二维空间谱估计与自适应波束形成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文致力于二维空间谱估计和自适应波束形成技术研究,本文所作的工作是实验室承担的某重点预研项目的一部分。
     作为阵列信号处理的主要研究内容,波达方向(DOA)估计和波束形成(BF)得到了人们广泛的关注,经过多年的研究获得了大量的理论成果。与一维相比,二维DOA估计和波束形成更具普遍意义和实用价值,它能够对空间信号实现更准确的定位,在通信中也能更加充分的利用信号的空间特征提高系统容量和通信质量。
     然而,针对二维参数的阵列信号处理有其特殊性,人们对二维空间谱估计和自适应波束形成技术的研究还不充分,还存在不少问题没有得到很好的解决,比如角度兼并问题、阵元利用率问题、瞬时信号或快速运动信号的DOA估计问题、多用户多径信号DOA估计问题、稳健的自适应波束形成问题等,这也是人们研究的部分热点和难点问题。本文结合某重点预研项目,针对以上这些方面进行了深入的研究,提出了一些新的或改进的方法,进一步完善和丰富了阵列信号处理理论。
     分析了波达方向矩阵类算法存在的角度兼并问题,并提出了改进方法,使这类算法更加完善。并指出角度兼并问题广泛地存在于以旋转不变结构为基础的二维或多维参数估计算法中,凡是通过估计方向向量并以此求解参数的算法都无法避免角度兼并,只能在发生兼并时采取一些辅助手段加以解决。
     分别针对双平行均匀线阵和均匀圆阵提出了基于时间平滑技术的多用户多径二维DOA估计方法。该方法适用于移动通信环境,要求信道满足块衰落模型,能够对高斯噪声中的非高斯信号进行二维DOA估计,并且能对来波按相干性实现分组。这种算法能够估计的来波数目远远超过了阵元数目,是现有其它算法无法实现的。但该方法运算量大,对处理器速度要求较高。
     首次提出了一种单快拍二维DOA估计算法——单快拍DOA矩阵法(SS-DOAM)。该算法利用M对阵元能够估计M-1个信号的二维波达方向,而且不论信号源是否相干都同样适用。由于只需要利用单快拍数据就可以估计出二维方向信息,所以它非常适合于瞬时信号、快速运动信号的二维DOA估计与跟踪。结合单快拍DOA矩阵法,又提出了一种新的多用户多径二维DOA估计方法。与基于时间平滑的方法不同,新方法不再局限于块衰落信道模型,并且大大降低了计算量。方法适用于双平行均匀线阵,无法用于其它阵列结构。
     研究了空时二维DOA估计技术,提出了基于均匀圆阵的空时矩阵束法和基于任意阵列的空时二维Unitary-ESPRIT算法。这两种算法最大的特点是都充分利用了信号在时空域的二维信息,都依赖特征值估计二维参数并实现自动配对,因此不可能发生角度兼并问题,同时它们都有很高的阵元利用率。但这两种算法解决问题的思路却截然不同,一种算法利用了矩阵束的思想,另一种算法利用了Unitary-ESPRIT的思想。空时矩阵束法估计二维参数时是通过广义特征值的幅度和相位进行求解和配对,而空时二维Unitary-ESPRIT法是利用特征值的实部和虚部进行求解和配对。相比之下后者计算量较大,但阵列结构灵活。
     提出了一种具有很强稳健性的自适应波束形成算法,该算法既适合于一维也适用于二维波束形成。它能对多径环境中的期望信号实现最大信干噪比(SINR)意义下的最优波束形成,而且只需要已知期望信号全部或部分入射路径的大致方向。这种方法既克服了盲算法无法辨识期望信号的缺点,又克服了非盲算法对系统误差敏感的缺点,是一种稳健性非常强的实用算法。
This dissertation is devoted to a study of Two-dimensional Direction finding and Adaptive Beamfroming.The work finished in this paper is a part of a large scale army project of research undertaken by the lab the author works with.
     Direction of arrival(DOA)estimation and beamforming(BF),as kernel topics of array signal processing,have attracted considerable attentions.In this field,numerous achievements of theoretical research were attained in the past decades.Two-dimensional(2-D)direction finding (DF)and beamforming,compared with its one-dimensional(1-D)counterpart,utilize the spatial information of signals more fully,thus result in performance improvements in location accuracy and communication capacity,and have more practical values as well as even wider application fields.
     However in 2-D array processing,due to its complexity,there are many difficult problems to be solved such as angle ambiguity,aperture losing,DOA estimation of fast moving targets or short signals,DOA estimation in multiuser and multipath environments,robust adaptive BF etc.. This dissertation is focusing on 2-D direction finding and robust beamforming.Some novel or improved methods as solutions to the above mentioned problems are proposed.
     Angle ambiguity problem in DOA matrix methods and the like is analyzed first,and then some improved algorithms are proposed.A conclusion is drawn that angle ambiguity exists anywhere in 2-D DOA estimation methods based on rotational invariance and can never be avoided as long as the angle parameter is obtained directly by the use of steering vector,thus some auxiliary methods must be taken to solve the problem.
     Two algorithms of 2-D direction finding based on temporal smoothing are proposed for multiuser and multipath situations aiming at double parallel uniform linear array and uniform circular array respectively.The algorithms can make 2-D DOA estimations of all paths of non-Gaussian signals in Gaussian noise and can group DOAs according to their coherence,thus are suitable for mobile communication.Besides,the maximum number of estimated DOAs is much more than the number of sensors.The computational complexity of the temporal smoothing algorithms is high and the algorithms hold only for the channel model of block fading.
     A single-snapshot 2-D direction finding method based on double parallel uniform linear arrays,called SS-DOAM method,is brought forward for the first time in the field.DOAs of M-1 signals,no matter whether they are coherent or not,can be estimated using M pairs of elements. Requiring only one snapshot data,the algorithm is very suitable for instant signals and fast moving targets.Based on above SS-DOAM method,a new 2-D DOA estimation method for the situations of multiuser and multipath is proposed.Being different form the above proposed method based on temporal smoothing,this method is not constrained to block fading channel model and the computational complexity is also remarkably reduced.However this method can not be used for the arrays other than double parallel uniform linear array.
     In the aspect of space-time 2-D direction finding,two new algorithms,i.e.space-time matrix pencil algorithm for uniform circular array(UCA)and space-time 2-D Unitary-ESPRIT algorithm for arbitrary array,are proposed.The common features of them lie in that they utilize fully the spatial and temporal information of signals and they estimate 2-D parameters only by the use of eigenvalues,thus the angle ambiguity can be avoided completely,and the sensor utilization factor becomes higher.But the strategies of them are distinct.One of them uses matrix pencil technique and the other uses Unitary-ESPRIT.In Matrix pencil method 2-D parameters are obtained according to the magnitude and phase of generalized eigenvalues,while in Unitary-ESPRIT method 2-D parameters are obtained according to the imaginary and real parts of eigenvalues.By comparison,the latter one is more flexible in array configuration,however is higher in computational complexity.
     Finally,a robust adaptive beamforming method is provided in Chapter 7 which is suitable for both 1-D and 2-D beamforming and can implement optimal beamforming only using partial and rough DOA information of coherent paths of desired signal by the criterion of maximum SINR.The algorithm makes blind algorithms capable of identify expected signals and solved the problem of sensitivity to system errors of non-blind beamforming algorithm.Simulation results proved the feasibility and robustness of the proposed algorithm.
引文
[1] Dreher A, Niklasch N, Klefenz F, Schroth A. Antenna and receiver system with digital beamforming for satellite navigation and communications[J]. IEEE Trans. on Micraowave Theory and Techniques, 2003, 51(7): 1815-1821.
    
    [2] Ottersten B. Array processing for wireless communications[A]. In: Proc. of 8~(th) IEEE signal processing workshop on statistics signal and array processing[C]. Corfu, Greece, 1996: 466-473.
    [3] Miyauchi H. Development of DBF radar[A]. In: Proc. of Phased Array Systems and Technology, 1996, IEEE International Symposium on [C]. Boston, MA, USA, 1996: 226- 230.
    [4] Krim H, Viberg M. Two decades of array signal processing research[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
    [5] Haykin S, Reilly J P. Some aspects of array signal processing[J]. IEE Proceeding-F, 1992, 139(1): 1-26.
    [6] Godara L C. Application of antenna arrays to mobile communications, Part I: performance improvement, feasibility, and system considerations [J]. Proceedings of IEEE, 1997, 85(7): 1031-1059.
    [7] Godata L C. Application of antenna arrays to mobile communications, Part II: beam-forming and direction-of-arrival considerations [J]. Proceedings of IEEE, 1997, 85(8): 1195-1245.
    [8] Gershman A B. Robust adaptive beamforming: An overview of recent trends and advances in the field[A]. In: Antenna Theory and Techniques, IEEE IVth international conference on[C]. Sevastopol, Ukraine, 2003, vol.1: 30-35.
    [9] Chen J C, Yao K, Hudson R E. Source localization and beamforming[J]. IEEE Signal Processing Magazine, 2002, 19(2): 30-39.
    [10] Schimidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34(3): 276-280.
    
    [11] Roy R, Kailath T. ESPRIT—a subspace rotation approach to estimation of parameter of cissoids in noise[J]. IEEE Trans. on ASSP, 1986, 34(10): 1340-1342.
    
    [12] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Trans. on ASSP, 1898, 37(5): 720-741.
    [13] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons[J]. IEEE Trans. on ASSP, 1990, 38(12):2140-2150.
    [14] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons[A]. In: Proc. of IEEE ICASSP'89[C]. Glasgow, UK, 1989, vol.4: 2605-2608.
    [15] Xu X L, Buckley K M. Bias analysis of the MUSIC location estimator[J]. IEEE Trans. on SP, 1992, 39(2): 2559-2569.
    
    [16] Stoica P, Nehorai A. performance comparison of subspace rotation and MUSIC methods for direction estimation[J].IEEE Trans.on SP,1991,39(2);446-453.
    [17]Stoica P,Soderstrom T.Statistical snalysis of MUSIC and subspace rotation estimates of sinusoidal frequencies[J].IEEE Trans.on SP,1991,39(8);1836-1847.
    [18]Roy R,Paulraj A,Kailath Y.Comparative performance of ESPRIT and MUSIC for direction-of-arrival estimation[A].In;Proc.of IEEE ICASSP'87[C].Dallas,TX,USA,1987,vol.12;2344-2347.
    [19]Ottersten B,Biberg M,Kailath T.Analysis of algorithm for sensor arrays with invariance structure[A].In;proc.of IEEE ICASSP[C].Albuquerque,NM,USA,1990,vol.5;2595-2962.
    [20]Rao B D,Hari K V S.Weighted subspace methods and spatial smoothing;analysis and comparison[J].IEEE Trans.on SP,1993,41(2);788-803.
    [21]王布宏,王永良,陈辉.利用局域子空间投影提高子空间类DOA估计算法的谱分辨力[J].电子学报,2003,3 1(3);459.463.
    [22]Ottersten B,Biberg M,Kailath T.Performance analysis of totel least squares ESPRIT algorithm[J].IEEE Trans.on SP,1991,39(5);1122-1135.
    [23]Zhang X D,Eiang Y C.Prefiltering-based ESPRIT for estimating parameters of sinusoids in non-Gaussian ARMA noise[J].IEEE Trans.Signal Processing,1995,43(1);349-353.
    [24]Rao B D,Hari K V S.Performance of Root-MUSIC[J].IEEE Trans.on ASSP,1989,37(12);1939-1949.
    [25]Zoltowski M D,Kautz G M,Silverstein S D.Beamspace Root-MUSIC[J].IEEE Trans.on SP,1993,41(1);344-364.
    [26]Ren Q S,Willis A J.Fast Root-MUSIC algorithm[J].IEE Electronics Letters,1997,33(6);450-451.
    [27]Haardt M,Nossek J A.Unitary ESPRIT;how to obtain increased estimation accuracy with a reduced computational burden[J].IEEE Trans.on SP,1995,43(5);1232-1242.
    [28]Haardt M,Gersman A B.A new unitary ESPRIT-based technique for direction finding[A].In;Proc.of IEEE ICASSP'99[C].Phoenix,AZ,USA,1999,vol.5;2837-2840.
    [29]Shan Y J,Wax M,Kailath Y.Adaptive beamforming for coherent signals and interference[J].IEEE Trans.on ASSP,1985,33(3);527-536.
    [30]Pillai S U,Kwon B H.Forward/backward spatial smoothing techniques for coherent signal identification[J].IEEE Trans.on ASSP,1989,37(1);8-15.
    [31]Rao B D,Hari K V S.On spatial smoothing and weighted subspace methods[A].In;Conference Record of 24~(th)Asilomar Conf.Signals,Syst.,Comput.[C].Pacific Grove,California,1990;936-940.
    [32]Du W,Kirlin R L.Improved spatial smoothing techniques for DOA estimation of coherent signals[J].IEEE Trans.on SP,1991,39(5);1208-1270.
    [33]Linebarger D A,DeGroat R D,Dowling E M.Efficient direction-finding methods employing forward/backward averaging[J].IEEE Trans.on SP,1994,42(8);2136-3145.
    [34]Ma C W,Teng C C.Detection of coherent signals using weighted subspace smoothing[J]. IEEE Trans.on AP,1996,44(2);179-187.
    [35]Moghaddamjoo A.Application of spatial filters to DOA estimation of coherent sources[J].IEEE Trans.on SP,1991,39(1);221-224.
    [36]Yang- Ho Choi.On conditions for the rank restoration in forward/backward spatial smooth-ing[J].IEEE Trans.on SP,2002,50(11);2900-2901.
    [37]Wu S,Luo J.DOA estimation of correlative signals with spatial smoothing techniques and modified MUSIC method[A].In;Proc.of ICSP'04[C].Beijing,China,2004,vol.2;1141- 1414.
    [38]Chen Y M,Lee J H,Yeh C C.Bearing estimation without calibration for randomly perturbed arrays[J].IEEE Trans.on SP,1991,39(1);194-197.
    [39]Kung S Y,Lo C K,Foka R.A toeplitz approximation approach to coherent source direction finding[A].In;Proc.of IEEE ICASSP'86[C].Tokyo,1986,vol.11;193-196.
    [40]王布宏,王永良,陈辉.一种新的相干信源DOA估计算法;加权空间平滑协方差矩阵的Toeplitz矩阵拟合[J].电子学报,2003,31(9);1394-1397.
    [41]Friedlander B.Direction finding using an interpolated array[A].In;Proc.of IEEE ICASSP'90[C].Albuquerque,NM,USA,1990,vol.5;2951-2954.
    [42]Weiss A J,Gavish M.The interpolated ESPRIT algorithm[A].In;Proc.of IEEE ICASSP'91[C].Toronto,Canada,1991;3725-3728.
    [43]Weiss A J,Friedlander B.Performance analysis of spatial smoothing with interpolated arrays[J].IEEE Trans.on SP,1993,41(5);1881-1892.
    [44]Friedlander B,Weiss A J.Direction finding using spatial smoothing with interpolated arrays[J].IEEE Trans.on Aerospace and Electronics Systems,1992,28(2);574-587.
    [45]Friedlander B.The Root-MUSIC algorithm for direction finding with interpolated arrays[J].IEEE Trans.on SP,1993,41(1);15-25.
    [46]Lau B K,Cook G J,Leung Y H.An improved array interpolation approach to DOA estimation in correlated signal environments[A].In;Proc.of IEEE ICASSP'04[C].Montreal,Canada,2004,vol.2;237-240.
    [47]Lau B K,Viberg M,Leung Y H.Data-adaptive array interpolation for DOA estimation in correlated signal environments[A].In;Proc.of IEEE ICASSP'05[C].Philadelphia,PA,USA,2005,vol.4;945-948.
    [48]Tsakalides P and Nikias C L.The robust covariation-based MUSIC(ROC- MUSIC)Algorithm for bearing estimation in impulsive noise environments[J].IEEE Trans.on SP,1996,44(7);1623-1633.
    [49]Liu T H,Mendel J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE Trans.on SP,2001,49(8);1605-1613.
    [50]吕泽均,肖先赐.基于分数阶矩的测向算法研究[J].电波科学学报,2002,17(6);562-565.
    [51]吕泽均,肖先赐.一种冲击噪声环境中二维DOA估计新方法[J].电子与信息学报,2004,26(3);350-356.
    [52] Liu T H. Array signal processing using higher-order and fractional lower-order statistics[D]. Angeles: Univ. Southern Calif., 1998.
    [53] Peasavento M, Gershman A B, Maximum likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Trans. SP, 2001, 49(7): 1310-1324.
    [54] Madurasinghe D. A new DOA estimator in nonuniform noise[J]. IEEE Signal Processing Letters, 2005, 12(4): 337-339.
    [55] MacInnes C S. Source localization using subspace estimation and spatial filtering[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 488-497.
    [56] Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation[J]. Elsevier Signal processing, 1995,42(2): 121-138.
    [57] Marcos S, Marsal A, Benidir M. Performances analysis of the propagator method for source bearing estimation[A].In: Proc. of IEEE ICASSP,94[C]. Adelaide, SA, Australia, 1994, vol.4: 237 -240.
    [58] Sanchez-Araujo J, Marcos S. Statistical analysis of the propagator method for DOA estimation without eigendecomposition[A].In: Proc. of Statistical Signal and Array Processing, 8th IEEE Signal Processing Workshop on[C]. Corfu, Greece, 1996: 570-573.
    [59] Tayem N, Kwon H M. L-shape 2-dimensional arrival angle estimation with propagator method[J]. IEEE Trans. on AP, 2005, 53(5):1622-1630.
    [60] Gardner W A. Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity[J]. Proc. IEEE, 1988, 76(7): 845-847.
    [61] Lee Y T, Lee J H. Direction-finding methods for cyclostationary signals in the presence of coherent source[J]. IEEE Trans. on Antennas and Propagation, 2001,49(12): 1821-1826.
    [62] Xin J M, Tsuji H, Ohmori H, Sano A. Direction-of-arrival tracking of coherent cyclostationary signals without eigendecomposition[A]. In: Proc. of Wireless Communica- tions, 2001 IEEE Third Workshop on Signal Processing Advances[C]. Taiwan, China, 2001: 318-321.
    [63] Kim K, Sarkar T K, Wang H, et al. Direction of arrival estimation based on temporal and spatial processing using a direct data domain (D~3) approach[J]. IEEE Trans. on Antennas and Propagation, 2004, 52(2): 533-541.
    [64] Chiang H, Nikias C L. The ESPRIT algorithm with higher-order statistics[A]. In: Proc. of Higher-Order Spectral Analysis, 1989. Workshop on[C]. The Lodge at Vail, Vail, Colorado, 1989:163-168.
    [65] Gonen E, Dogan M C, Mendel J M. Applications of cumulants to array processing: direction-finding in coherent signal environment[A]. In: Record of the 28th Asilomar Conference on Signal, system and Computer[C]. Pacific Grove, CA, 1995, vol.1: 633-637.
    [66] Cardoso J-F, Moulines E. Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants[J]. IEEE Tran. On SP, 1995,43(1): 214-224.
    [67] Leyman A R, Durrani T S. Signal subspace techniques for DOA estimation using higher order statistics [A]. In: Proc. of IEEE ICASSP'95[C]. Detroit, MI, USA, 1995, vol.3: 1956-1959.
    
    [68] Yuen N, Friedlander B. DOA estimation in multipath: An approach using fourth-order cum- ulants[J].IEEE Trans on SP,1997,45(5);1253-1263.
    [69]Southall H L,Simmers J A,Donnell T H O.Direction finding in phased arrays with aneural network beamformer[J].IEEE Trans.Antennas and Propagation,1995,43(12);1369-1374.
    [70]孙绪宝,钟顺时.基于神经网络智能天线的一种波达方向估计方法[J].上海大学学报(自然科学版),2004,10(2);119-121.
    [71]Badidi L,Radouane L.A neural network approach for DOA estimation and tracking[A].In;Proc.of the 10~(th)IEEE Workshop on Statistical signal and array processing[C].Pocono Manor.PA.USA,2000;434-438.
    [72]Zooghby A H EL,Christodoulou C G,Georgiopoulos M.Antenna array signal processing with neural network for direction of arrival estimation[J].IEEE Trans.on Antennas and Propagation,1997,45(11);1611-1617.
    [73]Zooghby A H EL,Christodoulou C G,Georgiopoulos M.A neural network-based smart antenna for multiple source tracking[J].IEEE Trans.on Antennas and Propagation,2000,48(5);768-775.
    [74]吕铁军,王河.利用改进遗传算法的DOA估计[J].电波科学学报,2000,15(4);429-433.
    [75]徐尚志,徐旭,叶中付.基于遗传算法的DOA估计[J].中国科学技术大学学报,2004,34(3);361-365.
    [76]Belouchrani A,Amin M G.Time-frequency MUSIC[J].IEEE Signal Processing Letters,1999,6(5);109-110.
    [77]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J].电子学报,2001,29(1);71-74.
    [78]Hassanien A,Gersman A B,Amin M G.Time-frequency ESPRIT for direction-of-arrival estimation of chirp signals[A].In;Proc.of Sensor Array and Multichannel Signal Processing Workshop[C].Washington DC,2002;337-341.
    [79]Jin L,Yin Q,Wang W.Time-frequency signal subspace fitting method for direction-of-arrival estimation[A].In;Proc.of ISCAS 2000[C].Geneva,Switzerland,2000,vol.3;375-378.
    [80]Tuan D,Demmel Franz,Russer E Wideband direction-of-arrival estimation using frequency-domain frequency-invariant beamformers;an analysis of performance[J].IEEE Microwave and Wireless Components Letters,2004,14(8);383-385.
    [81]Xu W,Stewart W K.Multiresolution-Signal Direction-of-Arrival Estimation;A Wavelets Approach[J].IEEE Trans.on Singnal Processing Letters,2000,7(3);66-68.
    [82]Wang B,Wang Y.Chen H.Spatial wavelet transform preprocessing for direction of arrival estimation[A].In;Proc.of Antennas and Propagation Society International Symposium,2002[C].San Antonio,Texas,USA,2002,vol.4;672-675.
    [83]Li R.Comment on "Multiresolution-Signal Direction-of-Arrival Estimation;A Wavelets Approach"[A].In;Proc.of Antennas and Propagation Society International Symposium,2004,IEEE[C].Montreal,Canada,2004,vol.1;443-446.
    [84]Reed L S,Mallett J D.Rapid convergence rate in adaptive arrays[J].IEEE Trans.on Aerospace and Electronic Systems,1974,10(6);853-863.
    [85]Bellofiore S.Smart antenna systems for mobile platforms[D].Arizona;Arizona State University,Dec.2002.
    [86]Yu J L,Yeh C C.Generalized eigenspace-based beamformers[J].IEEE Trans.on SP,1995,43(11);2453-2461.
    [87]Lee C C,Lee J H.Eigenspace-based adaptive array beamforming with robust capabilities[J].IEEE Trans.on Antennas and Propagation,1997,45(12);1711 - 1716.
    [88]廖桂生,保铮,张林让.基于特征结构的自适应波束形成新算法[J].电子学报,1998,26(3);23-26.
    [89]Chang L and Yeh C C.Effect of pointing errors on the performance of the projection beamformer[J].IEEE Trans.Antennas and Propagation,1993,41(8);1045-1055.
    [90]赵永波,刘茂仓,张守宏.一种改进的基于特征空间自适应波束形成算法[J].电子学报,2000,28(6);16-18.
    [91]曹运合,张守宏,赵永波.小快拍相干源时的自适应波束形成方法[J].西安电子科技大学学报(自然科学版),2004,31(5);774-790.
    [92]Carlson B D.Covariance matrix estimation errors and diagonal loading in adaptivr arra-ys[J].IEEE Trans.on Aerospace and Electronic Systems,1988,24(4);397-401.
    [93]Li J,Stoica P,Wang Z.On robust Capon beamforming and diagonal loading[J].IEEE Trans.on SP,2003,51(7);1702-1715.
    [94]Ma N,Goh J T.Efficient method to determine diagonal loading value[A],In;Proc.of IEEE ICASSP'03[C].Hong Kong,2003 vol.5;341-344.
    [95]梁会发.对角加载在自适应波束形成算法中的应用[D].南京;南京理工大学,2004,6.
    [96]Bresler Y,Reddy V U.Optimum beamforming for coherent signal and interferences[J].IEEE Trans.on ASSP,1988,36(3);833-842.
    [97]Lee T S,Lin T T.Coherent interference with complementally suppression transformed adaptive beamformer[J].IEEE Trans.on Antennas and Propagation,1998,46(5);609-617.
    [98]武思军.稳健的自适应波束形成算法研究[D].哈尔滨;哈尔滨工程大学,2005.
    [99]郭艳.恒模算法及其在盲波束形成中的应用[D].西安;西安电子科技大学,2002.
    [100]陈四根.阵列信号处理相关技术研究[D].哈尔滨;哈尔滨工程大学,2004.
    [101]Reed C W,Yao K.Performance of blind beamforming algorithm[A].In;Proc.of Statistical Signal and Array Processing,9th IEEE SP Workshop on[C].Portland,OR,USA 1998;256-259.
    [102]Dogan M C,Mendel J M.Cumulant-based blind optimum beamforming[J].IEEE,Trans.on Aerospace and Electronic Systems,1994,30(3);722-741.
    [103]Biedka T E.Analysis and development of blind adaptive beamforming algorithms[D].Bl-acksburg Virginia;Virginia Polytechnic Institute and State University,2001
    [104]Ioannides P,Balanis C A.Wideband beamforming using circular arrays[A].In;Proc.of IEEE Antennas and Propagation Society International Symposium[C].Monterey,Califor- nia,USA,2004,vol.3;2627-2630.
    [105]Zou Q,Yu Z L,Lin Z.A robust algorithm for linearly constrained adaptive beamforming[J]. IEEE Signal Processing Letters,2004,11(1);26-29.
    [106]朱维杰.宽带水声阵列信号处理的原理和方法研究[D].西安;西北工业大学,2003.
    [107]唐建生.时域宽带波束形成方法及实验研究[D].西安;西北工业大学,2004,3
    [108]高莉.巡航导弹探测技术述评[J].电讯技术,2004,44(1);10-16.
    [109]朱子平,吕继荣,洪一.数字波束形成在雷达中的应用与分析[J].中国电子科学研究院学报,2006,1(3);244-247,272.
    [110]吴曼青.大有作为的数字阵列雷达[J].现代军事,2005,10;46-49.
    [111]李俊峰,郑善贤.第三代移动通信系统中智能天线的研究[EB/OL].;中国建筑电气网专家论著库,2003.12-3.
    [112]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京;清华大学出版社,2004;355-358.
    [113]张扬,葛利嘉,左继章.基于Y形阵的空时二维波达方向估计[J].通信学报,2002,24(7);50-58.
    [114]Paulraj A J,Gore D A,Nabar R U,et al.An overview of MIMO communication;a key to gigabit wireless[J].Proceedings of IEEE,2004,92(2);198-218.
    [115]杨宁,毕敏,谢显中.MIMO中智能天线技术的应用研究[J].重庆邮电学院学报(自然科学版),2005,17(6);680-683.
    [116]殷勤业,邹理和,Robert W N.一种高分辨率二维信号参量估计方法--波达方向矩阵法[J].通信学报,1991,12(4);1-7.
    [117]Yin Q Y,Newcomb R,Zou L H.Estimating 2-D angles of arrival via two parallel Linear Arrays[A].In;Proc.of IEEE ICASSP'89[C].Glasgow,Scotland,1989,vol.4;2803-2806.
    [118]Yin Q Y,Newcomb R,Zou L H.Estimation of 2-D angles-of-arrival for coherent signals[A].In;Proc.of ICCAS'89[C].Nanjing,China,1989;541-544.
    [119]Yin Q Y,Newcomb R,Munjal S,et al.Relation between the DOA matrix method and the ESPRIT method[A],In;Proc.of IEEE ISCAS-90[C].New Orleans,Louisiana,1990,vol.2;1561-1564.
    [120]Yin Q Y.Estimating two-dimension direction of arrival of narrow band sources[A].In;Proc.of IEEE Region 10 Conference on Computer and Communication Systems[C].Hong Kong,1990;389-393.
    [121]殷勤业.高分辨波达方向估计[D].西安;西安交通大学,1989.
    [122]黄浩学,吴嗣亮.基于均匀圆阵的信号源DOA和多谱勒频率估计算法[J].电子学报,2001,29(5);619-621.
    [123]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J].电波科学学报,2003,8(4);380-384.
    [124]Li Q,Ye Z,Gan L.DOA and doppler frequency estimation with sensor gain and phase uncertainties[A].In;Proc.of IEEE Int.Conf.Neural Networks & Signal Processing[C].Nan Jing,China,2003;vol.2;1314-1317.
    [125]吴湘霖,俞卞章,李会方.基于虚拟阵列的波达方向、载频和极化参数联合估计.电子与信息学报[J].2005,27(12);1887-1891.
    [126]吴湘霖,俞卞章,宋祖勋.未知噪声环境方位-俯仰-频率-时延等四维参数联合估计方法[J].遥测遥控,2005,26(3);10-16.
    [127]斯德谊,沈士团,刘荣科等.基于四阶累积量的来波信号频率和二维角估计[J].宇航学报,2000,21(3);82-87.
    [128]金梁,殷勤业.时空DOA矩阵方法[J].电子学报,2000,28(6);8-13.
    [129]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J].电子学报,2001,29(3);300-303.
    [130]叶中付,沈凤麟.一种快速的高分辨二维波达方向估计方法--混合波达方向矩阵法[J].电子科学学刊,1996,18(6);568-573.
    [131]叶中付,沈风麟.基于混合波达方向矩阵的测向方法[J].安徽大学学报,1996,20(2);48-53
    [132]Chen Yuan-Huang.Two-dimensional angles of arrival estimation for antenna array[A].In;Proc.ofAPMC'93[C].Hsinchu,Taiwan,China,1993,vol.1;74-77.
    [133]Feng M,Kammeyer K D.Blind direction of arrival estimation using antenna arrays in multipath communication environment[A].In;Proc.of IEEE GLOBE COM[C].Sydney,NSW,Australia,1998.vol.1;165-170.
    [134]何子述.智能天线中的信道多径参数估计技术[D].成都;电子科技大学,2000.
    [135]Dogan M C,Mendel J M.Applications ofcumulants to array processing--Part I;Aperture extension and array calibration[J].IEEE Trans.on SP,1995,43(5);1200-1216.
    [136]Gonen E,Mendel J M,Dogan M C.Applications of cumulants to array processing--Part IV;Direction finding in coherent signals case[J].IEEE Trans.on SP,1997,45(9);2265-2276.
    [137]Jeng S S,Lin H P,Okamoto G,et al.Multipath direction finding with subspace smoothing[A].In;Proc.of IEEE ICASSP'97[C].Munich,Germany,1997,Vol.5;3485-3488.
    [138]何子述,韩春林,唐斌.一种有效的多径信号DOA估计算法[J].电子学报,2003,31(1);1-3.
    [139]Gu Z,Gunawan E.A performance analysis of multipath direction finding with temporal smoothing[J].IEEE Signal Processing Letter,2003,10(7);200-203.
    [140]Gu Z,Gunawan E.Temporal smoothing for subspace tracking of multipath signals in fading channel[A].In;Proc.of IEEE ICASSP'03[C].Hong Kong,2003,vol.5;161-164.
    [141]Jiang H,Wang S.On temporal smoothing for Two-Dimensional direction-of-arrival estimation of coherent signals in multiplicative-additive noises environment[A].In;Proc.of 2005 Asia-Pacific Conference on Communications[C].Perth,Western Australia,2005;119-203.
    [142]Van Rheeden D R,Gupta S C.A Temporal smoothing approach to direction of arrival estimation of coherent signals in fading channels[A].In;Proc.of WCNC'99[C].New Orleans,LA,USA,1999,vol.1;286-290.
    [143]Mathews C P,Zoltowski M D.Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J].IEEE Trans.on SP,1994.24(7);2395-2407.
    [144]Mathews C P,Zoltowski M D.Direction finding with circular arrays via phase mode excit-ation and Root-MUSIC[A].In;Proc.of Antennas and Propagation Society International Symposium,1992[C].Chicago,IL,USA,1992,vol.2;1019-1022.
    [145]Wax M,Sheinvald J.Direction finding of coherent signals via spatial smoothing for uniform circular array[J].IEEE Trans.on AP,1994,42(5);613-620.
    [146]郭庆华.自适应波束形成与超分辨参数估计方法研究[D].西安;西安电子科技大学,2004.
    [147]Hua Y,Sarkar T K.Matrix pencil method and its performance[A].In;Proc.of IEEE ICASSP'88[C].New York,NY,USA,1988,vol.4;2476-2479.
    [148]Koh J,Sarkar T K.High resolution DOA estimation using matrix pencil[A].In;Proc.of Antennas and Propagation Society International Symposium IEEE[C].Monterey,California,USA,2004,Vol.1;423-426.
    [149]Fuhl J,Molisch A F.Virtual-Image-Array single-snapshot(VIASS)algorithm for direction-of-arrival estimation of coherent signals[A].In;Proc.of IEEE Personal,Indoor and Mobile Radio Communications[C].Toronto,Ont.,Canada,1995,vol2;658-663.
    [150]Kim J T,Moon S H,Han D S,et al.Fast DOA estimation algorithm using Pseudocovariance Matrix[J].IEEE Trans.Antennas and Propagation,2005,53(4);1346-1351.
    [151]Ren Q S,Willis A J.Extending MUSIC to single snapshot and on line direction finding applications[A].In;Proc.of IEE Radar'97[C].Edinburgh,UK,1997;783-787.
    [152]Bresler Y,Macovski A.On the number of signals resolvable by a uniform linear array[J].IEEE Trans.Acoust.,Speech,Signal Processing,1986,34(6);1361-1375.
    [153]程云鹏.矩阵理论[M].西安;西北工业大学出版社,1989;295.
    [154]Sarkar T K,Pereira O.Using the matrix pencil method to estimate the parameters of sum of coplex exponentials[J].IEEE Antennas and Propagation Magazine,1995,37(1);48-55.
    [155]刘全 魏急波 熊辉 雍玲.二维虚拟ESPRIT算法[J].信号处理,2001,17(3);247-251.
    [156]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J].国防科技大学学报,2002,24(3);45-48.
    [157]李国民,薛倩,王安义.一种快速二维虚拟ESPRIT算法[J].西安电子科技大学学报,2004,31(4);322-325.
    [158]Liu Q.Two-dimensional virtual ESPRIT algorithm[J],IEE Electronics Letters,2001,37(16);1052-1053.
    [159]Haardt M,Zoltowski M D,Mathews C P,et al.2D unitary ESPRIT for efficient 2D parameter estimation[A].In;Proc.of IEEE ICASSP'95[C].Detroit,MI,USA,1995,vol.3;2096-2099.
    [160]贾维敏,姚敏立,宋建社.基于复特征值的信号二维角度联合估计[J].数据采集与处 理,2006,21(3);256-259.
    [161]Haardt M,Romer F.Enhancement of unitary ESPRIT for non-circular sources[A].In;Proc.of IEEE ICASSP'04[C].Montreal,Canada,2004,vol.2;101-104.
    [162]何振亚.自适应信号处理[M].北京;科学出版社,2002;318-321.
    [163]吴云韬,廖桂生.空间非平稳噪声环境下的自适应波束形成[J].系统工程与电子技术,2003,25(5);554-556.
    [164]张林让,廖桂生,保铮.色噪声环境下自适应波束形成[J].电子学报,1998,26(12);75-78.
    [165]赵永波,张守宏,廖桂生.Toeplitz化在ESB自适应波束形成中的应用[J].西安电子科技大学学报(自然科学版),2000,27(6);683-687.
    [166]Gonen E,Mendel J M.Optimum cumulant-based blind beamforming for coherent signal and interference[A].In;Proc.oflEEE ICASSP'95[C].Detroit,MI,USA,1995,vol.3;1908-1911.
    [167]Shynk J J and Gooch R P.The constant modulus array for cochannel signal copy and direc-tion finding[J].IEEE Trans.on SP,1996,44(3);652-660.
    [168]Yeh C C Wang W D.Coherent interference suppression by an antenna array of arbitrary geometry[J].IEEE Trans Antennas andPropagation,1989,37(10);1317-1322.
    [169]LEE T S LIN T T.Coherent interference suppression with complementally transformed adaptive beamformer[J].IEEE Trans.Antennas and Propagation,1998,46(5);609-617.
    [170]赵永波,张守宏.存在相干信号时的最优波束形成[J].通信学报,2002,23(2);113-121.
    [171]赵永波,水鹏朗,张守宏.一种能有效接收相干信号的波束形成技术[J].电子学报,2006,34(6);1016-1019.
    [172]Mathur A,Keerthi A V,Shynk J J.Cochannel signal recovery using the MUSIC algorithm and the constant modulus array[J].IEEE Signal Processing Letters,1995,2(10);191-194.
    [173]Lee T S Lin T T.Reception of coherent signals with steering vector restoral beamformer[J].Signal Processing,1999,72(3);141-145.
    [174]冯大政,保铮,史维祥.基于二阶统计量的盲波束形成算法[J].电子科学学刊,2000,20(3);513-516.
    [175]El-Khamy S E,Kassem W I.Blind beamforming and signal detection by atenna arrays using higher order statistics[A].In;Proc.of 16~(th)National Radio Science Conference(NRSC'99)[C].Cairo Egypt,1999,vol.B5;1-8.
    [176]Jablon N K.Adaptive beamforming with generalized sidelobe canceller in presence of array imperfections[J].IEEE Trans.on Atennas and Propagation,1986,34(8);996-1012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700