根癌农杆菌介导的Barnase和iaaM基因转化柑橘的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是世界上最重要的水果之一。近30年来,世界鲜食柑橘品种的改良主要围绕品质和成熟期等育种目标进行,而果实无核、易剥皮、风味浓和有香味又是决定品质优良的标准。运用传统的育种手段进行柑橘果实品质的改良,具有周期长、受珠心胚干扰、自交不亲和及基因间的紧密连锁等因素的影响,因而进程缓慢。植物基因工程的出现,成为实现目标性状改良的一种快速、有效的途径。通过基因工程诱导单性结实或特异表达种子切除的细胞毒素基因(Barnase)策略成为柑橘无核分子育种的主要手段。本实验利用根癌农杆菌介导的遗传转化体系,将目的基因TA29:Barnase及AGL5:iaaM转入特色多核柑橘品种,以期获得高品质的无核柑橘新种质。主要研究结果如下:
     1.对卡那霉素及头孢霉素进行不同浓度梯度的敏感性试验分析,发现卡那霉素筛选浓度为50 mg/L,头孢霉素的浓度为400 mg/L时,有利于抗性植株的筛选再生,并可有效地抑制“逃逸体”的产生。
     2.优化选择早实枳实生苗茎段和椪柑上胚轴切段不定芽的再生体系。结果表明早实枳实生苗茎段和椪柑上胚轴切段不定芽再生的最佳培养基分别为:MT+BA 0.5 mg/L+KT 0.5 mg/L+NAA 0.1 mg/L和MT+BA 0.5 mg/L+NAA 0.1mg/L、MT+BA 0.5 mg/L+IAA 0.2mg/L。
     3.利用早实枳实生苗茎段和椪柑上胚轴切段进行遗传转化,结果表明早实枳不定芽再生率明显高于椪柑。同时利用椪柑不同的外植体材料,如:子叶、上胚轴切段、根轴连接体等进行农杆菌介导的遗传转化分析,结果表明根轴连接体不定芽再生率最高,上胚轴切段次之,而子叶再生率最低。
     4.对获得的不同品种的抗性植株及抗性愈伤组织进行PCR检测。结果表明:(1)8株椪柑抗性植株及9株早实枳抗性植株含有GUS基因;(2)4株椪柑抗性植株及1株早实枳抗性植株含有iaaM基因;(3)暗柳橙抗性愈伤组织检测含有iaaM基因。
Citrus is one of the most important fruit crops in the world. Over the past 30 years, both quality and maturity are the major breeding objectives in the fresh market of the world, such as seedlessness, easy-peeling, well-flavor and aroma. The traditional breeding program has been hampered by the long juvenility, polyembryony, self-incompatibility, linkage between genes etc. The genetic engineering provided a fast and effective way to improve the traits of plants. Inducing parthenocarpy by genetic engineering and seed-ablated strategy by expressing the cytotoxin gene (Barnase) are the major methods of molecular breeding of seedless citrus. In this study, the chimeric gene TA29: Barnase and AGL5: iaaM were introduced into the seedy varieties to creat seedless citrus varieties by the Agrobacterium-mediated transformation. The main results are as follows:
     1. Sensitivity analysis to Kanamycin and Cefotaxime. The results showed that the best growth quality of adventitious shoots were obtained when the explants placed in medium supplemented with 50 mg/L kanamycin and 400 mg/L Cefotaxime. Moveover, the 'escapes' were also effectively prevented under this condition.
     2. Optimization of regeneration of stem segments in precocious trifoliate orange and epicotyl segments in Ponkan. The results showed that the most appropriate media for adventitious shoots of precocious trifoliate orange and Ponkan were MT medium supplemented with 0.5 mg/L BA, 0.1 mg/L NAA and 0.5 mg/L KT and MT supplemented with 0.5 mg/L BA and 0.2 mg/L IAA, respectively.
     3. Analysis of the regeneration and transformation of precocious trifoliate orange and Ponkan revealed that the regeneration efficiency of Precocious trifoliate orange is much higher than Ponkan. Meanwhile, different explants of the same variety have the different regeneration efficiency, epicotyl segments and cytoledon of Ponkan were also used as explants in this study. The results showed that the regeneration efficiency of the trimmed etiolated shoot/root region was higher than the epicotyl segments, and the regeneration efficiency of cotyledon is the lowest.
     4. PCR analysis of different varieties of resistant plants and callus. The results are as follows: 1) GUS gene was integrated into eight transgenic plants of Pokan and nine transgenic precocious trifoliate orange plants; 2) iaaM gene was integrated into four transgenic plants of Pokan and one transgenic precocious trifoliate orange plants; 3) iaaM gene was integrated into resistant callus of Anliucheng.
引文
1.曹庆芹.柑橘雄性不育资源线粒体DNA的遗传多型性研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    2.陈力耕.无核柑橘的成因与培育.中国柑橘,1981,(2):211
    3.邓秀新,郭文武,孙绪华.我国无核柑桔类型选育研究进展.园艺学报,1996,23(3):235-240
    4.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32(6):1140-1146
    5.段艳欣.根癌农杆菌介导的LFY、AP1基因转化柑橘的研究及转基因植株的培育.[博士学位论文].华中农业大学图书馆,2006
    6.冯鹄竣.用DefH9-iaaM5基因和RolABC基因转化沙田袖的研究.[硕士学位论文].湖南:湖南农业大学图书馆,2007
    7.何天富.柑橘学.北京:中国农业出版社,1999
    8.胡志勇.‘无核瓯柑'、温州蜜柑无核的细胞及分子机理研究.[博士学位论文].华中农业大学图书馆,2007
    9.贾彦丽,温险良.无核果实研究进展.河北农业大学学报,2003,2:668-71
    10.蒋迪,徐昌杰,陈大明,张上隆.柑橘转基因研究的现状及展望.果树学报,2002,19(1):48-52
    11.瞿金旺.根癌农杆菌介导亚精胺合成酶基因MdSPDS1的柑橘遗传转化及离体再生.[硕士学位论文].武汉:华中农业大学图书馆,2006
    12.李鼎立,柑橘遗传转化受体系统优化与抗溃疡病转基因植株培育.[博士学位论文].武汉:华中农业大学图书馆,2008
    13.李东栋.根癌农杆菌介导愈伤组织遗传转化获得带有雄性不育基因的柑橘植株.[博士学位论文].武汉:华中农业大学图书馆,2002
    14.梁遂权,王学柱,万同香.早实枳生物学特性及其砧木试验.浙江柑橘,1999,1992,19(3):209-214
    15.刘大文,王守才,谢友菊,戴景瑞.转Zm13-Barnase基因玉米的获得及其花粉的育性研究.植物学报,2000,42(6):611-615
    16.刘宏宇,秦智伟,周秀艳.园艺作物单性结实研究进展.北方园艺.2004,5(5):4-5
    17.刘歆.绿色荧光蛋白基因(GFP)转化柑橘及植株再生.[硕士学位论文].武汉:华中农业大学图书馆,2005
    18.陆桂华,孙海涛,张景六,洪孟民.由RTS-barnase嵌合基因的表达导致的雄性不育水稻植株.植物生理学通讯,26(2):171-16
    19.罗赛男,邓子牛,钟晓红,张家银,袁飞荣,杨莉.用单性结实基因defH9-iaaM 转化糖橙的研究.湖南农业大学学报(自然科学版).2008,34:177-181
    20.沈革志,王新其,朱玉英,杨红娟.TA29-barnase基因转化甘蓝产生雄性不育植株。植物生理学报,2001,27(1):43-48
    21.苏绍坤,刘宏宇,秦智伟.农杆菌介导iaaM基因黄瓜遗传转化体系的建立[J].东北农业大学学报,2006,37(3):289-293
    22.仝铸.柑橘高效遗传转化体系的建立与类胡萝卜素代谢相关基因的遗传转化.[博士学位论文].湖北:华中农业大学,2008
    23.王关林,方宏筠等.植物基因工程,第二版.北京,科学出版社,2003
    24.文红秀.植物激素合成酶基因ipt,iaaM及其双价基因转入甘蓝型油菜对其产量性状的影响.[硕士学位论文].重庆:西安农业大学.2003
    25.闫新甫等.转基因植物,第一版.北京,科学出版社,2003
    26.杨莉.金柑遗传转化体系的建立与应用.[博士学位论文].浙江:浙江大学图书馆,2006
    27.杨泽良,党选民,曹振木,胡开林.利用基因工程创造植物雄性不育的策略.农业生物技术科学.2005,21:25-29
    28.张献龙,唐克轩.植物生物技术.北京:科学出版,2004
    29.周雪荣,彭仁旺,方荣祥,陈正华,莽克强.表达核糖核酸酶的雄性不育油菜的获得。遗传学报,1998,24(6):531-536
    30.邹礼平,陈锦华.雄性不育基因TA29-Barnaso转化番茄的初步研究.孝感学院生命科学技术学院.2004,24
    31.Acciarri N,Restaino F,Vitelli G,Perrone D,Zottini M,Pandolfini T,Spena A,Rotino G L.Genetically modified parthenocarpic eggplants:improved fruit productivity under both greenhouse and open field cultivation.BMC Biotechnol, 2002
    
    32. Almeida W A B, Mourao F A A, Pino L E, Boscariol R L, Rodriguez A P M and Mendes B M J. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science, 2003, 164 (2): 203-211
    
    33. Ballester A, Cervera M, Pena L. Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Reports, 2008, 27(6): 1005-1015
    
    34. Bisht N C, Jagannath A, Burma P K, Pradhan A K, Pental D. Retransformation of a male strile barnase line with the barstar gene as an efficient alternative mathod to identify male sterile-reatorer combinations for heterosis breeding. Plant Cell Rep, 2007, 26: 727-733
    
    35. Bond J E, Roose M L. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Reports, 1998, 18 (3-4): 229-234
    
    36. Boynton J E, Gillham N W, Harris E H. Chlorop last transformation in chlamydomonas with high velocity microp rojectiles. Science, 1988, 240: 1534 - 1538.
    
    37. Carmi N Y. Salts B. Dedicova S. Shabtai. Barg R. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta, 2003, 217: 726-735
    
    38. Cervera M, Lopez M, Navarro L. Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiol Mol Plant Pathol, 1998b, 52: 67-78
    
    39. Cervera M, Pina J A, Juarez J, Navarro A, Navarro L, Pena L. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep, 1998a, 18: 271-278
    
    40. Cevik B V, Lee R, Niblett C L. Genetic transformation of Citrus paradise with Antisense and Untranslatable RNA-dependent RNA Polymerase Genes of Citrus tristeza closterovirus. Turk J Agric For, 2006, 30: 173-182
    
    41. Chao C C T, Fang J, Devanand P S. Long distance pollen flow in mandarin orchards determined by AFLP markers: Implications for seedless mandarin production. J. Amer. Soc. Hort. Sci., 2005, 130: 374-380
    
    42. Chevre A M, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M. Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Springer Berlin / Heidelberg, 1998, 97:90-98
    
    43. Costa M G C, Alves V S, Lani E R G, Mosquim P R, Carvalho C R, Otoni W C. Morphogenic gradients of adventitious bud and shoot regeneration in epicotyl explants of Citrus. Scientia Horticulturae, 2004, 100: 63-74
    
    44. Dale P J, Clarke B, Fontes E M G. Potential for the environmental impact of transgenic crops. Nat. Biotechnol, 2002, 20: 567-574
    
    45. De Block M, Debrouwer D. Moens T. The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Springer Berlin / Heidelberg, 1997,95: 125-131
    
    46. Delbreil B , Guerche P, Jullien M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep, 1993, 12: 129-132
    
    47. Dominguez A , Guerri J , Cambra M, Navarro L, Moreno P, Pefia L. Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep, 2000, 19: 427-433
    
    48. Duan Y X, Liu X, Fan J, Li D L, Wu R C, Guo W W. Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene. Botanical Studies, 2007, 48: 165-171
    
    49. Elisa C , Lucia L , Oriana S. Auxin Synthesis - Encoding Transgene Enhances Grape Fecundity. Plant Physiol, 2007, 143 (4): 1689-1694.
    
    50. Fabrice. Less is better: new approaches for seedless fruit production. TIBTECH JUNE, 2000, 18:233-242
    
    51. Food and Agriculture Organization of the United Nations. Developments in international citrus trade in 2004-2005. 2006
    
    52. Garcia-Luis A, Molina R V, Varona V, Castello S & Guardiola J L. The influence of explant orientation and contact with the medium on the pathway of shoot regeneration and in vitro in epicotyl cuttings of Troyer citrange. Plant Cell Tiss Org Cult, 2006, 85: 137-144
    
    53. Gelvin S B, Kim S I. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochimica et Biophysica Acta, 2007, 1769: 410-421
    
    54. Ghorbel R, La-Malfa S, Lopez M M, Petit A, Navarro L and Pefia L. Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiological and Molecular Plant Pathology, 2001, 58 (3): 103-110
    
    55. Gmitter Jr, Jaya R, Soneji, Madhugiri Nageswara Rao S M, Jain P M, Priyadarshan (eds.). Breeding Plantation Tree Crops: Temperate Species, LLC 2009,105
    
    56. Goetz M A, Vivian-Smith, Johnson S D, Koltunow A M. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit intiation in Arabidopsis. Plant Cell, 2006,18: 1873-1886
    
    57. Gorguet B, van Heusden A W, Lindhout P. Parthenocarpic fruit development in tomato. Plant Biol., 2005, 7: 131-139
    
    58. Gressel J. Tandem constructs: preventing the rise of super weeds. Trends in Biotechnol., 2002, 20: 215 - 216.
    
    59. Guo W W, Li D L, Duan Y X. Citrus Transgenics: Current Status and Prospects. Transgenic Plant Journal, 2007(1): 202-209
    
    60. GutierrezE M A, Luth D, Moore G A. Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep, 1997, 16 (11): 745-753
    
    61. Hartley R W. Barnase and barstar: two small proteins to fold and fit together [J]. Trends Biochem Sci, 1989, 14: 450-454
    
    62. Jacobsen S E. Olszewski N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 1993, 5: 887-896
    
    63. Jansson S, Douglas C J. Populus: a model system for plant biology. Annu Rev Plant Biol, 2007, 58: 435-458
    64. Kayim M and Koc N K. Improved transformation efficiency in citrus by plasmolysis treatment. Journal of Plant Biochemistry and Biotechnology, 2005, 14(1): 15-20
    
    65. Khawale R N, Singh S K, Garg G, Baranwal V K and Ajirlo S A. Agrobacterium- mediated genetic transformation of Nagpur mandnrin(Citrus reticulata Blanco). Current Science, 2006, 91(12): 1700-1705
    
    66. Kobayashi S, Uehimiya H. Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) Protoplasts by direct DNA transfer. Jpn J Genet, 1989, 64: 91-97
    
    67. Koltunow A M, Brennan P, Bond J E. Evaluation of genes to reduce seed sice in Aradidopsisand tabaco and their application to citrus. Molecular Breeding, 1998, 4:235-251
    
    68. Konig A. A framework for designing transgenic crops: science, safety and citizen's concerns. Nat. Biotechnol, 2003, 21: 1274-1279
    
    69. Li D D, Shi W, Deng X X. Agrobacterium-mediated tramsformation of embryogenic calluses of Ponkon mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep, 2002, 21: 153-156
    
    70. Luo K M, Duan H, Zhao D G, et al. . 'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seeds of tobacco plants. Plant Biotechnol. J, 2007, 5 (2) : 263 - 274.
    
    71. Mariani C, Beuckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimeric ribonuclease gene. Nature, 1990, 347: 727-774
    
    72. Mazzucato A. Taddei A R. Soressi G P. The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development, 1998,125: 107-114
    
    73. Mendes B M J, Boscariol R L, Filho F A A M, Almeida W A B. Agrobacterium-mediated genetic transformation of 'Hamlin' sweet orange. Pesq. agropec. bras., Brasilia, 2002, 37: 955-961
    74. Mezzetti B, Landi L, Pandolfini T, Spena A. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol, 2004,4: 4
    
    75. Mezzetti B, Pandolfini T, Navacchi O. Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnology, 2002, 2 : 18 - 27.
    
    76. Mezzetti B, Silvestroni O, Costantini E. Genetic transformation of table grape via organogenesis and field evaluation of DefH9-iaaM transgenic plants. Acta Hort., 2005 (689): 463 - 468
    
    77. Moreira-Dias J M, Molina R V, Bordon Y, Guardiola J L and Garcia-Luis A. Direct and indirect shoot organogenic pathways in epicotyl cuttings of Tryoer citrange differ in hormone requirements and in their response to light. Ann Bot, 2000,85:103-110
    
    78. Omar A A and Grosser J W. Comparison of endoplasmic reticulum targeted and non-targeted cytoplasmic GFP as a selectable marker in citrus protoplast transformation. Plant Science, 2008, 174(2): 131-139
    
    79. Omar A A and Grosser J W. Transgenic "Hamlin" sweet orange plants containing a rice Xa21 cDNA gene obtained by protoplast/gfp transformation. In Vitro Cellular & Developmental Biology-Animal, 2005, 45-A: 2038
    
    80. Pandolfini T, Rotino G L, Camerini S, Defez R, Spena A. Optimisation of transgene action at the post-transcriptional level: High quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol, 2002, 2:1. 12 July 2007. http://www.biomedcentral.com/1472-6750/2/1
    
    81. Pefia L, Cervera M, Juarez J, Navarro A, Pina J A and Navarro L. Genetic transformation of lime (Citrus aurantifolia Swing): factors affecting transformation and regeneration. Plant Cell Rep, 1997, 16(11): 731-737
    
    82. Pefia L, Perez R M, Cervera M, Juarez J A, Navarro L. Early events in Agrobacterium-mediated genetic transformation of citrus explants. Annals of Botany, 2004, 94: 67-74
    
    83. Rotino G L, Acciarri N, Sabatini E. Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnology, 2005, 5: 32 - 39.
    
    84. Rotino G L, Perri E, Zottini M. Genetic engineering of parhenocarpic plants. Nature Biotechnology, 1997,15: 1398 - 1401
    
    85. Schomburg D, Schomburg I, Chang A. Springer Handbook of Enzymes, second edition. Berlin : Springer , 2006: 687-691
    
    86. Seurinck J, Truettner J, Goldberg RB. The nucleotide sequence of an anther- specific gene. Nucleic Acids Research, 1990, 18(11): 3403
    
    87. Stewart C N, Halfhill Jr. Warwick S I. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet., 2003, 4(10): 806-817
    
    88. Talon M, Gmitter F G. Citrus Genomics. Int J Plant Genomics 2008, 2008: 528361
    
    89. Tan B, Li D L, Xu S X, Fan J, Fan G E, Guo W W. Highly efficient transformation of the GFP and MAC12.2 genes into precocious trifoliate orange (Poncirus trifoliata [L.] Raf), a potential model genotype for functional genomics studies in Citrus. Tree Genetics & Genomes, DOI: 10.1007/s11295-009-0206-0
    
    90. Tong Z, Tan B, Zhang J C, Hu Z Y, Guo W W, Deng X X. Using precocious trifoliate orange (Poncirus trifoliate [L.] Raf.) to establish a short juvenile transformation platform for citrus. Scientia Horticulturae, 2009, 119: 335-338
    
    91. Vardi A., Levin I, Carmi N. Induction of seedlessness in citrus: From classical techniques to emerging biotechnological approaches. Journal of the American Society for Horticultural Science, 2008, 133: 117-126
    
    92. Villemont E, Dubois F, Sangwan, Vasseur G, Bourgeois Y, Brigitte S, Sangwan-Norreel. Role of the host cell cycle in theAgrobacterium-mediated genetic transformation ofPetunia: Evidence of an S-phase control mechanism for T-DNA transfer. Planta, 1997, 201: 160-17
    
    93. Vivian-smith A, Koltunow A M. Genetic analysis of growth regulator-induced parthenocarpy in arabidopsis. Plant Physiol, 1999,121: 437-451
    
    94. Yamamoto M, Matsumoto R, Yamada Y. Relationship between sterility and seedlessness in Citrus. J Japan Soc Hort Sci., 1995, 64(1): 23-29
    
    95. Yamamoto M, Okudai N, Matsumoto R, Yamada Y. Seed number of hybrid plants in citrus with special reference to seed number of parents and pollen yield of individuals.J Japan Soc Hort Sci.,1993,61:757-762
    96.Yang L,Xu C J,Hu G B and Chen K S.Establishment of an Agrobacterium-mediated transformation system for Fortunella crassifolia.Biologia Plantarum,2007,51(3):541-545
    97.Zheng X L,Deng W,Luo K M,Duan H.The cauliflower mosaic virus(CaMV)35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene prometers.Plant Cell Rep.,2007,26:1195-1203
    98.Zheng X L,Zhang M,Zhen Q W.Seed coat-specifically expressing an auxin biosynthesis relative gene,iaaM,improves the yield and quality of cotton fiber.第八届全国植物基因组学大会,上海,2007
    99.Zou X P,Li D M,Luo X Y,Luo K M,Pei Y.An improved procedure for Agrobacterium-mediated transformation of trifoliate orange(Poncirus trifoliata L.Raf.) via indirect organogenesis.In Vitro Cellular & Developmental Biology-Plant,2008,44(3):169-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700