系列逆转座子分子标记的建立及其在柿属植物中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是柿属植物的分布中心和原产中心之一,拥有丰富的种质资源。逆转座子是真核生物基因组中的重要组成成分,其在决定植物基因组大小、结构、功能以及及其进化中扮演重要角色。开发和应用逆转座子分子标记,可为我国柿属植物种质资源研究提供技术支撑。本研究首先分离柿Tyl-copia类逆转座子RNaseH-LTR序列并设计逆转座子引物,其次建立柿属植物IRAP、REMAP、SSAP和ISTR系列逆转座子分子标记技术体系并应用于柿属植物种质鉴定和亲缘关系分析等方面,同时应用非逆转座子分子标记AFLP和DAMD于柿属植物,并比较了二者以及ISTR与柿属特异性逆转座子分子标记在该属植物遗传分析中的性能,此外,对柿逆转座子引物在它类果树物种及禾本科、茄科和蔷薇科已发表的逆转座子引物在果树类作物上的通用性进行研究,并对一份特殊种质‘90-1-10'进行了鉴定。主要结果如下:
     1.利用抑制PCR方法从‘罗田甜柿'(Diospyros kaki Thunb.‘Luotiantianshi')基因组中分离31条Tvl-copia类逆转座子的RNaseH-LTR序列,序列分析表明:至少有10个逆转座子家族得到扩增;其家族间序列普遍表现高度异质,发生不同程度的碱基替换、插入或缺失突变,以及翻译成氨基酸后的终止密码子突变、氨基酸取代和移框突变等;家族内部某些序列相似性极高,类反转录病毒中的准种居群;序列LTR区含有启动子的结构特征“CAAT box”、“TATA box”以及受不同胁迫条件作用下的调控元件。序列投递GenBank,登录号为EU068698-EU068728。
     2.基于其中15条RNaseH-LTR(Long terminal repeat)序列共设计26条逆转座子引物,包括8条正向LTR引物、10条反向LTR引物和8条PPT(polypurine tract)引物。为增加特异性,引物设计过程中充分考虑其较长长度和高Tm值:长度均在20bp~26bp之间,平均23bp;Tm值普遍高于55℃,平均为60.2℃。其中24条引物表现较好。
     3.优化PCR反应体系各组分浓度、退火温度(T_m)和扩增程序的基础上建立起适合柿属植物的逆转座子分子标记IRAP(Inter-retrotransposon amplifiedpolymorphism,逆转座子之间扩增多态性)和REMAP(Retrotransposon-miorosatelliteamplified polymorphism,逆转座子一微卫星扩增多态性)PCR扩增技术体系:20μL反应体系中,含1×Buffer、模板DNA 50 ng、Mg~(2+) 2.0mmol/L、dNTPs 0.25mmol/L、引物0.40μmol/L、Taq DNA聚合酶1.0U,矿物油20μL;PCR扩增程序:95℃5min;95℃1min;56℃1min ramp+0.6℃/s;72℃2min,循环44次;72℃延伸8min。
     4.建立柿属SSAP(Sequence-specific amplified polymorphism,特异序列扩增多态性)逆转座子分子标记技术体系,并对可能影响其扩增性能的几个重要因素和不同逆转座子在柿属种质遗传关系研究中的特点进行分析比较。结果表明,所有逆转座子都产生丰富的多态性,表明每个逆转座子都可单独用于SSAP分析;SSAP扩增性能与逆转座子自身的特点、选择性扩增酶接头引物的种类、组成及排序相关;不同逆转座子在28份试材中表现不同的转座特点。研究为进一步使用多逆转座子分子标记,以获得较为全面的柿属种质起源进化信息和进行遗传多样性评价及种质鉴定提供技术支持。
     5.建立适合柿属植物的通用引物逆转座子ISTR(Inverse sequenoe-tagged repeat,反向序列标签重复)分子标记体系,与IRAP同时用于32份柿属基因型的多态性和亲缘关系分析,并比较二者分析性能。结果表明,IRAP和ISTR均能很好的用于柿属植物的遗传分析;IRAP能区分供试所有基因型,包括芽变;ISTR不能区分‘富有'和其芽变‘松本早生',但可以区分其它所有基因型;IRAP与ISTR的聚类结果基本一致,但在细节上存在差异;IRAP在种间及种下分析所得的所有参数值(平均每次实验扩增总位点数、平均每次实验扩增多态位点数、多态位点百分率Pi、多样性指数DI、有效多重系数EIVIR、标记指数Marker Index MI)均高于ISTR,总的来看,具有柿属特异性的IRAP标记系统的分析性能优于通用引物的ISTR。
     6.探讨IRAP用于柿属植物种间关系研究的可行性,并与小卫星分子标记DAMD(Directed amplification of minisatellite-region DNA,直接扩增小卫星DNA)进行多态性和聚类分析比较。结果表明IRAP可以很好的用于柿属种间亲缘关系研究;DAMD作为首次应用于柿属植物的标记类型,也表现出很好的扩增性能,并能区分芽变;IRAP和DAMD聚类基本均能将不同采集地的种按地理位置聚类,但对中国热带、亚热带采集的柿种与温带栽培柿之间的关系存在分歧;两种标记用于柿属植物种间亲缘关系研究,在多态性水平、平均扩增总位点等方面表现相当,然而综合扩增性能评价IRAP较优于DAMD。总的看来,IRAP是揭示柿属植物种间及种下丰富多态性的有效标记类型,而DAMD也是将来用作柿属植物遗传分析的极具潜力的标记类型。
     7.探讨IRAP用于品种内微小变异检测的性能,以我国最大的‘磨盘柿'产区—北京市房山区张坊镇上报的11株磨盘柿基因型作为试材,这些试材在成熟期、果实外观形态、抗性及耐贮性等方面性状与标准品种存在差异。结果表明,19个逆转座子单引物IRAP扩增中,4个引物(PPT3,PPT6,SAF5和SAR10)在磨盘柿变异间具多态性,采用二歧法,该4个引物可将11份‘磨盘柿'变异完全区分;UPGMA聚类图上,磨盘柿变异与标准磨盘柿紧密相聚,分支模式显著不同于种与种间及不同品种之间:相似系数计算表明,磨盘柿变异单株间的相似指数在0.90(‘MP2'与‘MP4'、‘MP8'、‘MP9')~0.98(‘MP7'和‘MP8')之间,平均0.94,与磨盘柿标准品种‘BZMP'的平均相似指数为0.91,大于种间和品种间相似水平,与芽变间的相似水平接近。总的看来,本研究鉴定了供试的11份北京房山区磨盘柿的变异为遗传物质的改变,并非饰变;11份基因型之间以及与标准磨盘柿品种在遗传上的高相似性表明,它们可能为磨盘柿的芽变类型;IRAP分子标记能够很好的区分遗传背景高度相似的微小变异,反映了该项技术是今后进行柿品种鉴定,尤其是遗传差异较为接近的基因型,如芽变的有效工具。
     8.IRAP、REMAP和SSAP逆转座子分子标记用于28份柿属植物种质鉴定,16个柿逆转座子引物在供试材料的单引物IRAP分析中检测到丰富的扩增位点,且高多态性比例(97.6%);筛选出的7对REMAP引物和25对SSAP引物在相应的分子标记内同样检测到丰富的多态性(分别为95.2%和93.4%);每一类型分子标记均可成功鉴定28份种质,其中2个IRAP引物(PPT3和SAR10)及4对SSAP引物(SAR10/EA06、SAR9/MC03、SAR9/MC11、SAR1/MC11)可以单独用于区分全部种质。进一步计算形态学相近和已知芽变关系的5组种质各组内基因型间的遗传距离,量化每种逆转座子分子标记的鉴别效率表明:IRAP为3种逆转座子分子标记中进行种质鉴别最为灵敏的标记类型。
     9.IRAP、REMAP、SSAP和AFLP(Amplified fragment length polymorphism,扩增限制性片段长度多态性)4种分子标记在柿属植物遗传关系研究中的应用效果比较表明:IRAP具有最高的多态性水平和多样性指数;AFLP的多态性低于IRAP和SSAP,但具有最高的标记指数;SSAP的标记指数值低于AFLP,但其多态性高于AFLP;4种分子标记的遗传相似系数矩阵间的相关性显著,相对而言REMAP可靠性略差;4种分子标记的聚类结果基本一致,均可将28份种质按种间及种下不同地理起源进行划分,然而聚类细节因标记种类不同有别。综合评述,IRAP适用于柿属植物遗传多样性分析和种质区分,尤其是遗传背景相近的种质鉴定,而SSAP和AFLP适用于起源、进化研究。
     10.从‘罗田甜柿'中开发的26个逆转座子引物在其它果树上的通用性试验表明:53.85%的引物可在供试果树类植物中获得扩增产物,但不同引物在不同物种中的通用性各异,其中在柿属、葡萄属、柑橘类和桃属植物中的通用性较好。利用可通用引物在柿属、柑橘类、葡萄属、桃属和梨属植物中的IRAP数据进行遗传关系分析的结果表明:这些引物在相关试材上还具有种质区分、亲子关系鉴定、分类和系统关系研究以及遗传多样性评价等研究的潜力;同时还研究了已发表的来自蔷薇科、禾本科和茄科的逆转座子引物在果树类作物上的通用性,进一步佐证了逆转座子引物可跨物种通用的特点,不同意前人的观点。
     11.我国原产柿种质中只有完全甜柿和完全涩柿两种类型,至今尚无不完全甜柿存在的报道。对引种自湖北省罗田县的‘90-1-10'进行形态学、细胞学鉴定及生化和分子水平分析,结果表明,‘90-1-10'具有与中国原产柿种质相近的果实特征,结合4种DNA分子标记IRAP、REMAP、SSAP和AFLP的聚类分析结果和引种地推断其属中国原产;可溶性单宁含量和单宁细胞大小的测定结果表明‘90-1-10'属非完全甜柿类型;果实脱涩和种子形成及其果肉褐斑情况分析结果表明‘90-1-10'应为非完全甜柿种质中的不完全甜柿:‘90-1-10'与‘罗田甜柿'及其它罗田甜柿变异单株在形态学、脱涩性状及DNA水平上表现明显的差异,表明其应为不同于‘罗田甜柿'的一份新种质。因此,‘90-1-10'可能系原产我国的不完全甜柿新种质。这是目前中国原产不完全甜柿类型的首例报道。
China is one of the originating and distributing centers of Diospyros Linn.,where abundant valuable genetic resources exist.Retrotransposon are ubiquitous in eukaryotic organisms,constituting a major portion of the nuclear genome(often more than half of the total DNA) in plant,and play a major role in plant genome size,structure,gene function as well gene and genome evolution.Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. Therefore,the development and utilization of retrotransposon-based molecular markers in Diospyros Linn.will be of considerable interest for improving technical tools and extending obtainable genetic information concerning Diospyros Linn.germplasm resources.In the present study,we carried out a series of research in this aspect,and the main results were as follows:
     1.31 RNaseH-LTR(Long terminal repeat) sequences of Ty1-copia like retrotransposon were isolated from the genome of Diospyros kaki Thunb.'Luotiantianshi' using suppression PCR method.Sequence multiple alignment and the phylogenetic analysis indicated that at least 10 subgroups were amplified.High sequence heterogeneity which were due to nucleotide replacement,insertion or deletion and amino acid replacement,stop codon and frameshift mutations in translated putative amino acid sequences were observed among the different subgroups.But some clones showed high similarity within the same subgroup,of which behavior like quasispecies-like population. Potential regulatory motifs from transcription,such as 'CAAT box' and 'TATA box' and some conserved cis-acting regulator elements were discovered within LTR regions in the great number of sequences using MatInspector and PLACE software.The sequences have been deposited in the NCBI GenBank database under accession numbers of EU068698-EU068728.
     2.26 retrotransposon primers were designed based on 15 out of 31 RNaseH-LTR sequences,which included 8 LTR forward primers,10 LTR reverse primers and 8 PPT (Polypurine tract) primers.To enhance the specificity and reliability of PCR amplification, long length and high annealing temperature(T_m) value of designed primers were thoroughly considered in primer disigh.In this study,the length of retrotransposon primer was 23bp on average;T_m value was set beyond 55℃universally with an average of 60.2℃.Of which 24 primers were successfully amplified by IRAP,giving rise to reproducible and reliable bands.
     3.The optimal IRAP(Inter-retrotransposon amplified polymorphism) and REMAP (Retrotransposon-microsatellite amplified polymorphism) retrotransposon-based molecular marker systems were successfully established in Diospyros Linn.on the basis of optimizing the concentration of several components in PCR reaction,the value of Tm and the PCR amplification program,which were:in 20μL reaction system,Buffer 1×, template DNA 50 ng,Mg~(2+) 2.0 mmol/mL,dNTPs 0.25 mmol/L,primer 0.40μmol/L Taq DNA polymerase 1.0U and mineral oil 20μL.The optimal amplification program was:1 cycle at 95℃,5min;1 cycle at 95℃,1min;56℃1min;ramp+0.6℃/s to 72℃;44 cycles of 72℃,2min.1 cycle at 72℃,72℃8min.
     4.SSAP(Sequence-specific amplified polymorphism) retrotransposon molecular marker was also developed successfully and several key elements influencing its performance were analyzed.Moreover,the features of different retrotransposon applied for the study of genetic relationship in 28 Diospyros kaki Thunb.were compared.The results showed that polymorphisms detected in the insertion pattern of all the retrotransposons revealed that each can be used for SSAP.All elements including different retrotransposons,the kind of adapter primers and the base composition and the order of the selective nucleotides in selective amplification had influence on the performance of SSAP analysis.Different retrotransposon had an unique behavior in accessions tested,which may likely reflect distinct evolutionary histories and activities of particular retrotransposon.Taken together,our results would offer a technique approach for obtaining more resolved and detailed genetic phylogenetic information,estimating genetic diversity and distinguishing germplasm in Diospyros kaki Thunb.by retrotransposon-based SSAP molecular marker.
     5.ISTR(Inverse sequence-tagged repeat) retrotransposon molecular marker system based on universal primers originally derived from coconut was established in Diospyros Linn.,and was further used for the detection of genetic variability and genetic relationship analysis in 32 Diospyros Spp..IRAP was also used for the same set of genotypes analysis, and the performance of these two methods was compared.The results showed that both IRAP and ISTR could be applied for the genetic analysis in Diospyros Linn..IRAP could distinguish all the genotypes examined including bud sports.ISTR also presented good discrimination capability,but it was not capable for differentiate 'Matsumoto-wase' from its original variety 'Fuyuu'.The cluster pattern between IRAP and ISTR shared much similarities,however,some slight differences was showed.IRAP possessed the higher values of all the parameters for evaluating the efficiency of marker system including loci per assay unit,average number of polymorphic bands per assay unit,Effective Multiplex Ratio,Diversity Index and Marker Index than ISTR whether at the inter-specific level or at the intra-specific level.So,collection data suggested that Diospyros-specific IRAP retrotransposon marker techniques are superior to the universal primer-based ISTR retrotransposon marker in our study.
     6.Feasibility of IRAP for genetic relatedness analysis particularly for that of inter-species was investigated.Subsequently,comparative studies concerning the level of polymorphism and cluster results between IRAP and DAMD(Directed amplification of minisatellite-region DNA) molecular techniques were conducted.The results showed that IRAP could be capable for the genetic relatedness analysis between different species of Diospyros Linn.DAMD,although used for the ftrst time in the genus of Diospyros,also indicated good amplification,and it could distinguish bud sports examined.Species tested almost could be grouped well according to their different collection locality using two methods,however,there were incongruent concerning the genetic relatedness of species collected from tropic and subtropic regions with that from temperate regions in China. IRAP and ISTR produced almost comparable values of the polymorphic level,average amplified loci per assay unit and diversity index,whereas the former revealed the higher comprehensive performance than the later due to its higher multiplex effective ratio.In all, collective results suggested IRAP was an ideal marker system in the future for the detection of genetic polymorphism both at the inter-species level and at the intra-species level.Moreover,our results indicated that DAMD was also a potential powerful marker tool for the future genetic analysis in Diospyros Linn.
     7.Capability of IRAP for tiny differences detection within a cultivar was examined on the 11 'Mopanshi' genotypes which was selected and reported by Zhangfang town, Fangshan district of Beijing city,the most centralized regions of 'Mopanshi'.These genotypes had unique properties compared to the standard 'Mopanshi' cultivar.The results showed that 4 out of total 19 amplifiable primers,PPT3,PPT6,SAF5 and SAR10, was polymorphic primers between different 'Mopanshi' mutations.By using dichotomy classification,11 'Mopanshi' mutations could be completed distinguished by these 4 primers.In UPGMA dendrogram,'Mopanshi' mutations grouped tightly each other and with standard cultivar 'BZMP',and the branch pattern was significantly distinct from that between species,as well as those of different cultivars within the same species.The measurement of similarity coefficients revealed that the similarity coefficient between 'mopanshi' mutations was from 0.90('MP2' and 'MP4','MP2' and 'MP8','MP2' and 'MP9') to 0.98('MP7' and 'MP8'),and the mean was 0.94.Moreover,Between 'Mopanshi' mutations and the standard cultivar 'BZMP',the mean similarity coefficient was 0.91,which was over that of between species and that of between different cultivars, but approximately similar to that of between bud sports.Therefore,in conclusion,the present study ascertained that the variation of 11 'Mopanshi' mutations from Fandshan district of Beijing was genetic variability,but not alternation due to environment, development stage and nutrition status etc.;11 'Mopanshi' might be the bud sports arose from standard 'Mopanshi' cultivar in view of the great similarity between 11 genotypes, as well as between these mutations and the standard 'Mopanshi' cultivar;IRAP molecular technique could distinguish the tiny mutations,which implied that this method was an powerful genetic tool for the future cultivar identification,particularly for genotypes of great genetic similarity,such as bud sports.
     8.IRAP,REMAP and SSAP molecular markers were exploited for the germplasm identification.The results showed that these primers can be used both within and between species;each of 16 primers out of 26 produced numerous amplified loci and abundant polymorphism bands by IRAP(Inter-Retrotransposon Amplified Polymorphism) in 28 genotypes of Diospyros spp..Moreover,successful amplifications were also obtained when these primers were further used for REMAP and SSAP analysis.Each types of molecular marker produced unique fingerprint in 28 genotypes tested,and among of all used primers or primer combinations 2 IRAP primers(PPT3 and SAR10),4 SSAP primer combinations(SAR10/EA06,SAR9/MC03,SAR9/MC11 and SAR1/MC11) could be used individually for all germplasm differentiation.Furthermore,15 accessions that can been divided into 5 groups according to their similarity of morphologic characteristics and known relationships of bud sports were selected,and the genetic similarity within groups were computed to measure discrimination power of each molecular marker system, the result indicated that IRAP is the most sensitive and efficient one among 3 molecular techniques in germplasm identification.
     9.IRAP,REMAP,SSAP and AFLP were compared in terms of their informativeness and efficiency in a study of genetic relationships among 28 genotypes in the genus Diospyros.The results showed that IRAP represented a higher level of polymorphism and a greater information content,as assessed by the diversity index(DI), than the rest of molecular markers.The lower level of polymorphism for AFLP were obtained than IRAP and SSAP,which,nevertheless was the most efficient marker system due to its capacity to reveal the highest number of bands per reaction and because of the high values achieved for a considerable number of indexes.The value of marker index (MI) is lower for SSAP than that of the AFLP,but the former had a higher level of polymorphism than the latter.The correlation coefficients of similarity were statistically significant for all four marker systems used,but the relatively lower correlation with other markers was observed for REMAP.For all markers a high similarity in dendrogram topologies was obtained,which generally divided 28 genotypes examined into 3 groups according to different species and their different geographic origin.However,some differences in the positioning of some genotypes at the main groups were revealed due to different marker systems.In summary,we recommend,in the genus Diospyros,IRAP for the assessment of genetic diversity and germplasm discrimination,particular for theidentification of genetically very similar germplasm;and SSAP and AFLP were preferred for the study of phylogenetic,as well as the creation of a genetic linkage map.
     10.The transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon(Diospyros kaki Thunb.) in Diospyros spp.and other 13 kinds of fruit crops was investigated by way of IRAP retrotransposon molecular marker.Our results as follows:Retrotransposon primers from 'Luotian-tianshi' could be used well not only in inter-species and intra-species in Diospyros,but also in the other 13 kinds of fruit crops analyzed,which may be attribute to the horizontal and vertical transfer characters of retrotransposon.14 primers representated 53.85%primers tested could be amplified in 14 kinds of fruit crops simultaneously.Primers showed different amplified performance in different fruit crops,and the outstanding performance of transferability was revealed in four fruit crops including Diospros spp.,grape,Citrus and peach.Furthermore,based on IRAP molecular data sets from the effective primers amplification corresponding to the different fruit crops,genetic similarity coefficients were calculated and UPGMA cluster dendrograms were constructed.The results indicated that these effective primers could further offer a good potential tool for germplasm differentiation,parentage identification, classification and phylogenetic study,as well as genetic diversity assessment.The conclusion that retrotransposon primers could be of transferability among different plant species was further confirmed by examining the transferability of retrotransposon primers derived from published primers in Rosaceae,Gramineae and Solanaceae in 13 kinds of fruit crops.Our results were incongruent with previous researchs that thought retrotransposon primers was of species-specific and species-specific primers was one of a perquisite for the development of molecular markers.This is the first successful report of transferability of retrotransposon primers derived from 'Luotian-tianshi' of Diospyros to other fruit crops,and to our knowledge,it is also one of the limited number of related report concerning the transferability of retrotransposon primers available at present.It provided not only the proof of transferability of retrotransposon primers in different plant species,but also the precious resources of primers for other fruit crops,which is benefit for saving cost of retrotransposon primer development and for popularizing retrotransposon molecular markers.
     11.More than 963 cultivars named as Japanese persimmon exist in China,but hitherto most of them are PCA type.No PVNA and PVA types have been reported.In the present study,from the aspect of morphology,cytology,biochemistry and molecular biology,we investigated '90-1-10' which was introduced from Luotian county of Hubei province where the first Chinese native PCNA Japanese persimmon 'Luotian-tianshi' was found.The results were as follows:'90-1-10' had the similar tree type and fruit morphologic traits with other Chinese native persimmon germplasm,suggesting that it should be considered as a Chinese native persimmon,which was further confirmed by molecular marker analysis.The results of the tannin cell size test showed that '90-1-10' should be belong to non-astringent type persimmon.The results of the observation of brown in fruit flesh and soluble tannin content test indicated that it should be a pollination variant non-astringent(PVNA) type persimmon.In addition,'90-1-10' exhibited remarkable differences with 'Luotian-tianshi' and the other variations from 'Luotian-tianshi' in fruit morphology,the pattern of astringency-loss and genetic composition,implying that it should be a new germplasm genetically distinct from 'Luotian-tianshi'.In summary,collective results demonstrated that '90-1-10' should be a Chinese native PVNA type persimmon.This is the first report on existence of a PVNA type persimmon in China hitherto.This germplasm would be an important source for the phylogenetic study on Chinese native PCNA type persimmon and would have a potential role for breeding in the future.
引文
1.傍岛善次.柿和人生.东京:明玄书房,1980,1445
    2.别墅,王坤波,孔繁玲,周有耀,邹美娟,王春英.棉花基因组重复序列研究进展.分子植物育种,2003,1:373-379
    3.陈新露,赵祥云.应用RAPD技术评价丁香品种间遗传关系.园艺学报,1995,22:171-175
    4.邓秀新,郭文武,孙绪华.我国无核柑橘类型选育研究进展.园艺学报,1996,23:235-240
    5.葛颂,洪德元.遗传多样性及其检测方法.见:钱迎倩,马克平主编,生物多样性研究的原理与方法.北京,中国科学技术出版社,1994,127
    6.龚榜初,王劲风.柿不同砧木生物学特性的研究.经济林研究,1997,15:9-12
    7.顾耘,王思芳,张迎春,顾颂东.应用RAPD技术时引物数量和统计方法的研究.莱阳农学院学报,2000,17:239-242
    8.郭大龙,罗正荣.部分柿属植物SRAP-PCR反应体系的优化.果树学报,2006,23:138-141
    9.郭大龙,罗正荣.柿和君迁子SSR分析技术的建立.农业生物技术学报,2004,14:386-389
    10.郭大龙.几种分子标记技术的建立及其再部分柿属植物亲缘关系分析中的应用.[博士学位论文].武汉:华中农业大学图书馆,2006
    11.何小勇,何林,谢建秋.金枣柿的开发利用.中国林副特产,2000,53:47-48
    12.何云核.安徽柿树品种资源初步研究.西北林学院学报,1995,10:47-51
    13.洪柳.椪苷多倍体的分离以及脐橙品种的遗传多样性分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    14.胡德昌.几种分子标记技术的建立及其再部分柿属植物亲缘关系分析中的应用.[博士学位论文].武汉:华中农业大学图书馆,2007
    15.胡芳名,谢碧霞,张在宝,吴定国,伍根庭,段以规,王琳,龚家发,苏冬梅,刘佳佳.湖南柿树资源及开发利用.经济林研究,1989,7:1-30
    16.胡佳磊,邵雪玲,刘思阳.RAPD引物数量对施式巴鲵遗传多样性评估结果的影响.氨基酸和生物资源,2005,27:27-31
    17.金勇丰,张耀洲,张大明,张上隆.早熟桃芽变品种‘大观一号'的RAPD 分析及其特异片段的克隆.果树科学,1998,15:103-106
    18.景士西主编.园艺植物育种学总论.北京:中国农业出版社,2000,116-118
    19.李高潮,王仁梓,杨勇.柿品种性状演变与分化研究.西北农业学报,2002,11:68-71
    20.李树刚.中国植物志(第60卷第1分册).北京:科学出版社,1987,84-154
    21.罗安才,李纯凡,黄仁湖,向可术,李道高.奉节脐橙芽变株系的AFLP分析.农业生物技术科学,2003,19:20-24
    22.罗正荣,李发芳.部分中国原产甜柿种质的分子系统学研究.园艺学报,1999,26:297-301
    23.罗正荣,王万双,王仁梓,李高潮.应用同工酶技术鉴别同物异名柿.园艺学报,2000,27:475-480
    24.罗正荣,张青林.第三届国际柿学术研讨会总结报告.见:郗荣庭,刘孟军主编:干果研究进展(4).北京:中国农业科技出版社,2005,17-21
    25.牟云官.柿.见:曲泽洲.孙云蔚主编.果树种类论.北京:农业出版社,1990,244-253
    26.宁允叶,熊庆娥.曾伟光,曾光荣.红阳猕猴桃全红芽变系的RAPD分析.园艺学报,2003,30:511-513
    27.潘德森,马业萍,余秋英,易珍旺,张仕辉.罗田甜柿资源调查及优良株系选育.湖北林业科技,1994,24-28
    28.庞晓明.用分子标记研究柑桔属及其近缘属植物的亲缘关系和积的遗传多样性.[博士学位论文].武汉:华中农业大学图书馆,2002
    29.乔爱民,刘佩瑛,雷建军.引物及RAPD标记数对芥菜变种聚类分析的影响.西南农业大学学报,1998,20:28-33
    30.任羽,王德元,张银东,李颖,王恒明.辣椒SRAP-PCR反应体系的建立与优化.分子植物育种,2005,2:689-693
    31.杉浦明.柿的起源和品种演化.育种学最近的进步,1984,25:30-37(日文)
    32.苏冬梅.柿属君迁子和湖南九个乡土柿品种过氧化物酶同工酶的研究.武汉植物学研究,1991,9:253-258
    33.唐仙英,罗正荣.部分中国柿品种及其胚培养后代的染色体倍性研究.园艺学报,2000,27:235-239
    34.唐益苗,马有志.植物逆转座子及其在功能基因组学中的应用.植物遗传资源学报,2005,6:221-225
    35.汪小全,邹喻苹,张大明,张志宪,洪德元.RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996,38:954-962
    36.王富荣,佟兆国,章镇等.野生桃幼叶DNA提取方法的改良研究.江苏农 业科学,2006,5:66-69
    37.王劲风,方正明.甜柿引种栽培.北京:中国农业出版社,1995,3
    38.王仁梓.关于罗田甜柿原产地问题的探讨.中国果树,1983,(2):16-19
    39.王仁梓.柿.见:沈隽主编,中国农业百科全书·果树卷.北京:农业出版社,1993,310-311
    40.王仁梓.柿.见:中国作物遗传资源学会主编.中国作物遗传资源.北京:中国农业出版社,1994,887-890
    41.王仁梓.柿种质资源研究.见:陕西省果树研究所主编.陕西果树所建所三十年和陕西果品研究中心成立科学研究论文集,1979,25-27
    42.王文江.柿(Dmspyros kaki Thunb.)优良品种AFLP指纹图谱构建及遗传多样性研究.[博士学位论文].保定:河北农业大学图书馆,2004
    43.王西平,王跃进,张剑侠,徐炎,杨克强.葡萄早熟芽变品种‘早生高墨'的RAPD分析.西北植物学报,2003,23:473-476
    44.王掌军.甜瓜种质遗传多样性的分子基础和品种诊断技术研究.[硕士学位论文].银川:宁夏大学图书馆,2005
    45.王中仁.植物等位酶分析.北京,科学出版社,1996
    46.韦杰.柑橘反转录转座子基因的特征分析及其相关分子标记的开发.[博士学位论文].武汉:华中农业大学图书馆,2007
    47.肖璇,孙敏,王心燕,乔爱民,江波.‘石硖'龙眼大果型桂花味芽变系的RAPD分析鉴定.园艺学报,2005,32:684-687
    48.徐来祥,张知彬,宋铭晶.逆转座子与生物遗传多样性.动物学杂志,2002,37:88-93
    49.杨勇,阮小凤,王仁梓,李高潮.柿种质资源及育种研究进展.西北林学院学报,2005,20:133-137
    50.杨勇,阮小风,王仁梓,李高潮.柿单宁细胞形态特征及发育动态研究.西北农林科技大学学报(自然科学版).2003,31:93-99
    51.杨勇,王仁梓,李高潮,王雯.柿属植物及柿品种染色体数目研究.西北农业学报,1999,8:64-67
    52.伊凯,闫忠业,刘志,王冬梅,杨峰,张景蛾.苹果芽变选种鉴定及其应用研究.果树学报,2006,23:745-749
    53.张青林,罗正荣.柿属植物ISSR分析技术的建立.农业生物技术学报,2004,12:521-525
    54.张青林.完全甜柿及部分雄性种质间的亲缘关系研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    55.中村三夫,福井博一.柿栽培生理和栽培新技术.东京:诚文堂新光社,1994,224-253
    56.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001,190
    57.左大勋,柳鎏,王希蕖.我国柿属植物资源的地理分布及利用.中国果树,1984,3:27-34
    58.Acquadro A,Portis E,Moglia A,Comino C,Lanteri S.Retrotransposon diversity in Artichoke and Cardoon(Cynara Cardunculus L.) as revealed by S-SAP profiling.The Role of Biotechnology,2005,March,5-7
    59.Aga E,Bryngelsson T.Inverse sequence-tagged repeat(ISTR) analysis of genetic variability in forest coffee(Coffea arabica L.) from Ethiopia.Genet Res Crop Evol,2006,53:721-728
    60.Agarwal M,Shrivastava N,Padh H.Advances in molecular marker techniques and their applications in plant sciences.Plant Cell Rep,2008,27:617-631
    61.Antonius-Klemola Kristiina,Kalendar Ruslan,Schulman AH.TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports.Theor Appl Genet,2006,112:999-1008
    62.Asins M J,Monforte A J,Mestre P F,Carbonell E A.Citrus and Prunus copia-like retrotransposons.Theor Appl Genet,1999,99:503-510
    63.Asins,M J,Bernet G P,Ruiz C,Cambra M,Guerri J,Carbonell E A.QTL analysis of citrus tristeza virus-citradia interaction.Theor Appl Genet,2004,108:603-611
    64.Badenes M,Garces A,Romero C,Romero M,Clave J,Rovira M,Llacer G.Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers.Gen Resour Crop Evol,2003,50:579-585
    65.Bebeli P J,Zhou Z,Somers D J,Gustafson J P.PCR primed with minisatellite core sequence yields DNA fingerprinting probes in wheat.Theor Appl Genet,1997,95:276-283
    66.Beguiristain T,Grandbastien M,Puigdomenech P,Casacuberta J M.Three Tnt1subfamilies show different stress-associated pattern of expression in Tobacco:consequences for retrotransposon,control and evolution in plants.Plant Physiol,2001,127:212-222
    67.Berenyi M,Gichuki S T,Schmidt J,Burg K.Ty1-copia retrotransposon-based S-SAP(sequence-specific amplified polymorphism) for genetic analysis of sweetpotato. Theor Appl Genet, 2002, 105: 862-869
    
    68. Bernet G P, Asins M J. Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet, 2003, 108: 121-130
    
    69. Bernet G P, Mestre P F, Pina J A, Asins M J. Molecular discrimination of lemon cultivars. HortSci, 2004, 39: 165-169
    
    70. Bhattacharya E, Dandin S B, Ranade S A. Single primer amplification reaction methods reveal exotic and indigenous mulberry varieties are similarly diverse. J Biosci, 2005, 30: 669-677
    
    71. Bhattacharya E, Ranade S A. Molecular distinction amongst varieties of Mulberry using RAPD and DAMD profiles. BMC Plant Bio, 2001, 1: 3
    
    72. Boeke J D, Corces V G. Transcription and reverse transcription of retrotransposons. Annu Rev Microbial, 1989, 43: 403-434.
    
    73. Bouhadida M, Casas A M, Moreno M A, Gogorcena Y. Molecular characterization of miraflores peach variety and relatives using SSRs. Scientia Hortic, 2007,111:140-145
    
    74. Bousios A, Saldana-Oyarzabal I, Valenzuela-Zapata A G, Wood C, Pearce S R. Isolation and characterization of Ty1-copia retrotransposon sequences in the blue agave (Agave tequilana Weber var. azul) and their development as SSAP markers for phylogenetic analysis. Plant Sci, 2007, 17: 291-298
    
    75. Breto M P, Ruiz C, Pina J A, Asins M J. The diversification of citrus Clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylog Evol, 2001, 21: 285-293
    
    76. Brummer E C, Bouton J H, Kochert G Analysis of annual Medicago species using RAPD markers. Genome, 1995, 38: 362-367
    
    77. Casacuberta J M, Vernhettes S, Grandbastien M A. 1995. Sequence variability within the tobacco retrotransposon Tntl population. European Molecular Biology Organization, 14: 2670-2678
    
    78. Casacubertal J M, Vernhettes S, Audeon C, Grandbastien M A. Quasispecies in retrotransposons: a role for sequence variability in Tntl evolution. Genetica, 1997, 100: 109-117
    
    79. Castiglioni P, Pozzi C, Heun M, Terzi V, Müller K J, Rohde W, Salamini F. An AFLP-Based Procedure for the Efficient Mapping of Mutations and DNA Probes in Barley. Genetics, 1998,149: 2039-2056
    
    80. Chaparro J X, Werner D J, Whetten R W, O'Malley D M. Inheritance, genetic interaction, and biochemical characterization of anthocyanin phenotypes in peach. JHered, 1995, 86:32-38
    81. Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetittve DNA in eukaryotes. Nature, 1994, 371: 215-220.
    82. Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177-178
    83. Cheng Z P. Genetic characterization of different demes in Prunus persica revealed by RAPD markers. Scientia Hortic, 2007, 111: 242-247
    84. Choi Y A, Tao R, Yonemori K, Sugiura A. Genomic distribution of three repetitive DNAs in cultivated hexaploid Diospyros spp.(D. kaki and D. virginiana) and their wild relatives. Genes Genet Syst, 2003a, 78: 301-308
    85. Choi Y A, Tao R, Yonemori K, Sugiura A. Genomic in situ hybridization between persimmon (Diospyros kaki) and several wild species of Diospyros. J Japan Soc Hort Sci, 2003b, 72:385-388
    86. Choi Y A, Tao R, Yonemori K, Sugiura A. Physical mapping of 45S rDNA by fluorescent in situ hybridization in persimmon (Diospyros kaki) and its wild relatives. J Hort Sci Biotech, 2003c, 78: 265-271
    87. Choi Y A, Tao R, Yonemori K, Sugiura A. Simultaneous visualization of 5S and 45S rDNAs in persimmon (Diospyros kaki) and several wild relatives (Diospyros spp.) by fluorescent in situ hybridization (FISH) and MultiColor FISH (MCFISH). J Amer Soc Hort Sci, 2003d, 128: 736-740
    88. Cornman R S, Arnold M L. Characterization and comparative analysis of sequence-specific amplified polymorphisms based on two subfamilies of IRRE retrotransposons in Iris missouriensis (Iridaceae). Genetica, 2008, DOI 10.1007/s10709-008-9248-8
    89. Cronn R C, Small R L, Haselkorn T, Wendel JF. Rapid diversification of the cotton Genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot, 2002, 89: 707-725
    90. Csaik U M, Bastian H, Brettschneider R. Comparative analysis of different DNA extraction protocols: A fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol Rep, 1998, 16: 69-86
    91. Demeke T, Adams R P, Chibbar R. Potential taxonomic use of random amp lified polymorphic DNA (RAPD): acasestudyin Brassica. Theor Appl Genet, 1992, 84: 990-994
    92. Demey J R, Gamez E, Molina S, Inafante D. Comparative Study of the Discriminating Capacity of AFLP and ISTR Markers for Genetic Analysis of Agave fourcroydes. Plant Mol Biol Rep, 2004, 22: 29-35
    93. Diatchenko L, Lau Y F, Campbell A, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED. Suppression subtractive hybridization: a method for generating differentially regulatedor tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030
    94. Diez J, Beguiristain T, Tacon F L, Casacuberta J M and Tagu D. Identification of Ty1-copia retrotransposons in three ectornycorhizal basidiomycetes: evolutionships and use as molecular markers. Curr Genet, 2003, 43: 34-44
    95. Dror S, Avital A, Samir M. DNA fingerprintings in plants using simple-sequence repeat and minisatellite probes. HortScience, 1995, 30: 109-112
    96. Eaks IL. Ripening and astringency removal in persimmon fruits. Proc Amer Soc Hort Sci, 1967,91:868-875
    97. Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 2008,9:18
    98. Ellis T H N, Poyser S J, Knox M R, Vershinin A V, Ambrose M J. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet, 260: 9-19
    99. Eulgem T, Rushton P, Schmelzer E, Hahlbrock K, Somssich I. Early nuclear events in plant defense signaling: rapid gene activation by WRKY transcription factors. EMBO J, 1999, 18: 4689-4699
    100. Faris J D, Haen KM, Gill BS. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics, 2000,154: 823-835
    101. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.65. 2005, Distributed by the author. Department of Genome Science & Department of Biology, University of Washington, Seattle
    102.Feschotte C. Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002, 3: 329-341
    103.Flavell A J, Knox M R, Pearce S R, Ellis T H N. Retrotransposon-based insertion polymorphisms (RBIP) for highthroughput marker analysis. Plant J, 1998, 16: 643-650
    104.Flavell A J, Pearce S R, Kumar A. Plant transposable elements and the genome. Curr Opin Genet Dev, 1994, 4: 838-844
    105.Fukuda T, Yokoyama J, Nakamura T, Song In-Ja, Ito T, Ochiai T, Kanno A, Kameya T, Maki M. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes. BMC Plant Biol, 2005, 5: 6
    106.Galindo LM, Gaitan-Solis E, Baccam P and Tohme J. Isolation and characterization of RNase LTR sequences of Ty1-copia retrotransposons in common bean (Phaseolus Vulgaris L.). Genome, 2004, 47: 84-95
    107.Gao L, McCarthy E M, Ganko E W, McDonald J F. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genome, 2004, 5:1-18
    108.Garber K, Bilic I, Pusch O, Tohme J, Bachmair A, Schweizer D, Jantsch V. The Tpv2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics, and use for genotype classification. Plant Mol Bio, 1999, 39: 797-807
    109.Garcia-Martinez J, Martinez-Izquierdo J A. Study on the. evolution of the Grande retrotransposon in the Zea genus. Mol Biol Evol, 2003, 20: 831-841
    110.Gesteland R F , Atkin J F. The RNA World. New York: Cold Spring Harbor Press, 1993
    111 .Geuna F, Toschi M, Bassi D. The use of AFLP markers for cultivar identification in apricot. Plant Breeding, 2003, 122: 526-531
    112.Gojobori T, Yokoyama S. Rates of evolution of the retroviral onco gene of moloney nurine sarcoma virus and its cellular homologues. Proc Natl Acad Sci USA, 1985, 82: 4198-4201
    113.Goulao L, Cabrita L, Oliveira C M, Leitao J M. Comparing RAPD and AFLP? analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Bork.) cultivars. Euphytic, 2001, 119: 259-270
    114.Grandbastien M A, Spielmann A, Caboche M. Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 1989, 337: 376-380
    115.Grandbastien M A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci, 1998, 3: 181-187
    116.Grandbastien M A. Retroelement in high plants. Trends Genet, 1992, 8: 100-108
    117.Gribbon B M,Pearce S R,Kalender R J P,Kumar A,Flavell A J.Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal.Mol Gen Genet,261,1999,883-891
    118.Guo D L,Luo Z R.Development of SSR Primers using ISSR-PCR in Diospyros kaki Thunb..Mol Ecol Notes,2006a,6:886-887
    119.Guo D L,Luo Z R.Genetic relationships of some PCNA persimmons(Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis.Genet Res Crop Evol,2006,53:1597-1603
    120.Guo D L,Luo Z R.Microsatellite isolation and characterization in Japanese persimmon(Diospyros kaki Thunb.).Bioche Genet,2008,46:323-328
    121.Guo D L,Zhang H Q,Luo Z R.Genetic relationships of Diospyros kaki Thunb.and related species revealed by IRAP and REMAP analysis.Plant Sci,2006,170:528-533
    122.Heath D D,Iwama G K,Devlin R H.PCR primed with VNTR core sequences yields species specific patterns and hypervariable probes.Nucleic Acid Research,1993,21:5782-5785
    123.Henikoff S,Comai L.Trans-sensing effects.Cell,1998,93:329-332
    124.Herran A,Estioko L,Becker D,Rodriguez M J B,Rhode W,POtter E.Linkage mapping and QTL analysis in coconut(Cocos nucifera L).Theor Appl Genet,2000,101:292-300
    125.Hirochika H,Fukuchi A,Kikuchi F.Retrotransposon families in rice.Mol Gen Genet,1992,233:209-216
    126.Hirochika H,Sugimoto K,Otsukit Y,Tsugawat H,Kanda M.Retrotransposons of rice involved in mutations induced by tissue culture.Proc Natl Acad Sci USA,1996,93:7783-7788
    127.Hirohiko H.Retrotransposons of rice:their regulation and use for genome analysis.Plant Mol Bio,1997,35:231-240
    128.Hu D C,Luo Z R.Phylogenetic analysis in some Diospyros spp.(Ebenaceae) and Japanese persimmon using chloroplast DNA PCR-RFLP markers.Scientia Hortic,2008,117:32-38
    129.Hu D C,Luo Z R.Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp..Scientia Hortic,2006,109:275-2811
    130.Hu W,Das O P,Messing J.Zeon-1,a member of a new maize retrotransposon family.Mol Gen Genet,1995,248:471-480
    131.Hume H H. Akaki classification. J Hered, 1914, 5: 400-406
    
    
    132. Ikagami A., Yonemori K., Sugiura A., Sato A., Yamada M. Segregation of astringency in F_1 progenies derived from crosses between Pollination constant Non-astringent (PCNA) persimmon cultivars. HortScience, 2004, 39: 371-374
    133.Ikeda K, Sugiura A. Apomictic seed formation from inter- and intra- specific crosses of Diospyros lotus. J Japan Soc Hort Sci, 2000, 69 (suppl 1): 79
    134. Imsande J, Pittig J, Palmer R G, Wimmer G, Goet1 C. Independent spontaneous mitochondrial malate dehydrogenase null mutants in soybean are the result of deletions. J Hered, 2001, 92: 333-338
    135.Infante D, Molina S, Demey R, Gamez E. Asexual genetic variability in Agavaceae determined with inverse sequence-tagged repeats and amplification fragment length polymorphism analysis. Plant Mol Biol Rep, 2006, 24: 205-217
    136.Jeffreys A J, Wilson V, Thein S L. Hypervariable 'minisatellite' regions in human DNA. Nature, 1985, 314: 67-73
    137. Johns M A, Mottinger J, Frddling M. A low copy number, copia-like transposon in maize. EMBO J, 1985, 4: 1093-1102
    138.Jordan I K, Matyunina LV, McDonald J F. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci USA, 1999, 22: 12621-12625
    139.Julier C, Gouyon D D, Georges M, Guenet J L, Nakamura Y, Avner P, Lathrop G M. Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. Proc Natl Acad Sci USA, 1990, 87: 4585-4589
    140.Jurka J, Klonowski P, Dagman V, Pelton P. CENSOR-a program for identification and elimination of repetitive elements from DNA sequences. Computers and Chemistry, 1996, 20: 119-122
    141.Kajiura M. Persimmon cultivars and their improvement (2). Breed Hort, 1946, 1:175-182
    142.Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999,98: 704-711
    143. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman A H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA, 2000, 97:6603-6607
    144.Kalyanaraman A,Aluru S:Efficient algorithms and software for detection of full-length LTR retrotransposons.J Bioinform Comput Biol,2006,4:197-216
    145.Kanzaki S,Sato A,Yamada M,Utsunomiya N,Kitajima A,Ikegami A,Yonemori K.RFLP markers for the selection of pollination-constant and non-astringent (PCNA)-Type persimmon and examination of the inheritance mode of the markers.J Japan Soc Holt Sci,2008,77:28-32
    146.Kanzaki S,Yonemori K,Sato A,Yamada M,Sugiura A.Analysis of the genetic relationships among pollination-constant and non-astringent(PCNA) cultivars of persimmon(Diospyros kaki Thunb.) from Japan and China using amplified fragment length polymorphism(AFLP).J Japan Soc Hort Sci,2000,69:665-670
    147.Kanzaki S,Yonemori K,Sugiura A.Identification of molecular markers linked to the trait of natural astringency loss of Japanese persimmon(Diospyros kaki) fruit.J Amer Soc Hort Sci,2001,126:51-55
    148.Karaca M,Gulince A.Minisatellites as DNA markers to classify bermudagrasses (Cynodon spp.):confirmation of minisatellite in amplified products.J Genet,2008,87:83-86
    149.Karaca M,Saha S,Zipf A,Jenkins J N Lang D J.Genetic diversity among forage bermudagrass(Cynodon Spp.):evidence from chloroplast and nuclear DNA fingerprinting.Crop Sci,2002,42:2118-2127
    150.Kim T C,Ko K C.Classification of persimmon(Diospyros kaki Thunb.) cultvars on the basis of horticultural traits.In:Subhadrabandhu S ed,Proceeding of the fast international persimmon symposium.I International Persimmon Symposium,Chiang Mai,Thailand.Acta Hort,1997,436:77-83
    151.Kimura Y,Tosa Y,Shimada S,Sogo R.,Kusaba M,Sunaga T,Betsuyaku S,Eto Y,Nakayashiki H,Mayama S.OARE-1,a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses.Plant Cell Physiol,2001,42:1345-1354.
    152.Kobayashi S,Goto-Yamamoto N,Hirochika H.Retrotransposon-induced mutations in grape skin color.Science,2004,304:982
    153.Koch M A,Haubold B,Mitchell-Olds T.Comparative evolutionary analysis of chaloone synthase and alcohol dehyclrogenase loci in Arabidopsis,Arabis,and related genera(Brassicaceae).Mol Biol Evol,2000,17:1483-1498
    154.Komatsu M,Shimamoto K,Kyozuka J.Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma.Plant Cell,2003,15:1934-1944
    155.Konieczny A, Voytas D F, Cummings M P, Ausubel FM, A superfamily of Arabidopsis thaliana retrotransposons. Genetics, 1991,127: 801-809
    156.Krom N, Recla J, Ramakrishna W. Analysis of genes associated with retrotransposons in the rice genome. Genetica, 2008, 134: 297-310
    157.Kumar A, Bennetzen J. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479-532
    158.Kumar S, Tamura K, Nei M. MEGA. Molecular Evolutionary Genetica Analysis. Version 3.1, 2005. Center for Evolutionary Functional Genomics, Tempe, Arizona, USA.
    159.Kuwahara A, Kato A, Komeda Y. Isolation and characterization of copia-type retrotransposons in Arabidopsis thaliana. Gene, 2000, 244: 127-136
    160.Labra M, Imazio S, Grassi F, Rossoni M, Sala F. Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding, 2004, 123:180-185
    161.Labrador M, Corces V G. Transposable elements-host interactions: regulation of insersion and excision. Annu Rev Genet, 1997, 31: 381-404
    162.Lall I P S, Maneesha, Upadhyaya K C. Panzee, a copia-like retrotransposon from the grain legume, pigeonpea (Cajanus cajan L.). Mol Genet Genomics, 2002, 267: 271-280
    163. Laten H M, Majumdar A, Gaucher E A. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelopelike protein. Proc Natl Acad Sci USA, 1998,95:689-6902
    164.Lavrentieva I, Broude N E, Lebedev Y, Gottesman I I, Lukyanov S A, Smith C L, Sverdlov E D. 1999. High polymorphism level of genomic sequences flanking insertion sites human endogenous retroviral long terminal repeats. FEBS Letters, 443:341-347
    165.Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman A H. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Gen Genet, 2003, 269: 464-474
    166.Lenoir A, Lavie L, Prieto J L, Goubely C, Cote J C, Pelissier T, Deragon JM, 2001. The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol, 18: 2315-2320
    167.Leprince A S, Grandbastien M A, Meyer C. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can inducealternative splicing of the host gene upon insertion. Plant Mol Biol, 2001, 47: 533-541
    168.Lewis C D, Doyle J J. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Mol Phylogenet Evol, 2001,19: 409-420
    169.Li C D, Rossnagel B G, Scoles G J. Tracing the phylogeny of the hexaploid oat Avena sativa with satellite DNAs. Crop Sci, 2000, 40: 1755-1763
    170.Lian C, Zhou Z, Hogetsu T. A simple method for developing microsatellite markers using amplified fragments of inter-simple sequence repeat (ISSR). J Plant Res, 2001,114: 381-385
    17I.Luo Z R, Yonemori K, Sugiura A. Evaluation of RAPD analysis for cultivar identification of persimmons. J Japan Soc Hort Sci, 1995, 64: 535-541 (in Japanese with English abstract)
    172.Madsen L H, Fukai E, Radutoiu S, Yost C, Sandal N, Leif S, Stougaard J. LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J, 2005, 44: 372-381
    173.Maki S, Oyama K, Kurahashi T, Nakahira T, Kawabata T, Yamada T. RFLP analysis for cultivar identification of persimmons. Scientia Hortic, 2001, 91: 407-412
    174.Manninen Q, Kalendar R, Robinson J, Schyknab A H. Application of Bare-1retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet, 2000, 264: 325-334
    175.Marillonnet S, Wessler S R. Extreme structural heterogeneity among the members of a maize retrotransposon family. Genetics, 1998,150: 1245-1256
    176.Mase N, Iketani H, Sato Y. Analysis of bud sport cultivars of peach (Prunus persica (L.) Batsch) by simple sequence repeats (SSR) and restriction landmark genomic scanning (RLGS). J Japan Soc Hort Sci, 2007, 76: 20-27
    177.Matsubara k, Kodama H, Kokubun H, Watanabe FL Ando T. Two nonel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene, 2005, 358: 121-126
    178.McCarthy E M, McDonald J F. LTR STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics, 2003, 19: 362-367
    179.McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226: 792-801
    180. Mendel K. Bud mutations in citrus and their potential commercial value. Proc Int Soc Citriculture, 1981,1: 86-89
    181.Meyers B C, Tingey S V, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the mazie genome. Genome Res, 2001, 11: 1660-1675
    182.Michel F, Cummings D J. Analysis of class I introns in a mitochondrial plasmid associated with senescense of Podospora anserine reveals extraordinary recemblance to the Tetrahymena ribosomal intron. Curr Genet, 1985, 10: 69-79
    183.Ming R, Hou S, Feng Y, Yu QY, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 06856: 991-997.
    184.Monte-Corvo L, Goulao L, Oliveira C. ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. J Amer Soc Hort Sci, 2001,126: 517-522
    185.Murray M J, Haldeman B A, Grant F J, O'Hara P J. Probing the human genome with minisatellite-like sequences from the human coagulation factor VII gene. Nucleic Acids Res, 1988, 16: 4166
    186.Nagy E D, Lelley T. Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor Appl Genet, 2003, 107: 1271-1277
    187.Nair A S, Teo C FL, Schwarzacher T, Harrison P H. Genome classification of banana cultivars from South India using IRAP markers. Euphytica, 2005, 144: 285-290
    188.Nakamura Y, Kobayashi S. DNA restriction fragment length variability in Diospyros kaki and related Diospyros species. HortScience, 1994, 29: 809-811
    189.Nakatsuka A, Iwami N, Matsumoto S, Itamura H, Yamagishi M. Ty1-copia group retrotransposons in persimmon (Diospyros kaki Thunb.). Genetica, 2002, 100: 109-117
    190.Natali L, Giordani T, Buti M, Cavallini A. Isolation of Ty1-copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol Breeding, 2007, 19: 255-265
    191.Ng F S P. Diospyros roxburghii andthe origin of Diospyros kaki. Malay For, 1978, 41:43-50
    192.Nishimura M, Hayasshi N, Jwa N S, Lua G W, Hamer J E, Hasebe A. Insertion of the LINE retrotransposon MGL causes a conidopore pattern mutation in Magnaporthe grisea. Mol Plant Microbe In, 2000, 13: 829-894
    193 Noma K, Ohtsubo E, Ohtsubo H. Non-LTR retrotransposons (LINE) as ubiquitous components of plant genomes.Mol Oen Genet,1999,261:71-79
    194.Parfitt D E,Yonemori K,Ryugo K,Sugiura A.Isozyme identification of Japanese persimmon(Diospyros kaki L.):comparisons of cultivars in California and Japan.Fruit Var J,1991,45:107-113
    195.Pearce S R,Knox M,Ellis T H N,Flavell A J,Kumar A.Pea Ty1-copia group retrotransposons:transpositional activity and use as markers to study genetic diversity in Pisum.Mol Gen Genet,2000,263:898-907
    196.Pearce S R,Stuart-Rogers C,Knox M R,Kumar A,Ellis T H N,Flavel A J.Rapid isolation of plant Tyl-copia group retrotransposon LTR sequences for molecular marker studies.Plant J,1999,19:711-717
    197.Pelsy F,Merdinoglu D.Complete sequence of Tvv1,a family of Ty 1 copia-like retrotransposons of Vitis vinifera L.,reconstituted by chromosome walking.Theor Appl Genet,2002,105:614-621
    198.Pereira H S,Barao A,Delgado M,Morais-Cecilio L,Viegas W.Genomic analysis of grapevine retrotransposon 1(Gret1 ) in Vitis vinifera.Theor Appl Genet,2005,111:871-878
    199.Petit M,Lira KY,Julio E,Poncet C,Dorlhac de Borne F,Kovarik A,Leitch A R,Grandbastien M A,Mhiri C.Differential impact of retrotransposon populations on the genome of allotetraploid tobacco(Nicotiana tabacum).Mol Genet Genomics,2007,278:1-15
    200.Porceddu A,Albertini E,Barcaccia G,Marconi G,Bertoli F B,Veronesi F.Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L.Mol Genet Genomics,2002,267:107-114
    201.Powell W,Morgante M,Andre C,Hanafey M,Vogel J,Tingey S V,Rafalski J A.The compassion of RFLP,RAPD,AFLP and SSR markers for germplasm analysis.Mol Breeding,1996,2:225-238
    202.Presting G G,Alysheva L,Uchs J,Chubert Ⅰ.TY3/GYPSY retrotransposon-like sequence localizes to the centromeric region of cereal chromosomes.Plant Journal,1998,16:721-728
    203.Price Z,Schulman A H,Mayes S.Development of new marker methods-an example from oil palm.Plant Genet Resour,2003,1:103-113
    204.Queen R A,Gribbon B M,James C,Jack P,FlavelI A J.Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat.Mol Genet Genomies,2004,271:91-97
    205.Rho M, Choi JH, Kim S, Lynch M, Tang H: De novo identification of LTR retrotransposons in eukaryotic genomes. BMC Genomics, 2007, 8: 90
    206.Richter T E, Ronald P C. The evolution of disease resistance genes. Plant MoI Biol, 2000, 42: 195-204
    207Rico-Cabanas L, Martinez-Izquierdo J A. CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics, 2007, 227: 365-377
    208.Rohde W. Inverse sequence-tagged repeat (ISTR) analysis, a novel and universal PCR-based technique for genome analysis in the plant and animal kingdom. J Genet Breeding, 1996, 50: 249-261
    209 Rohlf F J. NTSYS-PC, Numerical taxonomy and multivariate analysis system. 2000, Version 2.10e. Exeter Software, Setauket, New York, USA
    210.Roulin Anne, Piequ B, Wing R A, Panaud. OEvidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. Plant J, 2008, 53: 950-959
    211.Ruiz C, Asins M J. Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet, 2003, 106: 826-836.
    212.Sandhu D, Champoux J A, Bondareva S N, Gill K S. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group IS chromosomes. Genetics, 2001, 157: 1735-1747
    213 Sandhu D, Gill K S. Gene-containing regions of wheat and the other grass genomes. Plant Physiol, 2002, 128: 803-811
    214.Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol, 2002, 37: 121-147
    215.SanMiguel P, Tikhonov. A, Jin Y K, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer P S, Edwards K J, Lee M, Avramova Z, Bennetzen J L. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996, 274: 765-768
    216.Sanz A M, Gonzalez S G, Syed N H, Suso M J, Saldana C C, Flavell A J. Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics, 2007, 278: 433-441
    217.Schulman A H. Molecular markers to assess genetic diversity. Euphytica, 2007, 158:313-321
    218.Schwarz-Sommer Z, de Andrade Silva E, Berndtgen R, Lonnig WE, Müller A, Nindl I, Stüber K, Wunder J, Saedler H, Gübitz T, Borking A, Golz J F, Ritter E, Hudson A. A linkage map of an F_2 hybrid population of Antirrhinum majus and A.molle. Genetics, 2003,163: 699-710
    219. Scott K D, Ablett E M, Lee L S, Henry R J. AFLP markers distinguishing an early mutant of 'Flame' seedless grape. Euphytica, 2000, 113: 245-249
    220.Sensi E, Vignani R, Rohde W, Biricolti S. Characterization of genetic biodiversity within Vitis vinifera L. Sangiovese and Colorino genotypes by AFLP and ISTR-DNA marker technology. Vitis, 1996, 35: 183-188
    221.Shcherban A B, Vaughan D A, Tomooka N. Diversity in the integrase coding domain of a gypsy-like retrotransposon among wild relatives of rice in the Oryza Officinalis complex. Genetica, 2000,110: 43-53
    222.Shepherd N S, Schwarz-Sommer Z, Blumberg vel Spalve J, Gupta M, Wienand U, Saedler H. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements. Nature, 1984, 307: 185-187
    223.Shirasu K, Schulman A H, Lahaye T, Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res, 2000,10: 908-915
    224.Siebert P D, Chenchik A, Kelloggg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res, 1995,23:1087-1088
    225.Soleimani V D, Baum B R, Johnson D A. Genetic diversity among barley cultivars assessed by sequence-specific amplification polymorphism. Theor Appl Genet, 2005,110:1290-1300
    226.Soleimani V D, Baum B R, Johnson D A. Quantification of the retrotransposon BARE-1 reveals the dynamic nature of the barley genome. Genome, 2006, 49: 389-396
    227.Somers D J, Zhou Z, Bebeli P J, Gustafson J P. Repetitive, genome-specific probes in wheat (Truticum aestivum L. em Thell) amplified with minisatellite core sequences. Theor Appl Genet, 1996, 93: 982-989
    228.Soriano J M, Pecchioli S, Romero C, Vilanova S, Llacer G, Giordani E, Bandenes M L. Development of microsatellite markers in polyploid persimmon (Diospyros kaki Lf) from an enriched genomic library. Mol Eco Notes, 2006, 6: 368-370
    229.Sousa Silva C R, Figueira A. Phylogenetic analysis of Theobroma (Sterculiaceae) based on Kunita-like trypsin inhibitor sequences. Plant Syst Evol, 2005, 250: 93-104
    230.Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M. Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet, 2002, 104: 926-933
    231.Strinhauer D A, Holland J I Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol, 1986, 57: 219-228
    232.Sugiura A, Tao R, Tomana T. Distinguish between Japanese persimmon cultivars (Diospyros kaki L.)by means of pollen isozymes. Scientia Hortic, 1988, 36:67-77
    233.Sugiura A, Yonemori K, Tetsumura T, Tao R, Yamada M, Yamane H. Identification of pollination-constant and non-astringent type cultivars of Japanese persimmon by leaf isozyme analysis. J Japan Soc Hort Sci, 1990, 59 (Suppl. 1): 44-45
    234.Sugiura A. The origin of persimmon and its cultivar differentiation. In: Ohmura T, Yomogihara Y, Ito H, Kinoshita T, Kadota (eds.). Recent advances in plant breeding. Keigaku Pub, Tokyo, Japan, 1984, 25: 30-37
    235.Syed N H, Sureshsundar S, Wilkinson M J, Bhau B S, Cavalcanti J J V, Flavell A J. Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet, 2005, 110: 1195-1202
    236.Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S. Isolation of an active element from a high-copy-number family of retrotransposons in the sweetpotato genome. Mol Gen Genomics, 2004, 272: 116-127
    237.Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001, 13: 521-534
    238.Tam S M, Mhiri C, Vogelaar A, Kerkveld M, Pearce S R, Grandbastien M A. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet, 2005, 110,819-831
    239.Tamura M, Tao R, Yonemori K, Utsunomiya N, Sugirua. Ploidy level and genome size of several Diospyros species. J Japan Soc Hort Sci, 1998, 67: 306-312
    240.Tao N G, Wei J., Liu Y Z, Cheng Y J, Deng X X. Copia-like retrotransposons in a precocious mutant of trifoliate orange [Poncirus trifoliata (L.) Raf]. J Hort Sci Biotech, 2006, 81: 1038-1042
    241.Tao R, Sugiura A. Cultivar identification of Japanese persimmon by leaf isozymes. HortSci, 1987, 22: 932-935
    242.Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzalez E, Ruiz-Lara S. Involvement of Ethylene in Stress-Induced Expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun. Plant Physiol, 2005,138: 2075-2086
    243.Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A. The complete sequence of 340 kb of DNA around the rice, adh1-adh.2 region reveals interrupted collinearity with maize chromosome 4. Plant Cell, 2000,12: 381-391
    244.Teo C H, Tan S H, Ho C L, Faridah Q Z, Othman Y R, Heslop-Harrison J S, Kalendar R, Schulman A H. Genome constitution and Classification using retrotransposon-based markers in The orphan crop banana. J Plant Bio, 2005, 48: 96-105
    245.The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Science, 2000, 408: 796-815
    246.The French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 06148: 463-468
    247.Tignon M, Watillon B, Kettmann R. Identification of copia-like retrotransposable element by apple. Acta Hort, 2001, 546: 515-520
    248.Tooley P W, Garfinkel D J . Presence of Ty1-copia group retrotransposon sequences in the potato late blight pathogen phytophthira infestants. Mol Plant-Microbe Inter, 1996, 9: 305-309
    249.Tuskan G A, DiFazio S, Jansson S, Bohlmann J, et al. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604
    250.Unseld M, Marienfeld J R, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 927 nucleotides. Nat Genet, 1997, 15:57-61
    251.Venturi S, Dondini L, Donini P, Sansavini S. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet, 2005, 112:440-444
    252.Verriès G, Bès C, This P, Tesniere C. Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L., and other Vitis species. Genome, 2000, 43: 366-376
    253.Vershinin A V, Ellis T H N. Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Mol Gen Genet, 1999, 262: 703-713
    254.Vitte C, Panaud O. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice oryza sativa L. Molecular. Biology and Evolution, 2003, 20: 528-540
    255.Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414
    256.Voytas D F, Cummings M P, Konieczny A, Ausubel F M, Rodermel S R. Copia-Like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA, 1992, 89: 7124-7128
    257.Wakisaka S, Kanzaki S, Takamatsu Y, Utsunomiya N.Characterization of persimmon cultivars using SSR markers. J Japan Soc Hort Sci, 2003, 72 (suppl 1)144
    258.Wang R Z, Yang Y. Research on cold hardiness of germplasm resources of persimmon. Acta Hort, 1997, 436: 101-107
    259.Wang S P, Zhang Q F, Maughan P J, Saghai Maroof M A. Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal location. Plant Mol Biol, 1997, 33: 1051-1058
    260.Waugh R, McLean K, Flavell A J, Pearce S R, Kumar A, Thomas B B, Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barleygenome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet, 1997, 253: 687-694
    261.White S E, Habera L F, Wessler S R. Retrotransposons in the flanking regions of normal plant genes : A role of copia-like elements in the evolution of gene structure. Proc Natl Acad Sci USA, 1994, 91: 11792-11796
    262.Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J, 2001, 26: 307-316
    263.Winberg B C, Zhou Z, Dallas J F, McIntyre C L, Gustafson J P. Characterization of minisatellite sequences from Oryza sativa. Genome, 1993, 36: 978-983
    264. Wu Z Y. Flora of China, -Vol. 15. Science Press, Beijing, 1996, 15: 215-234
    265.Xiao H,Jiang N,Schaffner E,Stockinger E J,van der Knaap E.A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit.Science,2008,319:1527-1530
    266.Xiong Y,Eickbush T H.Origin and evolution of retroelements based upon their reverse transcriptase sequences.EMBO J,1990,9:3353-3362
    267.Xu Z,Wang H.LTR_FINDER:an efficient tool for the prediction of full-length LTR retrotransposons.Nucleic Acids Res,2007,35:W265-268
    268.Yamada M,Sato A,Yakushihi H,Yoshinaga K,Yamane H,Endo M.Characteristics of 'Luo Tian Tian Shi',a non-astringent cultivar of oriental persimmon(Diospyros kaki Thunb.) of Chinese origin in relation to non-astringent cultivars of Japanese origin(in Japanese with English summary).Bulletin of the Fruit Trees Research Station Series,1993,25:19-32.
    269.Yanagisawa S,Schmidt R.Diversity and similarity among recognition sequences of DOF transcription factors.Plant J,1999,17:209-214
    270.Yang Z N,Ye X R,Molina J,Roose M L,Mirkov T E.Sequence analysis of a 282-kilobase region surrounding the citrus tristreza virus resistance gene(Ctv)locus in Poncirus trifoliata L.Raf.Plant Physiol,2003,131:482-492
    271.Yao J L,Dong Y H,Morris B A M.Parthenocarpic apple fruit production conferred by transposon insertion mutation in a MADS-bow transcription factor.Proc Natl Acad Sci USA,2001,98:1306-1311
    272.Yonemori K,Chitose H,Kitajima A,Aradhya M,Giordani E,Bellini E,Parfitt D E.Relationship of European persimmon(Diospyros kaki Thunb.) cultivars to Asian cultivars,characterized using AFLPs.Genet Res Crop Evol,2008,55:81-89
    273.Yonemori K,Honsho C,Kanzaki S,Eiadthong W,Sugiura A.Phylogenetic relationships of Mangifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin.Plant Syst Evol,2002,231:59-75
    274.Yonemori K,Honsho C,Shinya K,Ino H,Ikegami A,Kitajima A,Akira S,Parfitt D E.Sequence analyses of the ITS regions and the matk gene for determining phylogenetic relationships of Diospyros kaki(persimmon) with other wild Diospyros(Ebenaceae) species.Tree Genetic Genomes,2008,55:81-89
    275.Yonemori K,Kanzaki S,Parfitt D E,Utsunomiya N,Subhadrabandhu S,Sugiura A.Phylogenetic relationship of Diospyros kaki(persimmon) to Diospyros spp. (Ebenaceae) of Thailand and four temperate zone Diospyros spp.From an analysis of RFLP variation in amplified cpDNA.Genome,1998,41:173-182
    276.Yonemori K,Parfitt D E,Kanzaki S,Sugiura A,Utsunomiya N,Subhadrabandhu S.RFLP analysis of an amplified region of cpDNA for phylogeny of the Genus Diospyros.J Japan Soo Hort Sei,1996,64:771-777
    277.Yonemori K,Sugiura A,Yamada M.Persimmon genetics and breeding.Plant Breeding Review,2000,19:191-225
    278.Zhou Z,Bebeli P J,Somers D J,Gustafson J P.Direct amplification of minisatellite-region DNA with VNTR core sequences in the genus Oryza.Theor Appl Genet,1997,95:942-949
    279.Zhou Z,Gustafson J P.Genetic variation detected by DNA fingerprinting with a rice minisatellite probe in Oryza sativa L.Theor Appl Genet,1995,91:481-488
    280.Zhuang D H,Kitajima A,Ishida M,Sobajima Y.Chromosome number of the original tree and open-pollinated progenies of Japanese persimmon ov.Hiratanenashi.J Japan Soc Hort Sci,1990a,59:479-485
    281.Zhuang D H,Kitajima A,Ishida M,Sobajima Y.Chromosome numbers of Diospyros kaki cultivars.J Japan Soc Hort Sci,1990b,59:289-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700