates are systematically researched in the paper.
     SnO_2-NiO powders fabricated by chemical coprecipitation method belong to nanometer levels.The grain size of the powders changes in the range of 11 nm to 39nm according to the difference of NiO-doped concentration and the calcining temperature.Low concentration doped NiO greatly increases the quantity of adsorption oxygen and surface reactive sites.The reaction of HCHO gas and adsorbed oxygen speeds up to greatly improve the sensitive properties to HCHO gas.Low concentration doped NiO can effectively inhibit the growth of SnO_2 grains to decrease the grain size and increase specific surface area,which is beneficial to the oxygen adsorbing and the surface reaction between HCHO and adsorbed oxygen.The higher the calcining temperature of the powders,the larger the grain size.The SnO_2 peaks and no peaks of Ni species are observed in X-ray diffraction(XRD) pattern when NiO is doped at low concentration,because low concentration NiO is segregated on the surface of SnO_2.NiO peaks can be observed in XRD pattern of SnO_2-NiO powders calcined at 600℃at an atomic ratio of Sn:Ni=4:5 because the system takes place two-phase separation.
     The HCHO sensor is fabricated after annealing the MHP whose sensitive region the homogenized SnO_2-NiO powders are coated onto.The gas sensor characterization system is employed to test the HCHO sensor properties.The SnO_2-NiO HCHO sensor shows the electronic property behavior of n-type semiconductor.The HCHO sensor shows high response to low concentration HCHO,good stability and selectivity.The optimized working temperature is at 300℃and the power is about 180mW at 300℃.The response and recovery time change with the HCHO concentration.The environmental temperature has influence on the HCHO sensor and the relative humidity beyond 30%almost has no influence.The O_2 concentration in the atmosphere almost has no influence on the response to 0.06ppmHCHO and its interference gas.
     The quantitative recognizing of 0.06ppmHCHO and its interference gas in binary mixtures is realized by employing electronic nose technology based on the gas sensor array and back propagation(BP) neural network(NN).The gas sensor array is composed of above-mentioned HCHO sensor and several noble metal-doped SnO_2 thin-film sensors.The BP NN is constructed to recognize trace HCHO after the sensor array signals are compressed and reduced the dimensionality by PCA.The results show that the recognition rate to the single component HCHO is 88.8%and that to the HCHO in the presense of an interference gas,such as alcohol,toluene,α-pinene and VOCsmixture is 92%,89.3%,90.0%and 96.7%, respectively.The recognition rate is commensurable with that in literatures reported to recognize different kinds,different concentrations of gases by employing electronic nose. Electronic nose can effectively recognize 0.06ppmHCHO in binary mixtures.
     The odor detecting system is developed to aim at the odor from air-condition radiator aluminum plates.The system owns the repeatability and can detect in real time on the spot. The threshold value should be adjusted with the change of environmental temperature and humidity.The sensor array is composed of above-mentioned HCHO sensor and four commercial sensors.The sum of deltV data processing method combineds with NN is employed to process the sensor array signals.If |sum of deltV-threshold value| is bigger than 0.1,the sum of deltV data processing method can directly give the judgement to tested aluminum plates.If |sum of deltV-threshold value| is smaller than 0.1,the NN is used to further judge.The judgement results of the sum of deltV data processing method combineded with NN completely coincide with those of the odor specialist.The detection system has been used to detect the product quality in the production line by a internationally well-known Co.
引文
[1]徐蕾,赵玉林.室内环境污染现状与危害及防治对策.污染防治技术,2005,15(8):1-2.
    [2]朱天乐,李国文,田贺忠.室内空气污染控制.北京:化学工业出版社,2003.
    [3]国家环境保护总局科技标准司,中国环境科学学会.室内环境与健康.北京:中国环境科学出版社,2002.
    [4]崔九思.室内空气污染监测方法.北京:化学工业出版社,2002.
    [5]吴忠标,赵伟荣.室内空气污染及净化技术.北京:化学工业出版社,2005.
    [6]Korpan Y I,Gonchar M V,Sibimy A A,et al.Development of highly selective and stable potentiometric sensors for formaldehyde determination.Biosensors & Bioelectronics,2000,15:77-83.
    [7]史德,苏广和.室内空气质量对人体健康的影响.北京:中国环境科学出版社,2005.
    [8]张金良,郭新彪.居住环境与健康.北京:化学工业出版社,2004.
    [9]徐倩.室内空气中甲醛污染的监测与去除方法研究:(硕士学位论文).济南:山东大学,2007.
    [10]杨建忠,王耀武.室内甲醛检测方法和限定标准.毛纺科技,2003,4:55-58.
    [11]Lemus R,Abdelghani AA,Akers TG,et al.Potential health risks from exposure to indoor formaldehyde.Reviews on Environmental Health,1998,13:91-98.
    [12]杨玉花,袭著革,晁福寰.甲醛污染与人体健康研究进展.解放军预防医学杂志,2005,23(1):68-71.
    [13]刘金玲,崔毅,贾崇奇等.甲醛职业暴露与胃癌关系的回顾性队列研究.中国慢性病预防与控制,1998,6(4):175-177.
    [14]谢颖,唐明德,易义珍等.甲醛对雄性小鼠生殖细胞遗传物质的影响及其机制.工业卫生与职业病,2003,29(2):84-88.
    [15]胡冠九,尹卫萍.室内空气中甲醛的测定方法.环境监测管理与技术,2002,14(6):12-13.
    [16]王争,林永娟.室内空气中甲醛的测定方法选择探讨.上海计量测试,2003,30(5):17-19.
    [17]Rodriguez I C,Bravo S R,Bendito D P.Selective Monitoring of Formaldehyde in Air by Use of the Stopped-flow Technique.Intcmational Journal of Environment Analytical Chemistry,1995,61:331-334.
    [18]黄志勇,张剑.室内空气中甲醛测定方法研究现状.中国公共卫生,2006,22(2):231-233.
    [19]王明清,黄杰,张建珍等.公共场所空气中三种甲醛检测方法的对比研究.宁夏医学杂忠,1994,16(1):30-32.
    [20]杭世平.空气中有害物质的测定方法.北京:人民卫生出版社,1984.
    [21]梁新歌,仲志鸿.变色酸比色法测定空气中甲醛的改进.镇江医学院学报,1999,9(3):450-450.
    [22]Paul T C L,Metmier F,Veascy C A.Effect of Relative Humidity on the Determination of HCHO with the NIOSH 3500 method.Analytical Communications,1998,35:103-105.
    [23]Kuijpers A T J M,Neele J.Reagent stability in the modified pararosanilinc method for the determination of formaldehyde.Analytical Chemistry,1983,55:390-391.
    [24]Munoz M P,Rueda F J,Dicz L M P.Determination of formaldehyde in air by flow injection using pararosaniline and spcctrophotometeric detection.Analyst,1989,114:1469-1471.
    [25]Nakano K.Obstruction of cupric acid cobaltous ions to the determination of formaldehyde by the 4-amino-3-hydrazino-5-mercapto-l,2,4-triazole method.Toxicology and Environment Health,1995,41:381-385.
    [26]张绍衡.电化学分析法.重庆:重庆大学出版社,1994.
    [27]Septon J C,Ku J C.Workplace air sampling and polarographic determination of formaldehyde.American Industrial Hygiene Association Journal 1982,43:845-852.
    [28]黎源倩,牟文萱.甲醛极谱吸附波的研究及分析应用.分析化学,1993,2l(7):804-807.
    [29]Zhang Z Q,Zhang H,He G F.Preconcentration with membrane cell and adsorptive polarographic determination of formaldehyde in air.Talanta,2002,57:317-322.
    [30]Yokouchi T,Fujii T,Ambe Y,et al.Gas chromatographic-mass spectrometric analysis of formaldehyde in ambient air using a sampling tube.Journal of Chromatography A,1979,180:133-138.
    [31]Maxwell C.H,Keith D.B,Paul W.S,et al.Direct measurement of atmospheric formaldehyde using gas chromatography-pulsed discharge ionisation detection.Analytical Communications,1999,36:101-104.
    [32]Lehmpuhl D.W,Birks J.W.New gas chromatographic-electron-capture detection method for the determination of atmospheric aldehydes and ketones based on cartridge sampling and derivatization with 2,4,6-trichlorophenylhydrazine.Journal of Chromatography A,1996,740:71-81.
    [33]Glaze W.H,Koga.M,Cancilla.D.Ozonation By-Products 2.Formation of Formaldehyde and Other Carbonyl Compounds by Ozonation of Drinking Water.Environmental Science and Technology,1989,23:838-847.
    [34]Tsai S.W,Que Hee S.S.A new passive sampler for regulated workplace aldehydes.Applied Occupational Environmental Hygiene,1999,14:255-262.
    [35]Kuwata K,Uebori M,Yamasaki H,et al.Determination of aliphatic aldehydes in air by liquid chromatography.Analytical Chemistry,1983,55:2013-2016.
    [36]Goelen.E,Lambrechts.M,Geyskens.F.Sampling intercomparisons for aldehydes in simulated workplace air.Analyst,1997,122:411..419.
    [37]DRUZIK C.M,GROSJEAN D,VAN NESTE A,et al.Sampling of atmospheric carbonyls with small DNPH-coated C18 cartridges and liquid chromatography analysis with diode array detection.International Journal of Environment Analytical Chemistry,1990,38:495-512.
    [38]Grosjean E,Grosjean D.Performance of DNPH-coated C18 cartridges for sampling C1-C9 carbonyls in air.International Journal of Environment Analytical Chemistry,1995,61:343-360.
    [39]Kleindienst T,Corse E.W,Blanchard F.T,et al.Evaluation of the performance of DNPH-coated silica gel and C 18 cartridges in the measurement of formaldehyde in the presence and absence of ozone.Environmental Science and Technology,1998,32:124-130.
    [40]Arnts R.R,Tejada S.B.2,4-Dinitrophenylhydrazine-coated silica gel cartridge method for determination of formaldehyde in air:identification of an ozone interference.Environmental Science and Technology,1989,23:1428-1430.
    [41]Pttter W,Karst U.Identification of chemical interferences in aldehyde and ketone determination using dual wavelength detection.Analytical Chemistry,1996,68:3354-3358.
    [42]Nondek L, Rodler D R, Birks J W. Measurement of sub-ppv concentrations of aldehydes in a forest atmosphere using a new HPLC technique. Environmental Science and Technology, 1992,26: 1174-1178.
    [43] Lawson D R, Biermann H W, Tuazon E C, et al. Formaldehyde measurement methods evaluation and ambient concentrations during the carbonaceous species methods comparison study. Aerosol Science and Technology, 1990,12: 64-76.
    [44] Ayers G P, Gillett R W, Granek H, et al. Formaldehyde production from peroxy radical reactions in clean marine air. GEOPHYSICAL RESEARCH LETTERS, 1997,24: 401-404.
    [45]Trapp D, De Serves C. Intercomparison of formaldehyde measurements in the tropical atmosphere. Atmospheric Environment, 1995,29: 3239-3243.
    [46] Lazrus A, Fong K, Lind J. Automated fluorometric determination of formaldehyde in air. Analytical Chemistry, 1988,60: 1074-1078.
    [47] Heikes B. Formaldehyde and hydroperoxides at Mauna Loa Observatory. Journal of Geophysical Research, 1992,97: 18001-18013.
    [48] Dong S, Dasgupta P K. Fast fluorimetric flow injection analysis of formaldehyde in atmospheric water. Environmental Science and Technology, 1987,21: 581-588.
    [49]Guilbault G G. Determination of Formaldehyde with an Enzyme-Coated Piezoelectric Crystal Detector. Analytical Chemistry, 1983,55: 1882-1884.
    [50] Hammerle M, Elizabeth A H H. Electrochemical enzyme sensor for formaldehyde operating in the gas phase. Biosensors and Bioelectronics, 1996,11: 239-246.
    [51]Dirksen J A, Duval K, Ring T A. NiO thin-film formaldehyde gas sensor. Sensors and Actuators B, 2001,80: 106-115.
    [52]Xu J Q, Jia X H, Lou X D, et al. Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO_3. Sensors and Actuators B, 2007,120: 694-699.
    [53] Giulio.M. D, Micocci. G, Rella . R, et al. Properties of reactively sputtered tin oxide films as CO gas sensors. Sensors and Actuators B, Chemical, 1995,23: 193-195.
    [54] Maffeis.T.G. G, Owen G, T, M. W. Penny et al.Nano-crystalline SnO_2 gas sensor response to O_2 and CH_4 at elevated temperature investigated by XPS. Surface Science, 2002,520: 29-34.
    [55] Kunimoto. A, Abe. N, Uchida. H, et al. Highly sensitive semiconductor NO_x gas sensor operating at room temperature. Sensors and Actuators B, Chemical, 2000,65: 122-124.
    [56] Wagh.M. S, Jain.G. H, Patil.D. R, et al. Surface customization of SnO_2 thick films using RuO_2 as a surfactant for the LPG response. Sensors and Actuators B, Chemical, 2007,122: 357-364.
    [57] Korotcenkov. G, Blinov. I, Ivanov. M, et al. Ozone sensors on the base of SnO_2 films deposited by spray pyrolysis. Sensors and Actuators B, Chemical, 2007,120: 679-686.
    [58] Teeramongkonrasmee. A, Sriyudthsak. M. Methanol and ammonia sensing characteristic of sol-gel derived thin film gas sensor. Sensors and Actuators B, Chemical, 2000,66: 256-259.
    [59] Vuong.D. D, Sakai. G, Shimanoe. K, et al. Hydrogen sulfide gas sensing properties of thin films derived from SnO_2 sols different in grain size. Sensors and Actuators B, Chemical, 2005,105: 437-442.
    [60]Neri. G, Bonavita. A, Micali. G, et al. Ethanol sensors based on Pt-doped tin oxide nanopowders synthesized by gel-combustion. Sensors and Actuators B, Chemical, 2006,117: 196-204.
    [61]Kohl.D.The role of noble metals in the chemistry of solid-state gas sensors.Sensors and Actuators B,chemical,1990,1:158-165.
    [62]娄向东,沈荷生,沈瑜生.ZnO系半导体陶瓷气敏传感器的进展.传感器技术,1991,3:1-5.
    [63]Rao.G.S.T,Tarakarama.R.D.Gas sensitivity of ZnO based thick film sensor to NH_3 at room temperature.Sensors and Actuators B,chemical,1999,55:166-169.
    [64]Shimizu Y,Yamaquchi K,Fukunaga K,et al.Acetaldehyde gas-sensing properties and surface chemistry of SnO2-based sensor materials.Journal of electrochemistry society,1999,146:1222-1226.
    [65]王毓德,吴兴惠.掺杂a-Fe_2O_3的气敏材料特性.传感器技术,1994,3:32-36.
    [66]Yu.J.H,Choi.G.M.Electrical and CO gas sensing properties of ZnO-SnO_2 composites.Sensors and Actuators B,chemical,1998,52:251-256.
    [67]胡英,周晓华,魏红军.CuO-ZnO异质结气体传感器的敏感性能.传感器技术,2000,19(6):11-14.
    [68]李平,余萍,肖定金.气敏传感器的近期发展.功能材料,1999,30(2):126-128.
    [69]Yamazoe.N,Kurakawa.T,Seiyama.T.Effects of additive on semiconductor gas sensors.Sensors and Actuators B,chemical,1983,13:283-289.
    [70]黄泳,姜明,李锋等.SnO_2基可燃气体陶瓷传感器.中国陶瓷,1998,34(1):27-29.
    [71]胡一帆.掺CeO_2,Y_2O_3和La_2O_3的ZnO多孔陶瓷气敏特性及导电机制:(硕士学位论文).武汉:华中理工大学,1988.
    [72]Persaud.K,Dodd.G.Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose.Nature,1982,299:352-355.
    [73]Gardner.J.W,Barflett.P.N.A brief history of electronic nose.Sensors and Actuators,B,chemical,1994,18:210-220.
    [74]http://nose.uia.ae.be/members/doc/ispra001.pdf.
    [75]http://www.foodtechs.com/foodtechs Article 4942.html.
    [76]王米娜,杨建华,侯宏等.基于多BP子网络的电子鼻信息融合技术.传感器技术,2003,22(8):75-80.
    [77]高大启.基于神经网络的模式分类方法:(博士学位论文).杭州:浙江大学,1996.
    [78]杨燕明,杨艽原,王小如等.基于阵列声表面波传感器的电子鼻系统及应用初步.化学传感器。1997,17(4):282-284.
    [79]殷勇,吴守一,方如明.用人工嗅觉系统评定卷烟的内在品质.农业机械学报,1999,30(3):88-92.
    [80]刘凤敏.SnO_2及其复合氧化物气体传感器的修饰改性研究:(博士学位论文).长春:吉林大学,2005.
    [81]牛新书,杜卫平,蒋凯.半导体复合氧化物气敏材料研究进展.化学研究与应用,2004,16(6):737-740.
    [82]Sberveglieri.G,Groppelli.S,Nelli.P.Highly sensitive and selective NO_x and NO_2 sensor based on Cd-doped SnO_2 thin films.Sensors and Actuators B,Chemical,1991,4:457-461.
    [83]Yamamoto H,Nissato Y.Magnetic properties of Co-Ni spinel ferrite fine particles with high coercivity prepared by the chemical coprecipitation method.IEEE TRANSACTIONS ON MAGNETICS,2002,38:3488-3492.
    [84]杨鹏程,蔡小海,谢有畅.共沉淀CuO-ZrO_2复合氧化物分散态结构研究.物理化学学报,2003,19(8):714-717.
    [85]Chu X.F,Liu X.Q,Meng G.Y.Preparation and gas sensitivity properties of ZnFe_2O_4 semiconductors.Sensors and Actuators B,Chemical,1999,55:19-22.
    [86]Hu.Y,Zhou X.H,Han.Q,et al.Sensing properties of CuO-ZnO heterojunction gas sensors.Materials Science and Engineering B,2003,99:41-43.
    [87]Sdvastava A,Rashmi,Jain K.Study on ZnO-doped tin oxide thick film gas sensors.Materials Chemistry and Physics,2007,105:385-390.
    [88]Kugishima M,Shimanoe K,Yamazoe N.C_2H_4O sensing properties for thick film sensor using La_2O_3-modified SnO_2.Sensors and Actuators B,Chemical,2006,118:171-176.
    [89]Patil.L.A,Patil.D.R.Heterocontact type CuO-modified SnO_2 sensor for the detection of a ppm level H_2S gas at room temperature.Sensors and Actuators B,Chemical,2006,120:316-323.
    [90]Jain K,Pant.P.R,Lakshmikumar.S.T.Effect of Ni doping on thick film SnO2 gas sensor.Sensors and Actuators B,Chemical,2006,113:823-829.
    [91]莫志深,张宏放编著.晶态聚合物结构和X射线衍射.北京:科学出版社,2003.
    [92]Ricardo H.R.C,Hidalgo P,Muccillo.R,et al.Microstructure and structure of NiO-SnO:and Fe_2O_3-SnO_2systems.Applied Surface Science,2003,214:172-177.
    [93]姚子华,章一鸣.扫描电镜中X射线荧光能谱分析.电子显微学报,1992,11(2):152-156.
    [94]Brigs.D,桂琳琳译.X-射线与紫外光电子能谱.北京:北京大学出版社,1984.
    [95]Choi Y-H,Hong S-H.H_2 sensing properties in highly oriented SnO2 thin films.Sensors and Actuators B,Chemical,2007,125:504-509.
    [96]王磊,杜军,毛昌辉等.Ni修饰层对SnO_2薄膜气敏性能影响.真空科学与技术学报,2006,26(6):512-516.
    [97]陆家和,陈长彦.表面分析技术.北京:电子工业出版社,1988.
    [98]Supothina S,Mark R.D,Guire.Characterization of SnO_2 thin film grown from aqueous solutions.Thin solid films,2000,371:1-9.
    [99]张凤田.微热板真空传感器及其单芯片集成技术的研究:(博士学位论文).大连:大连理工大学,2007.
    [100]魏广芬.基于微热板式气体传感器的混合气体检测及分析:(博士学位论文).大连:大连理工大学.2005.
    [101]Gao Y,Zhao H.B,Zhao B.Y.Monolayer disperseon of oxide additives on SnO2 and their promoting effects on thermal stability of SnO2 ultrafme particles.Journal of Materials Science,2000,35:917-923.
    [102]Kohl D.Function and applications for gas sensors.JOURNAL OF PHYSICS D:APPLIED PHYSICS,2001,34:125-149.
    [103]Xu C.N,Jun.T,Norio.M,et al.Grain size effects on gas sensitivity of porous SnO_2-based elements.Sensors and Actuators B,Chemical,1991,3:147-155.
    [104]Ogawa.O,Nishidawa.M,Abe.A.Hall measurement studies and an electrical conductive model of tin oxide ultrafine particle films.Journal of Applied Physics,1982,53:4448-4454.
    [105]Ansari.S.G,Boroojerdian.P,Sainkar.S.R,et al.Grain effects on H2 gas sensitivity of thick film resistor using SnO_2 nanoparticles.Thin solid films,1996,295:271-276.
    [106]黄小葳,杨鹏程,白守礼等.Sn/In/Ti纳米复合氧化物对可燃和有毒气体敏感特性研究.中国科学E辑:技术科学,2007,37(3):375-381.
    [107]Chu X.F,Liu X.Q,Meng G.Y.Effects of CdO dopant on the gas sensitivity properties of ZnFe_2O_4semiconductors.Sensors and Actuators B,Chemical,2000,65:64-67.
    [108]http://wwwl.mhlw.go.jp/houdou/1112/h1214-1_13.html.
    [109]W.G O.p,Schierbaum.K.D.SnO_2 sensors:current status and future prospects.Sensors and Actuators B,Chemical,1995,26-27:1-12.
    [110]Morrison S.R.Selectivity in semiconductor gas sensors.Sensors and Actuators,B,chemical,1987,12:425-440.
    [111]Simon.I,Brsan.N,Bauer.M,et al.Micromachined metal oxide gas sensors:opportunities to improve sensor performance.Sensors and Actuators B,Chemical,2001,73:1-26.
    [112]Watson.J,lhokura.K,Cole.G.S.V.The tin dioxide gas sensor.Measurement Science and Technology,1993,4:711-719.
    [113]Wang.Y,Chen.J,Wu.X.Preparation and gas-sensing properties of perovskite-type SrFeO_3 oxide.Materials Letters,2001,49:361-364.
    [114]D.Kohl.Surface processes in the detection of reduceing gases with SnO2-based devices.Sensors and Actuators,B,chemical,1989,18:71-113.
    [115]Zhou X H,Cao Q X,Hui H,et al.Study on sensing mechanism of CuO/SnO_2 gas sensors.Materials Science and Engineering B,2003,99:44-47.
    [116]Y.Ushio,M.Miyayama,H.Yanagida.Fabrication of thin film CuO/ZnO hetero-junction and its humidity sensing properties.Sensors and Actuators B,Chemical,1993,12:135-139.
    [117]史志存,李建平,崔大付等.电子鼻在食品工业中的应用.食品科技,2000,3:15-17.
    [118]Tang Z.A,Philip C.H,Rajnish K.S,et al.Investigation and control of microcracks in tin oxide gas sensing thin-films.Sensors and Actuators B,Chemical,2001,79:39-47.
    [119]Getino.J,Horrillo M.C,Gutierrez.J.Analysis of VOCs with a tin oxide sensor array.Sensors and Actuators B,Chemical,1997,43:200-205.
    [120]Lee D.S,Jung J.K.Recognition of volatile organic compounds using SnO_2 sensor array and pattern recognition analysis.Sensors and Actuators B,Chemical,2001,77:228-236.
    [121]Toru.M,Kengo.S.Odor identification using a SnO_2-based sensor array.Sensors and Actuators B,Chemical,2001,80:51-58.
    [122]Penza.M,Cassano.G.Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW a multi-sensor array.Sensors and Actuators B,Chemical,2003,89:269-284.
    [123]范金城,梅长林.数据分析.北京:科学出版社,2002.
    [124]Gutierrez-Osuna.R.Pattern Analysis for Machine Olfaction:A Review.IEEE sensors journal,2002,2:189-202.
    [125]Lee.D-S,Ban.S-W,Lee.M,et al.Micro gas sensor array with neural network for recognizing combustible leakage gases.IEEE sensors journal,2005,5:530-536.
    [126]Li H,Shi X.J,Wendy.W,et al.Nanoparticle-structured sensing array materials and pattern recognition for VOC detection.Sensors and Actuators B,2005,106:431-441.
    [127]张凯,周陬,郭栋.LabVIEW虚拟仪器工程设计与开发.北京:国防工业出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700