农杆菌介导调节基因Lc转化菊花的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Chrysanthemum×morifolium Ramat.)是重要的盆花和切花,具有巨大的经济价值和观赏价值。目前菊花花色育种仍存在一定的缺陷:1.由于缺乏类黄酮-3′,5′-羟基化酶基因(F3`5`H),不能产生蓝色的飞燕草色素而缺少蓝色系品种;2.红色和紫色品种中色素亮度低,花色暗淡,缺少色彩鲜艳的红色品种。由于菊花花色基因库的有限性,用传统育种方法至今仍无法解决这两大缺陷。根据菊花的花色形成机理和花色分子育种的研究进展,利用转基因技术将花色相关调节基因转入菊花中,研究转录因子对菊花花色结构基因的调控,研究其花色形成的分子机理,对于通过分子手段改良菊花花色具有重要的理论和实践意义。
     本研究主要取得了如下成果:
     1.对pBI121载体Gus基因后的终止子进行2次PCR扩增,在原SacⅠ酶切位点后添加了新的SalⅠ酶切位点,利用组织化学染色法检测,结果表明改造后的载体上的Gus基因能正常表达,终止子功能正常,载体改造成功。用改造的pBI121N构建了含有Lc基因的植物表达载体pBI121N-Lc。
     2.利用农杆菌介导菊花节间薄层(tTCLs)和叶盘进行遗传转化。共对7个品种1751个外植体进行了侵染。通过分化培养,除‘Repulse'外的6个品种均获得了抗性芽,通过抗性芽生根筛选,‘日切桃红'、‘Regan Elite Sunny'、‘Regan Elite Improved'3个品种获得了生根的抗性苗,‘墨菊'、‘粉荷'和‘粉牡丹'未获得生根抗性苗。说明菊花抗性芽再生和生根具有基因型差异。
     3.提取48株生根‘日切桃红'抗性苗的基因组DNA,以Lc基因和CaMv35S启动子序列为引物,分别对Lc基因和35S启动子进行PCR检测,获得了7个Lc基因和35S启动子的阳性株系;PCR结果表明Lc基因已经转入菊花中,转化率1.4%。在‘日切桃红'节间薄层(tTCLs)遗传转化过程中,产生的抗性愈伤组织中有红色愈伤组织出现,在已获得的‘日切桃红'转基因植株中发现部分转基因株系的根系有变红的现象。
Chrysanthemum(Chrysanthemum×morifolium Ramat.) is one of the most famous pot flower and cut flower in the world.But there are two faults in chrysanthemum flower color breeding:1. Chrysanthemum have no blue-flowering cultivars.A main reason for the lack of blue flowers is the absence of 3′,5′-hydroxylated anthocyanins,which are synthesized by a key enzyme,flavonoid 3′, 5′-hydroxylase(F3′5′H);2.Few colorful red cultivars are found in Chrysanthemum.The application of genetic engineering including introducing transcription factor gene and enhancing coordinated expression of a number of genes can achieve a better plant transformation result.
     The results were as follows:
     1.The one new restriction enzyme SalI site was added to terminator behind Gus gene of pBI121 vector by PCR.Gus histochemical assay indicated that Gus gene can express as same as original pBI121 vector and the function of terminator was normal.The expression vector pBI121N-Lc was constructed by Lc gene using reconstruct vector pBI121N.
     2.The vector pBI121N-Lc was transferred into Chrysanthemum seven cultivars by Agrobacterium-mediated using leaf disk and tTCLs as the explants.Kanamycin-resistant shoot have been obtained in the six cultivars;only in three of the six cultivars kanamycin-resistant root were obtained.Results indicated that different Chrysanthemum cultivars have genotypic differences in the transformed and regenerated.
     3.The 48 Chrysanthemum 'riqietaohong' generation resistance plants were detected by PCR assay, 7 of them have the same positive band as Lc gene and 35S.The results indicated that Lc gene had been successfully introduced and integrated into the genome.And some transgenic lines roots become red.
引文
[1]白新祥,戴思兰.反义RNA技术在花色育种中的应用[J].植物学通报,2005,22(3):284-291.
    [2]白新祥,胡可,戴思兰,王亮生.不同花色菊花品种花色素成分的初步分析[J].北京林业大学学报,2006,28(5):84-89.
    [3]白新祥.菊花花色的表型分析[M].北京林业大学博士论文,2006.
    [4]包满珠.植物花青素基因的克隆及应用[J].园艺学报,1997,24(3):279-284.
    [5]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报,2002,28(2):81-88.
    [6]陈俊愉.中国花卉品种分类学[M].北京:中国林业出版社,2001:218.
    [7]陈丽.植物转录因子的结构与功能[J].植物生理学通讯,1997,33(6):401-409.
    [8]陈英,戴咏梅,王义琴,孙勇如,黄敏仁,王明庥.NP1和GAFP双价抗病基因植物表达载体的构建[J].南京林业大学学报,2005,29(6):7-10.
    [9]程龙军,郭得平,张建华,马芹标.高等植物花生长和花色素苷生物合成的信号调控[J].植物生理学通讯,2002,38(2):175-180.
    [10]戴思兰.园林植物育种学[M],北京:中国林业出版社,2007:223.
    [11]单丽波,李义文,赵铁汉,梁辉,欧阳俊闻,贾双娥,贾旭.利用花色素苷合成调节基因C1-R作为基因枪转化效果指示的研究.遗传学报,2000,27(1):65-69.
    [12]韩科厅,胡可,戴思兰.观赏植物花色的分子设计[J].分子植物育种,2008,6(1):16-24.
    [13]韩科厅,王娟,戴思兰.多头切花菊节间薄层不定芽再生的研究[J].北京林业大学学报,2009,31(2):102-107.
    [14]蒋细旺,刘国锋,包满珠.菊花9个品种叶片和茎段快速高效再生体系的建立[J].华中农业大学学报,2003,22(2):162-166.
    [15]蒋细旺.根癌农杆菌介导的Bt与GNA基因转化菊花品种的研究[M].华中农业大学博士论文,2003.
    [16]刘佳,王忠,李建粤.花特异表达启动子的克隆及花色调节基因Le表达载体的构建[J].上海师范大学学报,2004,33(4):70-73.
    [17]刘佳.花色调节基因Lc转化洋桔梗的研究[M].上海师范大学硕士论文,2005.
    [18]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [19]刘仕芸,黄艳秋,张树珍.植物花青素合成中的调控基因[J]。植物生理学通讯,2006,42(4):747-754.
    [20]吕晋慧.根癌农杆菌介导的AP1基因转化菊花的研究[M].北京林业大学博士论文,2005.
    [21]马月萍.甘菊LFY同源基因的分离和表达分析[M].北京林业大学博士论文,2005.
    [22]孟丽,戴思兰.F3′5′H基因与蓝色花形成[J].分子植物育种,2004,2(3):413-420,
    [23]孟丽,戴思兰.瓜叶菊F3′5′H基因cDNA的克隆、序列分析及其原核表达[J].分子植物育种,2005,3(6):721-727.
    [24]孟丽,戴思兰.花色研究基因新资源:瓜叶菊蓝色花形成相关基因PCFH[J].分子植物育种,2005,3(4):595-596.
    [25]孟丽.蓝色花形成关键基因的分离及其表达分析[M].北京林业大学博士论文,2006.
    [26]王关林,方宏筠.植物基因工程[M].北京科学出版社,2005:795-796,831-832.
    [27]王关林,刘彦泓,郭绍华,王宇,纪彦,方宏筠.雪花莲凝集素基因转化菊花及转基因植株的抗蚜性研究[J].遗传学报,2004,31(12):1434-1438.
    [28]王希庆,陈柏君,印莉萍.植物中的MYB转录因子[J].生物技术通报,2003,2:22-25
    [29]吴月亮.根癌农杆菌介导的PEAMT基因转化菊花的研究[M].北京林业大学博士论文,2006.
    [30]杨翅春.花青素调节基Lc与黑色素基因对转基因烟草和矮牵牛花色的影响[M].中国农业大学硕士论文,2005.
    [31]杨继芳,刘明,安利佳.T-DNA整合的研究进展[J].遗传,2004,26(6):991-996.
    [32]杨少勇,安银岭,樊国盛,毕望富,王沙生.蓝色花植物花色素的着色机理[J].北京林业大学学报,2003,25(5):68-76.
    [33]于亚军.富含酪氨酸HRGP基因转化欧美杨107杨的研究[M].北京林业大学博士论文,2008.
    [34]余迪求,李宝健.花青素苷生物合成的遗传和发育调控[J].植物生理学通讯,1997,33(1):71-77.
    [35]张俊莲,王带,张金文,陈正华.pBI121载体酶切位点添加及拟南芥Na+/H+逆向转运蛋白基因表达载体的构建[J].分子植物育种,2006,4(6):811-818.
    [36]张龙,李卫华,姜淑敏,朱根发,王碧青,李洪清.花色素苷生物合成与分了调控研究进展[J].园艺学报.2008,35(6):909-916.
    [37]张宁,胡宗利,陈绪清,侯晓姝,李勇,陈国平.植物花青素代谢途径分析及调控模型建立[J].中国生物工程杂志,2008,28(1):97-105.
    [38]Aharoni A,De Vos CHR,Wein M,Sun Z,Greco R,Kroon A,Mol JNM,O'Connell AP.The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J].Plant J.,2001,28:319-332.
    [39]Bender J,Fink GR.A Myb homologue,ATR1,activates tryptophan gene expression in Arabidopsis[J].Genetics,1998,95(10):5655-5660.
    [40]Borevitz JO,Xia Y J,Blount J,Dixon RA and Lamb S.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].Plant Cell,2000,12:2383-2394.
    [41]Bovy A,Ric de Vos,Kemper M,Schijlen E,Pertejo MA,Muir S,Collins G,Robinson S,Verhoeyen M,Hughes S,Santos-Buelga C and van Tunen A.High-Flavonol Tomatoes Resulting from the Heterologous Expression of the Maize Transcription Factor Genes Lc and C1[J].The Plant Cell,2002,14:2509-2526.
    [42]Bradley JM,Davies MK,Deroles CS,Bloor JS and Lewis HD,The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia[J].The Plant Journal,1998,13(3):381-392.
    [43]Brugliera F,Barri-Rewell G,Holton TA and Mason JG.Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida[J].Plant J.,1999,19(4):441-451.
    [44]Chandler VL,Radicella JP,Robbins TP,Chen J and Turks D.Two regulatory genes of the maize anthocyanin pathway are homologous:isolation of B utilizing R genomic sequences[J].Plant Cell,1989,1:1175-1183.
    [45]Coen ES,Carpenter R,Martin C.Transposable elements generate novel patterns of gene expression in Antirrhinum majus[J].Cell,1986,47:285.
    [46]Cone KC,Burr FA,Burr B.Molecular analysis of the maize anthocyanin regulatory locus C1[J].Proc Natl Acad Sci USA,1986,83:9631
    [47] Cone KC, Cocciolone SM, Burr FA, and Burr B. Maize anthocyanin regulatory gene pl is a duplicate of el that functions in the plant. Plant Cell[J]. 1993, 5(12): 1795-1805.
    [48] Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, and Robinson KEP. Modification of Flower Color in Florist's Chrysanthemum: Production of a White-Flowering Variety Through Molecular Genetics[J]. Bio/Technology, 1994,12(3): 268 - 271.
    [49] de Vetten, Quattrocchio F, Mol J, Koes R. The anil locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals[J]. Genes Dev. 1997, 11: 1422-1434.
    [50] Dooner HK, Robbins TP, Jorgensen RA. Genetic and developmental control of anthocyanin biosynthesis[J]. Annu Rev Genet, 1991, 25: 173-199.
    [51] Elomaa P, Helariutta Y, Kotilainen M, Teeri T, Griesbach R., and Seppanen P., Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene [J]. Molecular and General Genetics, 1995, 248(6): 649-656
    [52] Elomaa P, Honkanen J, Puska R, Seppanen P, Helariutta Y, Mehto M, Kotilainen M, Nevalainen L and Teeri TH. Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation [J]. Bio-Technology, 1993,11(4): 508-511
    [53] Fits LVD, Hilliou F, Memelink J. T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species [J]. Transgenic Res, 2001, 10(6): 513-521.
    [54] Goldsbrough AP, Tong Y and Yoder IJ. Lc as a non-detructive visual reporter and transposition excision marker gene for tomato [J]. The Plant Journal, 1996, 9(6): 927-933.
    [55] Goodrich J, Carpenter R and Coen ES. A common gene regulates pigmentation pattern in diverse plant species [J]. Cell, 1992, 68: 955-964.
    [56] Helariutta Y, Elomaa P, Kotilainen M, Seppanen P and Teeri TH. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida van Regina (Compositae)[J]. Plant Molecular Biology, 1995, 22(2): 183-193.
    [57] Heller W, Forkmann G, Britsch L and Grisebach H. Enzymatic reduction of (+)-dihydroflavanols to flavan-3,4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis[J]. Planta, 1985, 165: 284-287.
    [58] Hernandez, JM Heine GF, Irani NG, Feller A, Kim M, Matulnik T, Chandler VL and Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3-MYB transcription factor C1[J]. J. Biol. Chem., 2004, 279(46): 48205-48213.
    [59] Holton TA and Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis[J]. The Plant Cell, 1995,7(7): 1071-1083.
    [60] Holton TA. Transgenic plants exhibiting altered flower color and methods for producing same, Australia, US006080920A, 1996, United States Patents: 19.
    [61] Huits HS, Gerats AG, Kreike MM, Mol JN, Koes RE. Genetic control of dihydroflavonol reductase gene expression in Petunia hybrida[J]. Plant J., 1994, 6: 295-310.
    [62] Hwang KH, Min BH, Shin H and Ahn BJ, Petal color changes in Carnation plants transformed with an antisense DFR and a CHI gene[J]. Hort. Science, 2005, 40: 993-1147.
    [63] Jaime A. Teixeria da Silva, Ornamental chrysanthemums: improvement by biotechnology [J]. Plant Cell Tissue and Organ Culture, 2004, 79: 1-18.
    [64] Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscand) regulate anthocyanin biosynthesis[J]. Planta, 2002, 215(6): 924-933.
    [65] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways.Trends in Plant Science, 2005,10: 236-242.
    [66] Kubo H, Peeters AJM, Aarts MGM, Pereira A and Koornneef M. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis[J]. Plant Cell, 1999, 11:1217-1226.
    [67] Kusumi T, Tanaka Y, Suzuki K and Katsumoto Y, Development of flower colour modification technology and new floricultural varieties[J]. Nippon Nogeikagaku Kaishi, 2002,76(8): 700-707.
    [68] Li HH, Flachowsky H, Fischer TC, Hanke M, Forkmann G, Treutter D, Schwab W, Hoffmann T and Szankowski I. Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple(Nalus domestica Borkh.)[J]. Planta, 2007, 226(5): 1243-1254.
    [69] Li SJ, Deng XM, Mao HZ and Hong Y, Enhanced anthocyanin synthesis in foliage plant Caladium bicolor[i]. Plant Cell Reports, 2005, 23: 716-720.
    [70] Lloyd AM, Walbot V and Davis R.W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulator R and C1[J]. Science, 1992, 258: 1773-1175.
    [71] Ludwig SR, Habera LF, Dellaporta SL, and Wessler SR. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region[J]. PNAS, 1989,86: 7092-7096.
    [72] Ludwig SR, Habera LF, Dellaporta SL, Wessler SR. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcription activators and contains the myc-homology region[J]. Proc. Natl. Acad. Sci. USA, 1989, 86: 7092-7096.
    [73] Ludwig SR, Wessler SR. Maize R gene family: Tissue-specific helix-loop-helix proteins[J]. Cell, 1990, 62: 849-852.
    [74] Martin C, Prescott A, Mackay S, Bartlett J and Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J]. Plant J., 1991, 1: 37-49.
    [75] Martin C, Prescott A, MackayS, Bartlett J, Vrijlandt E. Control of anthocyanin biostnthesis in flowers of Antirrhinum majus[i]. Plant J., 1991, 1(1): 37-49.
    [76] Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J and Wagner DR. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport[J]. Plant Cell, 2003, 15: 1689-1703.
    [77] Meissner RC, Jin HL, Cominelli E. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes[J]. Plant Cell, 1999, 11: 1827-1840.
    [78] Meyer P, Heidmann I, Forkmann G and Saedler H. A new petunia flower colour generated by transformation of a mutant with a maize gene[J]. Nature, 1987, 330(6149): 677-678.
    [79] Nakamura N, Fukuchi-Mizutani M, Miyazaki K. Suzuki K and Tanaka Y. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression, Plant Biotechnology[J]. 2006, 23: 13-17.
    [80] Nakatsuka T, Nishihara M, Mishiba K and Yamamura S. Heterologous expression of two gentian cytochrome P450 genes can modulate the intensity of flower pigmentation in transgenic tobacco plants[J]. Molecular Breeding, 2006, 17(2): 91-99.
    [81] Naonobu N, Yoshiaki K, Naoki K, Kohei K. and Masahiko S. Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum) [J]. Physiologia Plantarum, 2004, 122(3): 305-313.
    [82] Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M and Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for the expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell, 2000, 12: 1863-1878.
    [83] Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M and Lepiniec L. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat[J]. Plant Cell, 2002, 14(10): 2463-2479.
    [84] Nesi N, Jond C, Debeaujon I, Caboche M and Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell, 2001, 13: 2099-2117.
    [85] Nicola AR, Walker AR, Mooney M and Gray JC. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant[J]. Plant Molecular Biology, 2003, 52: 679-688.
    [86] Quattrocchio F, Wing J, Leppen HTC, Mol JNM and Koes RE. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes[J]. Plant Cell, 1993, 5: 1497-1512.
    [87] Quattrocchio F, Wing J, van der Woude K, Souer E, N de Vetten, Mol J and Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color[J]. Plant Cell, 1999,11: 1433-1444.
    [88] Quattrocchio F, Wing JF, van der Woude K, Mol JN and Koes R. Analysis of bHLH and MYB domain proteins: species specific regulatory differences are caused by divergent evolution of target anthocyanin genes[J]. The Plant Journal, 1998, 13: 475-488.
    [89] Ramsay NA, Walker AR, Mooney M and Gray JC. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant[J]. Plant Molecular Biology, 2003, 52: 679-688.
    [90] Ray H, Yu M, Auser P, Blahut-Beatty L, McKersie B, Bowley S, Westcott N, Coulman B, Lloyd A and Gruber MY. Expression of Anthocyanins and Proanthocyanidins after Transformation of Alfalfa with Maize Lc[i]. Plant Physiology, 2003,132: 1448-1463.
    [91 ] Sagasser M, Lu GH, Hahlbrock K. A. thaliana TRANSPARENT TESTA1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev, 2002, 16: 138-149.
    [92] Sakamoto T, Ohmori T, Kageyama K,et al. The purple leaf (PI) locus of rice: the PI (w) allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis[J]. Plant Cell Physiol, 2001,42(9): 982-991.
    [93] Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis[J]. Plant J., 1995, 8: 659-671.
    [94] Spelt C, Quattrocchio F, Mol JNM, Koes R. Anthocyaninl of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000, 12: 1619-1631.
    [95] Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Holton TA, Higgins E and Kusumi T. Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene[J]. Plant and cell physiology, 1995, 36(6): 1023-1031.
    [96] Tanaka Y, Katsumoto Y, Brugliera F and Mason J. Genetic engineering in floriculture[J]. Plant cell, 2005,80(1): 1-24.
    [97] Tanaka Y, Tsuda S and Kusumi T. Metabolic engineering to modify flower color[J]. Plant and Cell Physiology,1998,39(11):1119-1126.
    [98]Tanaka Y.Flower colour and cytochromes P450[J].Phytochemistry Reviews,2006,5(2):283-291.
    [99]Teixeira da Silva JA,Fukai S.Chrysanthemum organogenesis through thin cell layer techology and plant growth regulator control[J].Asian Journal of Plant Sciences,2003,2(6):505-514.
    [100]Teixeira da Silva JA,Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum[J].Plant Growth Regulation,2003a,39(1):67-76.
    [101]Tran thanh Van.Direct flower neoformation from superficial tissue of small explants of Nieotiana tabacum[J],Planta,1973,115(1):87-92.
    [102]Verweij W,Quattrocchio F and Koes R.PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway[J].Plant Cell,2006,18(5):1274-1291.
    [103]Walker AR,Davison PA,Bolognesi-Winfield AC,Jamesa CM,Srinivasanb N,Blundellb TL,Eschc JJ,Marksc MD and Grayet JC.The TRANSPARENT TESTA GLABRAl locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40repeat protein[J].Plant Cell,1999,11:1337-1350.
    [104]Winkel-Shirley B.Biosynthesis of flavonoids effects of stress[J].Current Opinion in Plant Biology,2002,5(3):218-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700