猪铜蓝蛋白的纯化、性质、功能及其基因克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜蓝蛋白(Ceruloplasmin, EC1.16.3.,缩写为CP)是一种含铜的α2糖蛋白,广泛存在于人和动物体内,是人和动物生命活动中的一种重要金属蛋白酶,在动物体内铜的转运、细胞铁的代谢、胚胎及神经系统的发育、新生毛细血管的形成、自由基的清除等过程中发挥重要作用。铜蓝蛋白可以向机体各种组织细胞快速提供高效可利用的铜,满足各器官组织对铜营养的需要,经母乳在初生动物的早期阶段发挥了重要的营养作用,这些科学结论为将铜蓝蛋白作为畜禽的一种新型生物铜源进行开发利用提供了重要线索。猪是我国畜牧业中饲养最多、分布最广的一种重要家畜,铜不仅是其机体必需的微营养素,而且在一定的范围内高剂量的铜还作为一种重要促生长剂广泛使用,甚至滥用,无机铜的超量使用或滥用已经导致了猪发生铜中毒病、猪肉品质下降、养殖环境土壤板结、水体自洁力下降、铜资源严重浪费及影响人类健康等负面效应。因此,开发安全高效、经济适用、环境友好的畜禽生物铜源有着广阔的应用前景。本研究以我国著名三大优良地方猪种——荣昌猪为试验材料,通过对猪血清铜蓝蛋白的分离纯化、生化特性、抑制动力学、部分功能以及对该蛋白质原基因克隆、生物信息学分析、荧光定量PCR表达量分析等的研究,获得了以下结果:
     1.采用25%的正丁醇脱脂、35-50%的饱和硫酸铵盐析、截留分子量为10000D的滤膜超滤、DEAE-Sepharose层析、羟基磷灰石柱层析、Superdex-200凝胶柱层析等技术对猪铜蓝蛋白进行了分离纯化,并用邻联大茴香胺检测法监测各纯化步骤溶液中铜蓝蛋白的酶活性,获得了经SDS-PAGE电泳为单带的铜蓝蛋白纯化产物,其酶的比活力提高了217.65倍,回收率达到32%。该蛋白分子量为123.5KD,等电点为5.08,含糖量为7.8%,每分子猪铜蓝蛋白分子中含有铜原子个数为6个,经SDS-PAGE电泳分析,该猪CP为单亚基蛋白质。酶促反应研究得知,所得猪铜蓝蛋白(氧化酶)的最适pH为5.5,pH5-10为其稳定环境;最适温度为55℃。在50~60℃下其酶活力稳定性最好。经对猪铜蓝蛋白(氧化酶)酶促反应常数研究,得出其酶促反应的初速度为24.75gmol/(L·min),Km值为0.95mmol/L,最大反应速度Vmax为0.1124μmol/L。
     2.研究了效应物对猪铜蓝蛋白酶活力的影响,结果表明猪铜蓝蛋白对胰蛋白酶、胃蛋白酶均有明显的抵抗能力;铜离子、铁离子、锌离子、锰离子和镁离子对铜蓝蛋白的酶活力均有抑制作用,并呈现随着这些金属离子浓度的增加该蛋白质的酶活力逐渐减弱的趋势;氯离子、EDTA、双氧水及叠氮化钠对猪铜蓝蛋白的酶活力也明显的抑制作用,其中叠氮化钠的抑制作用最强,EDTA的抑制作用最弱;柠檬酸、草酸、抗坏血酸对猪铜蓝蛋白的酶活力有抑制作用,并呈现浓度依赖关系,其中抗坏血酸对铜蓝蛋白的酶活力抑制作用为非竞争抑制作用,柠檬酸对铜蓝蛋白的酶活力抑制作用为竞争抑制作用,而尿素对该蛋白质的酶活力基本无明显的抑制作用。
     3.研究了铜蓝蛋白对猪脑垂体细胞分泌生长激素及对脾细胞、B淋巴细胞、T淋巴细胞和亚群(CD4、CD8)增殖的影响,结果表明铜蓝蛋白可以促进猪脑垂体细胞生长激素的分泌,其中以加入0.4mg/ml的铜蓝蛋白换液培养8h的效果最好;同时,铜蓝蛋白可显著促进脾细胞、T淋巴细胞及亚群(CD4、CD8)、B淋巴细胞的增殖,其中以1.0mg/mL(终浓度为0.5mg/mL)的效果最好。这一结果说明铜蓝蛋白在细胞水平不仅可以促进猪垂体细胞分泌生长激素,还具有有丝分裂原的作用,可以刺激仔猪脾细胞、T淋巴细胞及亚群(CD4、CD8)、B淋巴细胞的分裂、增殖,提高仔猪免疫能力。研究结果丰富了铜蓝蛋白生理功能的内容,同时也为铜蓝蛋白作为一种新型有机生物铜源的开发和应用奠定了基础。
     4.给试验小鼠补充不同浓度的猪铜蓝蛋白研究了铜蓝蛋白对小鼠机体抗氧化能力及Cu-ATPase的影响,结果显示铜蓝蛋白可明显提高小鼠机体总抗氧化能力、Cu-ZnSOD的活性,提高小鼠肝脏组织中一氧化氮含量,减少机体丙二醛的含量,其中以腹腔注射4mg/只的效果最优,但对小鼠肝脏谷胱甘肽过氧化物酶活力作用不显著:铜蓝蛋白可有效提高小鼠肝脏组织中铜--ATP酶的含量,其中以腹腔注射4mg/只的效果最优。这一研究结果对铜蓝蛋白功能提供了的有益补充。
     5.通过RT-PCR技术,克隆了荣昌猪铜蓝蛋白基因,序列已登录在GenBank上,登录号为EU714006,基因cDNA长度为3181bp。其最大开放阅读框长度为3180bp,编码1060个氨基酸残基。经与家猪基因组序列比对分析,预测出猪铜蓝蛋白基因位于第13号染色体上,横跨于该染色体基因的42.463Kb-95.199Kb之间,有20个外显子、19个内含子。其推导的氨基酸序列与21个物种CP氨基酸序列比对分析,结果克隆出的猪CP氨基酸序列人CP的同源性最高,达到89%,而与与紫色海胆相似于CP的蛋白的氨基酸的同源性最低,仅为19.2%。经生物信息学软件预测,该蛋白质在19aa--20aa处有较强的信号肽,但无跨膜结构。系统进化树分析表明该基因存在较大的种属差异,但与人、马的亲缘关系较近,反映了在-定程度上该基因受到了人工选择压力的影响。
     6.通过对铜蓝蛋白基因在荣昌猪脑、心、肺、肝、脾、胃、肠、肾、膀胱及肌肉10种内脏器官组织中的荧光定量PCR表达谱差异比较分析,结果表明在1、15、30、45及60日龄5个不同生长阶段中,铜蓝蛋白基因在同一个器官的表达有差异;而在同一个生长阶段,该蛋白质基因在上述10个器官组织中的表达也有差异。初步揭示了铜蓝蛋白基因在仔猪5个生长阶段中可能具有参与铜的吸收和转运、促进免疫、调节机体铜代谢等功能。本课题获得的猪铜蓝蛋白理化特点及酶学特性、在细胞水平促进垂体生长激素的分泌及免疫细胞的增殖、提高机体CuZn—SOD及Cu—ATP酶活力、该蛋白质的原基因序列及基因在5个生长阶段不同内脏器官中的表达特点等研究结果,为猪铜蓝蛋白作为畜禽的一种新型高效、经济安全、环境友好的生物铜源的开发和利用提供重要的理论依据。
Ceruloplasmin (Ceruloplasmin, EC 1.16.3., abbreviated as CP), a copper-containing a2-glycoprotein widely distributed in human and animals, is an important metalloproteinase for animal and human life. It plays important roles in the processes in animal body, such as the transport of copper, the metabolism of iron in cells, the development of embryo and neural system, the formation of new blood capillaries, and the scavenging of free radicals. Ceruloplasmin can quickly provide efficiently utilizable copper to a variety of tissue cells in animal body to satisfy that the needs of various organs for copper nutrition. And via milk, it also plays an important nutritional function in the early stage of newborn animals. These scientific conclusions provide important clues to the development and utilization of ceruloplasmin as a new type of biological copper source for livestock and poultry. Swine are an important livestock that are bred on the largest scale and distributed most widely in China. Copper is an essential trace element in the organs of swine, and within a certain dose range high doses of copper have been widely used or even abused in pig industry as an important growth promoter. The excessive use or abuse of inorganic copper has led to a variety of negative effects, such as copper poisoning in swine, the decline of pork quality, soil hardening in culture environment, the decline of water's self-cleaning capability, serious waste of copper resource, and the damage to human health. Hence, there are broad prospects for the exploitation of biological copper sources for livestock and poultry that are safer and more efficient, more economically viable, and environmentally friendlier than inorganic copper. Using one of China's three famous swine breeds-Rongchang Swine as its experimental material, this paper explores the purification and characterization of ceruloplasmin from swine (sus scrofa), studies its biological and chemical property, its inhibition kinetics, and its partial functions, and conducts the cloning of such protein's original gene, the analysis of bioinformatics, and the detection of fluorescent quantitative PCR expression. The main results are as follows:
     1. Ceruloplasmin of Rongchang swine was separated and purified through the degreasing with 25%Butanol, the salting-out with 35-50%saturated ammonium sulfate, the ultrafiltration with the filter membrane that intercepts the molecular weight of 10000D, the DEAE-sepharose chromatography, the Hydroxyapatite chromatography, and the Superdex-200 gel column chromatography. The enzyme activity of ceruloplasmin in the solutions in the various purification steps was inspected and monitored with o-anisic amine method. The single-band product of ceruloplasmin purification was obtained through SDS-pAGE electrophoresis, and the specific activity of its enzyme was 217.65-fold higher than crude enzyme, and the recovery rate is up to 32%.The molecular weight of swine ceruloplasmin was 123.5KD, and the isoelectric point of this protein was 5.08, and its sugar content was 7.8%. Each molecule of swine ceruloplasmin contained 6 copper atoms. The SDS-pAGE electrophoresis showed that swine ceruloplasmin was a single subunit protein. Enzymatic reaction showed that the optimum pH for swine ceruloplasmin was pH5.5 and pH5-10 was the stable pH environment for it. The optimum temperature for swine ceruloplasmin was 55℃and it had the best stability of enzyme activity within the temperature range of 50℃-60℃. The research into the enzymic reaction constant of swine ceruloplasmin showed that the initial velocity of its enzyme reaction was 24.75μmol/(L-min), that the Km value was 0.95mmol/L, and that the maximum reaction velocity was 112.4μmol/L.
     2. The research into the influence of effectors on the enzyme activity of swine ceruloplasmin showed that swine ceruloplasmin had significant resistance against trysin and pepsin, copper, iron, zinc, manganese, and magnesium ions all had inhibitive effect on the enzyme activity of swine ceruloplasmin, and that the enzyme activity of this protein wore off with the increase of the concentration of these metal ions. Chloride ions, EDTA, hydrogen peroxide and sodium azide all had great inhibitive effect on the enzyme activity of swine ceruloplasmin, with sodium azide exerting the strongest inhibition and EDTA the weakest. Citric acid, oxalic acid and ascorbic acid all had an inhibitive effect on the enzyme activity of swine ceruloplasmin, and there existed a correlation between concentration and inhibition. The inhibitive effect of ascorbic acid on the enzyme activity of ceruloplasmin was non-competitive inhibition, and the inhibitive effect of citric acid on the enzyme activity of ceruloplasmin was competitive inhibition. Urea, however, basically had no significant inhibition on the enzyme activity of swine ceruloplasmin.
     3. Investigations were made into the effects of swine ceruloplasmin on pituitary cells' secretion of growth hormone, cell proliferation of spleen cell, B lymphocytes, T lymphocytes and subsets (CD_4, CD_8). The results showed that ceruloplasmin can promote the secretion of growth hormones in porcine pituitary cells, and that, the culture in 0.4mg/ml ceruloplasmin for 8h yielded the best effect. At the same time, swine ceruloplasmin could significantly promote the proliferation of spleen cells, T lymphocytes and subsets (CD_4, CD_8), and B lymphocyte, and that the concentration of 1.Omg/ml (final concentration 0.5mg/ml) were the best. The results suggest that growth hormone secretion of pig pituitary ceruloplasmin not only were promoted by ceruloplasmin, also the cell proliferation of pig spleen, B lymphocyte, T lymphocyte and subsets (CD_4, CD_8) were increased for the role of mitogene with ceruloplasmin. This conclusion has enriched the physiological function of ceruloplasmin, and also, it had laid the foundation for the development and application of ceruloplasmin as a new source of organic biological copper.
     4. The experimental mice were administered intraperitoneal injection of porcine ceruloplasmin of different concentrations to explore the effect of porcine ceruloplasmin on mice's antioxidant capacity and the contents of Cu-ATPase in mice. The results showed that porcine ceruloplasmin could significantly enhance the mice's total antioxidant capacity and the activity of Cu-ZnSOD, increase the nitric oxide contents in mice's livers, and decrease the MDA contents in the organism. The intraperitoneal injection of 4 mg for each mouse produced the best effect. However, there were no significant effects on the enzyme activity of mice liver glutathione peroxidase. And porcine ceruloplasmin could remarkably promote the Cu-ATPase content in the mice's livers. The intraperitoneal injection of 4 mg for each mouse produced the best effect. The result adds favorably to the functions of ceruloplasm.
     5. The ceruloplasmin genes in Rongchang swine were cloned with RT-PCR technology, and their accession number EU714006 was entered in GenBank. The cDNA length of the gene was 3181bp. Its maximum open reading frame length was 3180bp.1060 amino acid residues were encoded. The comparison between cDNA and sus scrofa genome indicated that swine ceruloplasmin gene was located on the 13~(th) chromosome, between 42.463Kb-95.199Kb of this chromosome gene, and there were 20 exons and 19 introns. The comparison between the derived amino acid sequence and 21 species amino acid sequences showed the cloned amino acid sequences of swine ceruloplasmin had the highest homology with human CP (89%), but had the lowest homology with Strongylocentrotus purpuratus (only 19.2%). Bioinformatics software forecast that there was a strong signal peptide located in 19~(th)-20~(th) aa of this protein, but there was no transmembrane domain. Constructed phylogenesis tree indicated that this gene exhibited large difference among different species, but was genetically most related to that of human and horse. This indicated that this ceruloplasmin gene was affected to a certain extent by the pressure of artificial selection.
     6. The difference of ceruloplasmin gene expression in brain, heart, lung, liver, stomach, intestinal, kidney, bladder and muscle of Rongchang swine were detected by FQ-PCR, and the results showed that ceruloplasmin gene expressions in the same organs were different at the five growth stages of 1~(st),15~(th),30~(th),45~(th),60~(th) days, and that the gene expressions were different in 10 organs at the same growth stage. It is thus initially concluded that ceruloplasmin gene may have been involved in copper intake and transport, in promoting immunization, and in regulating copper metabolism in the organisms at the five growth stages of piglets.
     The research results of this paper include the physical and chemical characteristics of swine ceruloplasmin and its enzyme properties, its promotion of the growth hormone secretion in pituitary and immune cell proliferation at cellular level, the enhancement of the Cu-ZnSOD and Cu-ATPase activity, original gene sequences of this protein, gene expression characteristics in different organs at the five growth stages of swine. These results provide an important theoretical basis for the development and exploitation of swine ceruloplasmin as a new type of biological copper source for livestock and poultry that is safer and more efficient, more economically viable, and environmentally friendlier than inorganic copper.
引文
[1]Holmberg C G, Laurell C B. Investigation serum copper. Ⅱ. Isolation of the copper containing protein, and a description of some its properties[J]. Acta Chem Scand,1948, (2):550-556.
    [2]Inaba T, Earl F. Changes in Ceruloplasmin during Anuran Metamorphosis.[J]. The Journal of Biological Chemistry,1967,242 (20):4789-4795.
    [3]Thomas A, Waldmann, Anatol G, et al. Measurement of Gastrointestinal Protein Loss Using Ceruloplasmin Labeled with 67Copper.[J]. J Clin Invest 1967,46 (1):10-20.
    [4]Manolis A, Cox D W. Purification of rat ceruloplasmin. Characterization and comparison with human ceruloplasmin.[J]. Prep Biochem,1980,10 (2):121-132.
    [5]Disilvestro R A, Harris E D. Purification and partial Characterization of ceruloplasmin from chicken serum. Arc Biochem Biophys.[J].1985,241 (2):438-446.
    [6]Hilewicz Grabska M, Zgirki A, Krajewski T. purification and partial Characterization of goose ceruloplasmin. Arc Biochem Biophys.[J]. Arc Biochem Biophys,1988,260 (1).
    [7]Wang X T, Dumoulin G, Befani O. Joint chromatographic Purification of bovine serum ceruloplasmin and ammineoxidase.[J]. Prep Biochem,1994,26 (3):217-228.
    [8]Mainero A, Aguilar, Rodarte B. Rabbit ceruloplasmin:Purification and partial characterization.[J]. Prep Biochem Biotechnol,1996,26 (3):217-228.
    [9]Essamadi a K, Bengoumi M, Zaoui D. Purification and partial characterization of camel (Camel romedarius) ceruloplasmin.[J]. Comp Biochem Physiol B Biochem Mol Biol,2002,131 (3): 509-517.
    [10]Zaitseva I, Zaitsev V, Card G. The X-ray structure of human ceruloplasmin at 3.1A:nature of the copper centres.[J]. J Biol Inorg Chem,1996,1:15-23.
    [11]Holm R H, Kennepohl P, Solomon E I. Structural and functional aspects of metal site in biology. [J]. Chem Rev,1996,96.
    [12]Farver O, Pecht I. Electron transfer reactions in multi-copper oxidases. In:Multi-Copper Oxidases.[M]. Singapore:World Scientific Publication.,1997.
    [13]Machonkin T E, Solomon E I. The thermodynamics,kinetics and molecular mechanism of intramolecular electron transfer in human ceruloplasmin.[J]. J Am Chem Soc,2000,122: 1247-12560.
    [14]Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxygenases and oxygenases[J]. Chem Rev,1996,96:2563-2605.
    [15]Ducros V, Brzozowski a M, Wilson K S. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution.[J]. Nat Struct Biol,1998,5:310-316.
    [16]Rylkov V V, Tarasiev M Y, Moshkov K A. Labile conformation of type 2 Cu2+centres in human ceruloplasmin.[J]. Eur J Biochem,1991,197:185-189.
    [17]Bielli P, Calabreseb L. Structure to function relationships in ceruloplasmin:a "moonlighting" protein.[J]. CMLS, Cell Mol Life Sci,2002,59:1413-1427.
    [18]Yoshida H. Chemistry of lacquer (Urushi) part 1[J]. J Chem Soc,1883,43:472-486.
    [19]Tauber H, Kleiner I S, Mishkind D. ASCORBIC ACID (VITAMIN C) OXIDASE[J]. The journal of Biological Cheminstry,1935,110 (1):211-218.
    [20]Musci G, Bonaccorsi D, Patti M C. Modulation of the redox state of the copper sites of human ceruloplasmin by chloride.[J]. J Protein Chem,1995,14:611-619.
    [21]Floris G, Medda R, Padiglia A. The physiopathological significance of ceruloplasmin. A possible therapeutic approach.[J]. Biochem Pharmacol,2000,60:1735-1741.
    [22]Zaitsev V N, Zaitseva 1, Papiz M. An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma.[J]. J Biol Inorg Chem,1999,4:579-587.
    [23]Campbell C H, Brown R, Linder M C. Circulating ceruloplasmin is an important source of copper for normal and malignant animal cells.[J]. Biochim Biophys Acta 1981,678:27-38.
    [24]Mcdermott J A, Huber C T, Osaki S. Role of iron in the oxidase activity of ceruloplasmin. [J]. BiochimBiophys Acta,1968,151:541-557.
    [25]Huber C T, Frieden E. Substrate activation and the kinetics of ferroxidase.[J]. J Biol Chem 1970, 245:3973-3978.
    [26]De Ley M, Osaki S. Intramolecular electron transport in human ferroxidase (caeruloplasmin). [J]. Biochem J 1975,151:561-566.
    [27]Fleming R E, Sly W S. Ferroportin mutation in autosomal dominant hemochromatosis:loss of function, gain in understanding. [J]. J Clin Invest 2001,108:521-522.
    [28]Svetlana K, Alexander E, Vladimir K. Developmental analysis of ceruloplasmin gene and liver formation in zebrafish.[J]. Mechanisms of Development 2001,103137-139.
    [29]Airede K I. Serial copper and ceruloplasmin levels in African newborns with emphasis on the sick and stable preterm infant, and their antioxidant capacities.[J]. Early Human Development, 1998,52:199-210.
    [30]Louro M O, Angel J C, Carlos J T. Assessment of copper status in pregnancy by means of determining the specific oxidase activity of ceruloplasmin.[J]. Clinica Chimica Acta 2001,312: 123-127.
    [31]Maltais D, Desroches, Aouffen M. The blue copper ceruloplasmin induced aggreation of newly differentiated neurons:A potential modulator of nervous system organization.[J]. Neuroscience, .2003,121:.73-82._
    [32]Raju K S, Alessandri G, Ziche M. Ceruloplasmin, copper ions, and angiogenesis.[J]. J Natl Cancer Inst,1982,69:1183-1188.
    [33]Goldstein I M, Kaplan H B, Edelson H S. Ceruloplasmin:a scavenger of superoxide anion radicals. [J]. Journal of Biological Chemistry,1979,254:4040-4045.
    [34]Andrzej M, Irving K, Heinz B. Acute phase proteins:molecular biology, biochemistry, and clinical applications.[M]. Annals of the New York Academy of Sciences,1989.
    [35]Giclas P C, Manthei U, Strunk R C. The acute phase response of C3, C5, ceruloplasmin, and C-reactive protein induced by turpentine pleurisy in the rabbit.[J]. American Journal of Pathology,1985,120:146-156.
    [36]Renate S W, Helga L, Gabriele L. Influence of Air Pollution on Humoral Immune Response. [J]. J Clin Epidemiol,1996,49:527-534.
    [37]Susanne A, Bell T W, Clos D. Autoantibodies to Cryptic Epitopes of C-Reactive Protein and other Acute Phase Proteins in the Toxic Oil Syndrom.[J]. Journal of Autoimmunity,1995,8: 293-303.
    [38]Pan T L, Chen C L, Lin C L. Ceruloplasmin, a Novel Candidate as a Diagnostic Marker for Liver Function After Liver Transplantation.[J]. Transplantation Proceedings,2002,32: 2198-2199.
    [39]Bombardieri G, Rossi L, Bevilacqua E. Correlation between serum values of copper, ceruloplasmin, SMAO, SDAO, in health-subjects, in pregnant women and in some pathological conditions (author's transl).[J]. Quad Sclavo Diagn 1976,12:131-147.
    [40]Emmajean P, Rombach Perry S, Barboza John E. Costs of gestation in an Arctic ruminant: copper reserves in Muskoxen.[J]. Comparative Biochemistry and Physiology Part C,2003,134: 157-168.
    [41]Wooten L, Shulze R A, Lancey R W. Ceruloplasmin is found in milk and amniotic fluid and may have a nutritional role.[J]. The Journal of Nutritional Biochemistry,1996,7:632-639
    [42]Stephanie a D, Bernard J I, Hisun R. Copper transport to mammary gland and milk during lactation in rats. [J]. Am J Physiol Endocrinol Metab,2002,283:E667-E675.
    [43]Philip J, Cerveza, Farrokh Mehrbod, et al. Milk Ceruloplasmin and Its Expression by Mammary Gland and Liver in Pigs.[J]. Archives of Biochemistry and Biophysics,2000,373:451-461.
    [44]Scheinberg 1 H, Gitlin D. Deficiency of ceruloplasmin in patients with hepatolenticular degeneration.[J]. Science 1952,116:448-450.
    [45]White a R, Huang X, Jobling M F. Homocysteine potentiates copper-and amyloid beta peptidemediated toxicity in primary neuronal cultures:possible risk factors in the Alzheimer's-type neurodegenerative pathways.
    [J]. J Neurochem,2002,76:1509-1520.
    [46]Miyajima H, Nishimura Y, Mizoguchi K. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration.[J]. Neurology 1987,37:761-767.
    [47]Linder M C, Moor J R, Wright K. Ceruloplasmin assays in diagnosis and treatment of human lung, breast, and gastrointestinal cancers. [J]. J Natl Cancer Inst,1981,67:263-275.
    [48]Senra Valera A, Lopez Saez J J, Quintela Senra D. Serum ceruloplasmin as a diagnostic marker of cancer. [J]. Cancer Lett,1997,121:139-145.
    [49]Ryden L. Single chaine structure of human ceruloplasmin.[J]. Eur J Biochem,1972,26 (1): 380-386.
    [50]Mccombs M L, Bowman B H. Biochenical studies of human ceruloplasmin.[J]. Biochim Biophys Acta,1976,434 (2):452-461.
    [51]Kingston I B, Kingston B L, Putnam F W. Complete amino sequence of a histidine-rich proteolytic fragment of human ceruloplasmin[J]. Proc Natl AcadSci,1979,76 (1):1668-1672.
    [52]Nobuhiro T, Thomasl O, Frank W. Single-chain structure of human ceruloplasmin:The complete amino acid sequence of the whole molecule.[J]. Proc Natl Acad Sci,1984,81: 390-394.
    [53]Zaitseva I, Zaitsev V, Card G, et al. The X-ray structure of human ceruloplasmin at 3.1 A: nature of the copper centres.[J]. J Biol Inorg Chem,1996,1:15-23.
    [54]Messerschmidt A, Ladenstein R, Huber R, et al. Refined crystal structure of ascorbate oxidase at 1.9 A resolution.[J]. J Mol Biol,1992,224:179-205.
    [55]Ducros V, Brzozowski a M, Wilson K S, et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution.[J]. Nat Struct Biol,1998,5:310-316.
    [56]Bonaccorsi Di Patti M C, Pascarella S, Catalucci D, et al. Homology modeling of the multicopper oxidase FET3 gives new insights in the mechanism of iron transport in yeast.[J]. Prot Eng,1999,12:895-897.
    [57]Takahashi N, Ortel T L, Putnam F W. Single chain structure of human ceruloplasmin:the complete amino acid sequence of the whole molecule.[J]. Proc Natl Acad Sci,1984,81: 390-394.
    [58]Lindley P, Card G, Zaitseva I, et al. An X ray structural study of human ceruloplasmin in relation to ferroxidase activity.[J]. JBiol Inorg Chem 1997,2:454-463.
    [59]Ryden L G, Bjork I. Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase).[J]. Biochemistry,1976,15:3411-3417.
    [60]Musci G, Bonaccorsi Di Patti M C, Calabrese L. The state of the copper sites in human ceruloplasmin.[J]. Arch Biochem Biophys 1993,306:111-118.
    [61]Calabrese L, Mateescu M A, Carbonaro M, et al. Reexamination of spectroscopic properties of ceruloplasmin freshly isolated with a novel very rapid single-step procedure.[J]. Biochem Int, 1998,16:199-208.
    [62]Gunnarsson P O, Nylen U, Pettersson G. Effect of pH on electron-paramagnetic-resonance spectra of ceruloplasmin.[J]. Eur J Biochem,1973,37:47-50.
    [63]Musci G, Bonaccorsi Di Patti M C, Fagiolo U, et al. Age related changes in human ceruloplasmin.[J]. J Biol Chem,1993,268:13388-13395.
    [64]Calabrese L, Carbonaro M, Musci G. Presence of coupled trinuclear copper cluster in mammalian ceruloplasmin is essential for efficient electron transfer to oxygen.[J]. J Biol Chem, 1989,264(6183-6187):
    [65]Calabrese L, Carbonaro M, Musci G. Chicken ceruloplasmin:evidence in support of a trinuclear cluster involving type 2 and 3 copper centers.[J]. J Biol Chem,1988,263: 6480-6483.
    [66]Messerschmidt A, Rossi A, Ladenstein R, et al. X-ray crystal strucure of the blue oxidase from zucchini:analysis of the polypeptide fold and a model of the copper sites and ligands.[J]. J Mol Biol 1989,206:513-529.
    [67]Messerschmidt A, Ladenstein R, Huber R, et al. Refined crystal structure of ascorbate oxidase at 1.9 A resolution.[J]. J Mol Biol,1992,224:179-205.
    [68]Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli.[J]. Biochem Biophys Res Commun,2001,286:902-908.
    [69]Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modeling and structural relationships.[J]. Eur J Biochem,1990,187:341-352.
    [70]Machonkin T E, Zhang H H, Hedman B, et al. Spectroscopic and magnetic studies of human ceruloplasmin:identification of a permanently reduced type I copper site. [J]. Biochemistry, 1998,37:9570-9578.
    [71]Bielli P, Bellenchi G C, Calabrese L. Site-directed mutagenesis of human ceruloplasmin: production of a proteolytically stable protein and structure-activity relationships of type 1 sites.[J]. J Biol Chem 2001,276:2678-2685.
    [72]Farver O, Pecht I. Electron transfer processes of blue copper proteins.In:Copper Proteins[M]. Princeton:Princeton University, Princeton, N. J.,1981.
    [73]Faraggi M, Pecht I. The electron pathway to Cu(II) in ceruloplasmin.[J]. J Biol Chem,1973, 248:3146-3149.
    [74]Farver O, Bendahl L, Skov L K, et al. Human ceruloplasmin:intramolecular electron transfer kinetics and equilibration.[J]. J Biol Chem,1999,274:26135-26140.
    [75]Bielli P, Bellenchi G C, Calabrese L. Site-directed mutagenesis of human ceruloplasmin: production of a proteolytically stable protein and structure-activity relationships of type 1 sites.[J]. J Biol Chem,2001,276:2678-2685.
    [76]Neifakh S A, Monakhov N K, Shaposhniko a M. Localization of Ceruloplasmin Biosynthesis in Human and Monkey Liver Cells and Its Copper Regulation.[J]. J Biol Inorg Chem,1969,25: 337-448.
    [77]Holtzman N A, Gaumnitz B M. Studies on the rate of release and turnover of ceruloplasmin and apoceruloplasmin in rat plasma.[J]. J Biol Chem,1970,245:2354-2358.
    [78]Sato M, Gitlin J D. Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin.[J]. J Biol Chem,1991,266:5128-5134.
    [79]Hellman N E, Kono S, Miyajima H, et al. Biochemical analysis of a missense mutation in aceruloplasminemia.[J]. J Biol Chem 2002,277:1375-1380.
    [80]Mitsuru S, Jonathan D G. Mechanisms of Copper Incorporation During the Biosynthesoifs Human Ceruloplasmin.[J]. The Journal of Biological Chemistry,1991,266 (8):5128-5134.
    [81]Kunihiko T, Yoshihiko K, Naoyuki M. Copper incorporation into ceruloplasmin in rat livers.[J]. Biochimica et Biophysics Acta,1995,1270:58-62.
    [82]Patel B N, David S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes.[J]. J Biol Chem,1997,272:20185-20190.
    [83]Salzer J, Lovejoy L, Linder M C, et al. Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin.[J]. J Neurosci Res 1998,54:147-157.
    [84]Patel B N, Dunn R J, David S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain.[J]. J Biol Chem,2000,275:4305-4310.
    [85]Fortna R R, Watson H A, Nyquist S E. Glycosyl phosphatidylinositol-anchored ceruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fractions.[J]. Biol Reprod,1999,61:1042-1049.
    [86]Musci G, Di Marco S, Bellenchi G C. Reconstitution of ceruloplasmin by the Cu (I)-glutathione complex. [J]. J Biol Chem,1996,271:1972-1978.
    [87]Valentine J S, Gralla E B. Delivering copper inside yeast and human cells.[J]. Science,1997, 278:817-818.
    [88]Pena M M O, Lee J, Thiele D J. A delicate balance:homeostatic control of copper uptake and distribution.[J]. JNutr 1999,129:1251-1260.
    [89]Lee J, Prohaska J R, Thiele D J. Essential role for mammalian copper transporter Ctrl in copper homeostasis and embryonic development.[J]. Proc Natl Acad Sci USA,2001,98:6842-6847.
    [90]Schaefer M, Hopkins R G, Failla M L D, et al. Hepatocyte-specific localization and copper-dependent trafficking in the Wilson's disease protein in the liver.[J]. Am J Physiol 1999, 276:C639-C646.
    [91]Gitlin J D, Schroeder J J, Lee-Ambrose L M. Mechanims of caeruloplasmin biosynthesis in normal and copper-deficient rats.[J]. Biochem J 1992,282:835-839.
    [92]Lockhart P J, Mercer J F B. Cloning and expression analysis of the sheep ceruloplasmin cDNA.[J]. Gene,1999,236:251-257.
    [93]Ehrenwald E, Fox P L. Isolation of nonlabile human ceruloplasmin by chromatographic removal of a plasma metalloproteinase.[J]. Arch Biochem Biophys,1994,309:392-395.
    [94]Laurell C B, Kullander S, Thorell J. Effect of administration of a combined estrogen-progestin contraceptive on the level of individual plasma proteins.[J]. ScandJ Clin Lab Invest,1968,21: 337-343.
    [95]Matsuda 1, Pearson T, Holtzman N A. Determination of apoceruloplasmin by radioimmunoassay in nutritional copper deficiency, Menkes' kinky hair syndrome, Wilson's disease, and umbilical cord blood.[J]. Pediatr Res,1974,8:821-824.
    [96]Libby P. Current concepts of the pathogenesis of the acute coronary syndromes.[J]. Circulation, 2001,104:365-372.
    [97]Mohrenweiser H W, Decker R S. Identification of several electrophoretic variants of human ceruloplasmin including CpMichigan, a new polymorphism.[J]. Hum Hered,1982,32: 369-373.
    [98]Endo M, Suzuki K, Schmid K, et al. The structures and microheterogeneity of the carbohydrate chains of human plasma ceruloplasmin. A study employing 500-MHz 1HNMR spectroscopy.[J]. J Biol Chem,1982,257:8755-8760.
    [99]Mackiewicz A, Ganapathi M K, Schultz D, et al. Monokines regulate glycosylation of acute-phase proteins. [J]. J ExpMed,1987,166:253-258.
    [100]William Sunderman F, Shozo Nomoto J. Measurementof Human SerumCeruloplasminby Its p-PhenylenediamineOxidaseActivity.[J]. Clinical Chemistry,1970,16:903-910.
    [101]Irene C C, Tei-Pei L, Gennaro M. Development oACeruloplasmin in Pigs during the Neonatal Period.[J]. J Nutr,1975,(105):
    [102]Martinez-Subiela S, Jose J. Effects of hemolysis, lipemia, hyperbilirrubinemia, and anticoagulants in canine C-reactive protein, serum amyloid A, and ceruloplasmin assays.[J]. Can Vet J,2005,46:625-629.
    [103]Blakley B R, Hamilton D L. Ceruloplasmin as an Indicator of Copper Status in Cattle and Sheep.[J]. Canadian Journal of Comparative Medicine,1985,49:405-408.
    [104]Thomas T, Schreiber G, Jaworowski A. Developmental patterns of gene expression of secreted proteins in brain and choroid plexus.[J]. Developmental biology,1989,134:38-47.
    [105]Skinner M K, Griswold M D. Sertoli cells synthesize and secrete a ceruloplasmin-like protein.[J]. Biology of Reproduction,1983,28:1125-1129.
    [106]Angela R, Aldred, Grimes A, et al. Rat Ceruloplasmin Molecular Cloning and Gene Expression in Liver, Choroid Plexus, Yolk Sac, Placenta, and Testis[J]. The Journal of Biologica Chemistry,1987,262:2785-2878.
    [107]Gitlin D, Janeway C A. Turnover of the copper and protein moieties of ceruloplasmin.[J]. Nature,1960,185:693-694.
    [108]Sternlieb I, Morell a G, Tucker W D. The incorporation of copper into ceruloplasmin in vivo: studies with copper64 and copper67.[J]. J Clin Invest 1961,40:1834-1840.
    [109]Holtzman N A, Elliott D A, Heller R H. Copper intoxication. Report of a case with observations on ceruloplasmin.[J]. N Engl J Med,1966,275:347-352.
    [110]Olivares M, Uauy R. Copper as an essential nutrient.[J]. Am J Clin Nutr,1996,63: 791S-796S.
    [111]Meyer L A, Durley a P, Prohaska J R, et al. Copper transport and metabolism are normal in aceruloplasminemic mice.[J]. J Biol Chem,2001,276:36857-36861.
    [112]Masatoshi Y, Seiki I, Akio U, et al. Urinary excretion rate of ceruloplasmin in non-insulin-dependent diabetic patients with different stages of nephropathy.[J]. European Journal of Endocrinology,1995,132:681-687.
    [113]Gitlin D, Janeway C A. Absorption and excretion of copper in mice.[J]. Nature,1960,188: 150-151.
    [114]Gitlin J D. Aceruloplasminemia. [J]. PediatrRes,1998,44:271-276.
    [115]Harris Z L, Klomp L W, Gitlin J D. Aceruloplasminemia:an inherited neurodegenerative disease with impaired iron homeostasis. [J]. Am J Clin Nutr,1998,67:972S-977S.
    [116]Verbina I A, Puchkoval V, Gaitskhoki V S. Isolation and partial characterization of molecular forms of ceruloplasmin from human bile.[J]. FEBS letters,1992,298:105-108
    [117]Takahisa Y, Takashi A, Yasuo S. Inhibition of the Copper Incorporation into Ceruloplasmin Leads to the Deficiency in Serum Ceruloplasmin Activity in Long-Evans Cinnamon Mutant Rat.[J]. The Journal of Biological Chemistry,1993,268:8965-8971.
    [118]Boyd Houcliin O. A Rapid Colorimetric Method for the Quantitative Determination of Copper Oxidase Activity (Ceruloplasmin).[J]. Clinical Chemistry,1958,4:519-523.
    [119]Deutsh H F. A chromatographic-spectrophotometric method for the determination of ceruloplasmin.[J]. Clin Chim Acta,1960,5:460-463.
    [120]Johnson D A, Osaki S, Frieden E. A Micromethod for the Determination of Ferroxidase (Ceruloplasmin) in Human Serums.[J]. Clinical Chemistry,1967,3:142-150.
    [121]William Sunderman F, Shozo Nomoto J. Measurement of Human Serum Ceruloplasmin by Its p-Phenylenediamine Oxidase Activity.[J]. Clinical Chemistry,1970,16:903-910.
    [122]Ichiro M, Thomas P, Neil A. Determination of Apoceruloplasmin by Radioimmunossy in Nutritional Copper Deficiency, Menkes'Kinky Hair Syndrome, Wilson's Disease, and Umbilical Cord Blood.[J]. Pediat Res,1974,8:821-824.
    [123]Skhosinsky K H, Lehmann P H, Bleeler M F. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride.[J]. Clin Chim 1974,20:1556-1563.
    [124]Bjioerling H. Concentration and purification of ceruloplasmin from human blood plasma frctions.[J]. Vox Sang,1963,8:641-659.
    [125]Topham R, Frieden E. Identification and purification of a none ceruloplasmin ferroxidaes of human serum.[J]. JBiol Chem,1970,245:6698-6750.
    [126]Nakagawa O. Purification and properties of crystalline human ceruloplasmin.[J]. Int J Pept Protein Res,1972,4:385-394.
    [127]Noyer M, Dwulet F E, Hao Y L. Purification and characterization of undegraede human ceruloplasmin.[J]. AnalBiochem,1980,127:400-406.
    [128]Medda R, Cara N, Floris G. Horse Plasma Ceruloplasmin Molecular Weight and Subunit Analysis.[J]. Preparative Biochemistry and Biotechnology 1987,17:447-454.
    [129]Musci G, Carbonaro M, Adriani A. Unusual stability properties of a reptilian ceruloplasmin.fJ]. Arch Biochem Biophys,1990,279:8-13.
    [130]Dooley D W, Cote C, Coolbaugh T S. Charaterization of bovine ceruloplasmin. [J]. FEBS letters,1981,131:363-365.
    [131]Stacher B, Hill C H. Isolation and charaterization of induced ceruloplasmin from chicken serum.[J]. Biochem Biophys Acta,1966,127:400-406.
    [132]Calabrese L, Cappuzzo E, Galtieri A. Sheep Ceruloplasmin:isolation and characterization.[J]. Mol Cell Biochem,1983,51:129-132.
    [133]Lovstad A. A Study on ascorbate inhibition of ceruloplasmin ferroxidase activity.[J]. Biochem Medicine,1997,10:123-126.
    [134]Jacob R A. On the biologic significance of vitamin C interaction with ceruloplasmin.[J]. Nutrition,1996,12:126-127.
    [135]Giovanni M, Gian C, Lilia C. The multifunctional oxidase activity of ceruloplasmin as revealed by anion binding studies.[J]. J Protein Chem,1995,14:611-617.
    [136]Lovstad R A. On the mechanism of citrate inhibition of ceruloplasmin ferroxidase activity.[J]. Biochem Medicine,1996,9:273-275.
    [137]Osaki S, Kim K S, Choi S Y. Citric acid as the principal serum inhibitor of ceruloplasmin.[J]. JBioChem,1964,239:364-366.
    [138]Skhosinsky K H, Lehmann P H, Beeler M F. Measurement of ceruloplasmin from its oxidase activity in serum by ues of o-dianisidine dihygrochloride. [J]. Clin Chem,1974,20: 1556-1563.
    [139]Malmstrom B G. Enzymology of oxygen.[J]. Annu Rev Biochem 1982,51:21-59.
    [140]Silva D M, Askwith C C, Eide D. The Fet3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. [J]. J Biol Chem,1995,270:1098-1101.
    [141]Stoj C, Kosman D J. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function.[J]. FEBS letters,2003,554:422-426.
    [142]In Gyu K, Seon Y P. Requirement of intact human ceruloplasmin for the glutathione-linked peroxidase activity.[J]. FEBS Letters,1998,437:293-296.
    [143]Linder M C. The biochemistry of copper[M]. New York:Plenum Press,1991.
    [144]Percival S S, Harris E D. Copper transport from ceruloplasmin:characterization of the cellular uptake mechanism.[J]. Am J Physiol Cell Physiol,1990,258:c140-c146.
    [145]Bae B, Percival S S. Copper uptake and intracellular distribution during retinoic acid-induced differentiation of HL-60 cells.[J]. J Nutr Biochem,1994,5:457-461.
    [146]Harris E D. Copper transport:an overview.[J]. Soc Exp Biol Med,1991,37:130-140.
    [147]Zaitseva I, Zaitsev V, Card G. The nature of the copper centres in human ceruloplasmin.[J]. J Biol Inorg Chem,1996,1:15-23.
    [148]Lindley P F, Zaitseva I, Zaitsev V. Ceruloplasmin:the beginning of the end of an enigma.[M]. Messerschmidt,Singapore:World Scientific,1997.
    [149]Dunn M A, Green M H, Leach R M. Kinetics of copper metabolism in rats:a compartmental model.[J]. Am J Physiol,1991,261:E115-125.
    [150]Lee S H, Lancey R, Montaser A. Ceruloplasmin and copper transport during the latter part of gestation in the rat.[J]. Proc Soc Exp Biol Med,1993,203:428-439.
    [151]Maria C L, Lisa W, Philip C. Copper transport.[J]. Am J Clin Nutr,1998,67:965S-971S.
    [152]Frieden E, Hsieh H S. Ceruloplasmin:the copper transport protein with essential oxidase activity.[J]. Adv Enzymol,1976,44:187-236.
    [153]Silva D M, Askwith C C, Kaplan J. Molecular mechanism of iron uptake in eukaryotes. [J]. Physiol Rev,1996,76:31-47.
    [154]Halliwell B, Gutteridge J M C. Oxygen toxicity, oxygen radicals, transition metals and disease.[J]. Biochem J,1984,219:1-14.
    [155]Osaki S, Johnson D, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum.[J]. J Biol Chem,1966,241:2746-2757.
    [156]Osaki S, Johnson D A, Frieden E. The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase. [J]. J Biol Chem 1971,246:3018-3023.
    [157]Lee G R, Nacht S, Cartwright G E. Iron metabolism in copperdeficient swine.[J]. J Clin Invest 1968,47:2058-2069.
    [158]Roeser H P, Lee G R, Cartwright G E. The role of ceruloplasmin in iron metabolism.[J]. J Clin Invest 1970,49:2408-2417.
    [159]Montosi G, Donovan A, Totaro A. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. [J]. J Clin Invest,2001,108:619-623.
    [160]Vulpe C D, Kuo Y M, Murphy T L. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in slamouse.[J]. Nat Genet 1999,21:195-199.
    [161]Hubel C A, Kozlov a V, Kagan V E. Decreased transferring and increased transferin saturation in sera of women with preeclampsia:implications for oxidative stress. [J]. Am J Obstet Gynecol 1996,175:692-700.
    [162]Vitoratos N, Salamalekis E, Dalamaga N. Defective antioxidant mechanisms via changes in serum ceruloplasmin and total iron binding capac-ity of serum in women with pre-eclampsia. [J]. Eur J Obstet Gy-necol Reprod Biol 1999,84:63-67.
    [163]Askwith C, Eide D, Vanho A. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake.[J]. Cell,1994,76:403-410.
    [164]Stearman R, Yuan D S, Yamaguchi-Iwa Y. A permease-oxidase complex involved in high-affinity iron uptake in yeast. [J]. Science 1996,271:1552-1557.
    [165]Qian Z M, Ke Y. Rethinking the role of ceruloplasmin in brain iron metabolism.[J]. Brain Res Rev,2001,35:287-294.
    [166]Xia X, Yin K T, Yan Z C. Effects of ferroxidase activity and species on ceruloplasmin mediated iron uptake by BT325 cells.[J]. Molecular Brain Research,2002,99:12-16.
    [167]Yan Z C, Zhong M Q, Jin R D. Ceruloplasmin expression and its role in iron transport in C6 cells.[J]. Neurochemistry International,2007,50:726-733.
    [168]Iren C, Chang H, Tei P. Development of Ceruloplasmin in Pigs during the Neonatal Periodl.[J]. The Journal of Nutritional Biochemistry,1975,105:624-630.
    [169]Camila I, Vannucchi, Regina M. Acute-phase protein profile during gestation and diestrous: proposal for an early pregnancy test in bitches.[J]. Animal Reproduction Science,2002,74 87-99.
    [170]Shahana P, Waseem A, Nidhi V. Effect of gestational age on cord blood plasma copper, zinc, magnesium and albumin.[J]. Early Human Development 2002,69:15-23.
    [171]Engin Y U, Kamaci M R, Sekerog S L. Maternal serum ceruloplasmin in preeclampsia[J]. International Journal of Gynecology and Obstetrics,2005,89:51-52.
    [172]Wang R, Zhang L Z, Mateescu M A. Ceruloplasmin:an endougenous deploring factor in neurons?[J]. Biochemical and Biophysical reserch communication,1995,207:599-605.
    [173]Cha M K, Kim I H. Ceruloplasmin has a distinct active site for the catalyzing glutathione-dependent reduction of alkyl hydroperoxide. [J]. Biochemistry 1999,38: 12104-12110.
    [174]Park Y S, Suzuki K, Taniguchi N. Glutathione peroxidase-like activity of caeruloplasmin as an important lung antioxidant.[J]. FEBS Lett,1999,458:13-136.
    [175]Bruna T. Iron Autoxidation in Mops and Hepes Buffers.[J]. Free Radical Research,1987,4: 149-160.
    [176]Charles T D, Edward D H. Regulation-of aortic CuZn-superoxide dismutase with copper: Caeruloplasmin and albumin re-activate and transfer copper to the enzyme in culture.[J]. Biochem J,1987,248:669-675.
    [177]Sale J. Role of ceruloplasmin to TNT toxication in muose.[J]. Bull Environ Contam Toxical, 1990,44:686-692.
    [178]Inoue K, Akaike T, Miyamoto Y. Nitrosothiol formation catalyzed by ceruloplasmin: implication for cytoprotecive mechanism in vivo.[J]. J Biol Chem 1999,274:27069-27075.
    [179]Moriel P, Pereira I R, Bertolami M C. Is ceruloplasmin an important catalyst for S-nitrosothiol generation in hypercholesterolemia? [J]. Free Radic Biol Med 2001,30:318-326.
    [180]Eckersalla P D, Sainib P K, Mccomba C. The acute phase response of acid soluble glycoprotein, al-acid glycoprotein, ceruloplasmin, haptoglobin and C-reactive protein, in the pig.[J]. Veterinary Immunology and Immunopathology,1996,51:377-385.
    [181]John J, Cunning H, Phd J M. Low Ceruloplasmin Levels During Recovery From Major Bum Injury:Influence of Open Wound Size and Copper Supplementation.[J]. Nutrition,1996,12 83-91.
    [182]Tureck L, Kup Ov V, Uhlikovi M E. Ceruloplasmin in sera of patients with chronic liver diseases.[J]. Cirrhosis and its complications, pathophysiology and clinical aspects,2001,22: 156-158.
    [183]Azaria Ashkenazi M D, Stanley Levin M B, Meir Djaldetti M D. The Syndrome of Neonatal Copper Deficiency.[J]. Pediatrics 1973,52:525-533.
    [184]Ragan H A, Nacht.S, Lee G R. Effect of ceruloplasmin on plasma iron in copper-deficient swine.[J]. Am J Physiol,1969,217:1320-1323.
    [185]Silvia Cerone D V M, Aldo Sansinanea V M, Nestor Auza D V M. Copper deficiency alters the immune response of bovine.[J]. Nutrition Research,1995,15:1335-1341.
    [186]Hunglin Y, Yingshie Y, Yenshiau S. Dietary copper requirements of juvenile grouper, Epinephelus malabaricus.[J], Aquaculture 2007,11:006-011.
    [187]Yost G P, Arthington J D, Mcdowell L R. Effect of Copper Source and Level on the Rate and Extent of Copper Repletion in Holstein Heifers.[J]. Journal of Dairy Science,2002,85 3297-3303.
    [188]Chan W Y, Richichi J, Briesmann G F. Copper and ceruloplasmin activity in human amniotic fluid. [J]. Am J Obstet Gynecol 1980,138:257-259.
    [189]Nabukhotnyi T K, Markevich V E, Pavlyuk V P. Ceruloplasmin isozymes in human milk. [J]. Vopr Okhr Materin Det,1985,31:15-16.
    [190]Lisa W, Roman A, Shulze R W. Ceruloplasminis found in milk and amnioticfluid and may have a nutritional role.[J]. Nutritional Biochemistry,1996,7:632-639.
    [191]Wilson S a K. Progressive lenticular degeneration:a familial nervous disease associated with cirrhosis of the liver.[J]. Lancet,1912,1:1115-1119.
    [192]Cummings J N. The copper and iron content of the liver and brain in the normal and hepatolenticular degeneration.[J]. Brain,1948,71:410-417.
    [193]Hellman N E, Gitlin J. Ceruloplasmin metabolism and function.[J]. Annu Rev Nutr,2002,22: 439-458.
    [194]Lutsenko S, Petris M J. Function and regulation of the mammalian copper-transporting ATPases:insights from biochemical and cell biological approaches.[J]. J Membr Biol,2003, 191:1-12.
    [195]Schaefer M, Gitlin J D. Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease.
    [J]. Am J Physiol 1999,276:G311-314.
    [196]Pratico D. Alzheimer's disease and oxygen radicals:new insights.[J]. Biochem Pharmacol, 2002,63:563-567.
    [197]Pratico D, Sung S. Lipid peroxidation and oxidative imbalance:early functional events in Alzheimer's disease.[J]. J Alzheimers Dis 2004,6:171-175.
    [198]Rottkamp C A, Nunomura A, Raina a K. Oxidative stress, antioxidants, and Alzheimer disease, Alzheimer Dis Assoc Disord.[J].2000,14:S62-S66.
    [199]Paul L F, Barsanjit M, Eduardo E. Ceruloplasmin and Cardiovascular Disease.[J]. Free Radical Biology & Medicine,2000,28:1735-1744.
    [200]Adelstein S J, Coombs T L, Vallee B L. Metalloenzymes and myocardial infarction. I. The relation between serum copper and ceruloplasmin and its catalytic activity. [J]. N Engl J Med, 1996,255:105-109.
    [201]Ridker P M, Cushman M, Stampfer M J. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. [J]. N Engl J Med,1997,336:973-979.
    [202]Mezzetti A, Guglielmi M D, Pierdomenico S D. Increased systemic oxidative stress after elective endarterectomy:relation to vascular healing and remodeling. [J]. Arterioscler Thromb Vase Biol,1999,19:2659-2665.
    [203]Musci G, Bonaccorsi M C, Calabrese L. Modulation of the redox state of the copper sites of human ceruloplasmin by chloride.[J]. J Protein Chem 1995,14:611-619.
    [204]Musci G, Bellenchi G C, Calabrese L. The multifunctional oxidase activity of ceruloplasmin as revealed by anion binding studies.[J]. Eur J Biochem 1999,265:589-597.
    [205]Kumar R, Agarwal a K, Seth P K. Free radical-generated neurotoxicity of 6-hydroxydopamine.[J]. J Neurochem,1995,64:1703-1707.
    [206]Medda R, Calabrese L, Musci G. Effect of ceruloplasmin on 6-hydroxydopamine oxidation,.[J]. Biochem Mol Biol Int 1996,38:721-728.
    [207]Duyndam M C, Hulscher T M, Fontijn D. Induction of vascular endothelial growth factor expression and hypoxia-inducible factor 1 alpha protein by the oxidative stressor arsenite. [J]. J Biol Chem,2001,276:48066-48076.
    [208]Brown N S, Bicknell R. Hypoxia and oxidative stress in breast cancer. Oxidative stress:its effects on the growth, metastatic potential and response to therapy of breast cancer. [J]. Breast Cancer Res 2001,3:323-327.
    [209]Hough C D, Cho R K, Zonderman a B. Coordinately up-regulated genes in ovarian cancer. [J]. Cancer Res 2001,61:3869-3876.
    [210]Brewer G J, Dick R D, Grover D K. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent:phase I study. [J]. Clin Cancer Res,2001,6:1-10.
    [211]Edwards C Q, Williams D M, Cartwright G E. Hereditary hypoceruloplasminemia.[J]. Clin Genet,1979,15:11-16.
    [212]Morita H, Ikeda S, Yamamoto K. Hereditary ceruloplasmin deficiency with hemosiderosis:a clinicopathological study of a Japanese family.[J]. Ann Neurol,1995,37:646-656.
    [213]Logan J L, Harveyson K B, Wisdom G B. Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. [J]. Q J Med,1994,87:663-670.
    [214]Harris Z L, Takahashi Y, Miyajima H. Aceruloplasminemia:molecular characterization of this disorder of iron metabolism.[J]. Proc Natl Acad Sci USA,1995,92:2539-2543.
    [215]Yoshida K, Furihata K, Takeda S. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. [J]. Nat Genet,1995,9:267-272.
    [216]Harris Z L, Durley a P, Man T K. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. [J]. Proc Natl Acad Sci USA,1999,96: 10812-10817.
    [217]Yonekawa M, Okabe T, Asamoto Y. A case of hereditary ceruloplasmin deficiency with iron deposition in the brain associated with chorea, dementia, diabetes mellitus and retinal pigmentation:administration of fresh-frozen human plasma. [J]. Eur Neurol,1999,42: 157-162.
    [218]Andrews N C. Iron homeostasis:insights from genetics and animal models. [J]. Nat Rev Genet 2000,1:208-217.
    [219]Klomp L W J, Farhangrazi Z S, Dugan L L. Ceruloplasmin gene expression in the murine central nervous system.[J]. J Clin Invest 1996,98:207-215.
    [220]Klomp L W J, Gitlin J D. Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. [J]. Hum Mol Genet 1996,5: 1989-1996.
    [221]Mollgard K, Dziegielewska K M, Saunders N R. Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin. [J]. Dev Biol,1998,128:207-221.
    [222]Miyajima H a J, Kohno S, Takahashi Y, Ueno Y. Increased oxysterols associated with iron accumulation in the brains and visceral organs of acaeruloplasminaemia patients. [J]. Q J Med, 2001,94:417-22.
    [223]Miyajima H a J, Tatsuno Y, Takahashiy,. Increased very long-chain fatty acids in erythrocyte membranes of patients with aceruloplasminemia.[J]. Neurology 1998,50:130-136.
    [224]Miyajima H T Y, Serizawa M, Kaneko E, Gitlin Jd.. Increased plasma lipid peroxidation in patients with aceruloplasminemia. [J]. Free Radic BiolMed,1996,20:757-760.
    [225]Yoshida K K K, Miyajima H, Tokuda T. Increased lipid peroxidation in the brains of aceruloplasminemia patients. [J]. J NeurolSci,2000,175:91-95.
    [226]Daimon M, Yamatani K, Igarashi M. Fine structure of the human ceruloplasmin gene. Biochem. Biophys. [J]. Res Commun,1995,208:1028-1035.
    [227]Koschinsky M L, Chow B K, Schwartz J. Isolation and characterization of a processed gene for human ceruloplasmin. [J]. Biochemistry,1987,26:7760-7767.
    [228]Makoto D, Keiichi Y, Masahiko I. Fine structure of the human ceruloplasmin gene.[J]. Biochemical and biophysical research communications,1995,208:1028-1035.
    [229]Platonova N A, Vasin a V, Klotchenko S A. The revelation of expressing region in the processed ceruloplasmin gene in human genome by biocomputational and biochemical methods.[J]. Biophysical Chemistry,2005,115:247-250.
    [230]Yang F, Naylor S L, Lum J B. Characterization, mapping and expression of the human ceruloplasmin gene. [J]. Proc NatlAcad Sci USA,1986,83:3257-3261.
    [231]Church W R, Jernigan R L, Toole J. Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins.[J]. Proc Nat Acad Sci USA,1984,81: 6934-6937.
    [232]Yang F M, Friedrichs W E, Cupples R L. Humanceruloplasmin.Tissue-specific expression of transcripts produced by alternative splicing. [J]. J Biol Chem 1990,265:10780-10785.
    [233]Jun S H, Hamilton a E, Nezhat C R. Expression of Granulin/Epithelin (grn) and Ceruloplasmin Genes in the Human Endometrium.[J]. Biochimical et Biophysica Acta 2004,1545:156-164.
    [234]Masahide Y, Kunihiro Y, Akinori N. A novel splicing mutation in the ceruloplasmin gene responsible for hereditary ceruloplasmin deficiency with hemosiderosis. [J]. Journal of Neurological Sciences 1998,156:30-34.
    [235]Kozak M. How strong is the case for regulation of the initiation step of translation by elements at the 3V end of eukaryotic mRNAs?[J]. Gene,2004,343:41-54.
    [236]Mazumder B, Mukhopadhyay C K, Prok A. Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells.[J]. The Journal of Immunology,1997,159: 1938-1944.
    [237]Pan Y, Katula K, Failla M L. Expression of ceruloplasmin gene in human and rat lymphocytes.[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1996,1307:233-238.
    [238]Lin Chen T D, Robert Wong. Increased expression of ceruloplasmin in the retina following photic injury.[J]. Molecular Vision,2003,9:151-158.
    [239]Robert E, Fleming, Jonathan D, et al. Primary Structure of Rat Ceruloplasmin and Analysis of Tissuespecific Gene Expression during Development[J]. Journal of Biological Chemistry, 1990,265:7701-7707.
    [240]Aldred a R, Grimes A, Schreiber G. Rat Ceruloplasmin Molecular Cloning and Gene Expression in Liver, Choroid Plexus, Yolk Sac, Placent, and Testis.[J]. Journal of Biological Chemistry,1987,262:2875-2878.
    [241]Yuanlong P, Mark L, Failla. Differential up-regulation of Ceruloplasmin gene expression in rat immune tissues during expermental inflammation[J]. Nutrition Research,1998,18:273-282.
    [242]Mineza R, Christine K M, Suen N C. Expression of recombinant human ceruloplasmin-an absolute requirement for splicing signals in the expression cassetteExpression of recombinant human ceruloplasmin-an absolute requirement for splicing signals in the expression cassette.[J]. FEBS Letters,1997,407:132-136.
    [243]Thomas T, Macpherson A, Rogers P. Ceruloplasmin gene expression in the rat uterus.[J]. Biochimica et Biophysica Acta,1995,1261:77-82.
    [244]Chen L, Wayne W, Tzvete D. Light damage induced changes in mouse retinal gene expression.[J]. Experimental Eye Research 2004,79239-247.
    [245]Julian F, Mercer B, Grimes R. Hepatic Ceruloplasmin Gene Expression is Unaltered in the Toxic Milk Mouse.[J]. The Journal of Nutritional Biochemistry,1991,121:894-899.
    [246]Strausberg R L, Feingold E A, Grouse L H. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.[J]. Proc Natl Acad Sci USA 2002,99: 16899-16903
    [247]Alexandre R, Caetano, Yow-Ling S. A Comparative Gene Map of the Horse (Equus caballus).[J]. Genome Res,1999,9:1239-1249.
    [248]Stephane B, Mhammed A, Alain F. Molecular Characterization of Human and Bovine Ceruloplasmin Using MALDI-TOF Mass Spectrometry.[J]. Biochemical and Biophysical Research Communications,2001,288:1006-1010.
    [249]Braude R. Some observations on the need for copper in the diet of fattening pigs.[J]. J Agric Sci,1945,35:163-167.
    [250]Lauridsen C, Lojsgaard S, Sorensen M. Influence of dietary rapeseed oil, vitamine E, and copper on the performance and the oxidative status of pig.[J]. Animal Sci,1999,77:906-907.
    [251]James C, Kevin V, James M. Inverse relationship between bioconcention factor and exposure concentration for metals:implications for hazard assessment of metals in the aquatic environment.[J]. Environmental Toxicology and Chemistry,2003,22:1017-1037.
    [252]Bardford M M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the protein-dye binding.[J]. Anal Biochem,1976,151:571-574.
    [253]汪家政,范明.蛋白质技术手册[M].北京:科学技术出版社,2002.
    [254]张龙翔.生化实验方法和技术[M].北京:人民教育出版社,1979.
    [255]张树政,孟广震.酶学研究技术(上)[M].北京:科学技术出版社,1987.
    [256]Wirth P L, Linder M C. Distrbution of copper among components of huaman serum.[J]. Natl Cancer Inst,1985,75:277-280.
    [257]Orena S J, Goode L A, Linder M C. Binding and uptake of copper from ceruloplasmin.[J]. Biophys Res Commun,1986,139:822-829.
    [258]Mertz W, Underwood E J. Trace elements in human and animal nutrition[M].5th ed ed. Orlando (USA):Academic Press,1987.
    [259]Ye L, Dunyuan L, Jian Z. Comparisons on the effect of recombinant hepatitis B vaccine adjuvanted with alumium hydroxide from the two different prescriptions.[J]. Progress of Microorganism and Immunity,1992,27:51-54.
    [260]Buonomo A, Aguilar A, Rodarte B. effect of porcine somatotropin on growth, carcass and metablic parameters in genetically obese barrows:comparison of daily injection versus continuous release.[J]. JAnim Sci,1991,69:283-306.
    [261]余斌,傅伟龙,刘平祥.Cu2+对离体培养猪腺垂体细胞GH分泌的影响[J].中国应用生理学杂志,2008,24(1):10-13.
    [262]Barrow L, Tanner M S. Copper distribution among protein in paediatric liver disorder and malignancies.[J]. Eur J Clin Invest,1988,18:555-560.
    [263]Wirth P L, Linder M C. Distribution of copper among components of human serum.[J]. Natl Cancer Inst,1985, (75):277-280.
    [264]Natalia P B, Natalie G, Nadezhda T. Milk ceruloplasmin is a valuable source of nutrient copper ions for mammalian newborns.[J]. J of race Eleme Med Biol,2007,21:184-193.
    [265]Potter K N, Mockridge C, Rahman A. Disturbances in peripheral blood B cell subpopulations in autoimmune patients.[J]. Lupus,2002,11:872-877.
    [266]Holling T M, Schooten E, Van Den Elsen P J. Function and regulation of MHC calss two moleculesin T-lymphocytes:Of mice and men.[J]. Hum Immuno,2004,65 (4):282-290.
    [267]Woodland D L, Dutton R W. Heterogeneity of CD4(+) and CD8(+)T cells.[J]. Curr Opin Immunol,2003,15 (3):336-342.
    [268]Seder R A, Ahmed R. Similarities and differences in CD4 and CD8 effector and memory T cells generation. [J]. Nat Immunol Rev,2003,4 (9):835-842.
    [269]Depraetere S, Verhoye L, Lecercq G. Human B cell growth and diferentiation in the spleen of immunodeficient mice.[J]. Immunol,2001,166 (5):2929-2936.
    [270]Bonham M O, Connor J M, Hannigan B M. The immune system as a physiological indicator of marginal copper status?[J]. Br J Nutr,2002,87:393-403.
    [271]Engle T E, Fellner V, Spears J W. Copper Status, Serum Cholesterol, and Milk Fatty Acid Profile in Holstein Cows Fed Varying Concentrations of Copper.[J]. J Dairy Sci 2001,84: 2308-2313.
    [272]Gengelbach G P, Ward J D, Spears J W. Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge.[J]. J Anim Sci 1998,75:1112-1118.
    [273]Prohaska J R, Lukasewycz O A. Copper deficiency suppresses the immune response of mice.[J]. Science,1981,213:559-561.
    [274]Mulhem S A, Kolter L D. Sever of marginal copper deficiency resuits in agraded reduction in immune status in mice.[J]. Journal of Nutrition,1998,11:1041-1047.
    [275]Slater T F. Free-radical mechanisms in tissue injury.[J]. Biochem J,1984,222 (1):1-15.
    [276]Barry H W, John M C. Free Radicals in Biology and Medicine.[M]. lendon:Oxford Clarendon Press.,1989.
    [277]Dizdaroglu M, Jaruga P, Birincioglu M. Free radical induced damage to DNA 1 Mechanisms and measurement.[J]. Free Radical Biology& Medicine,2002,32 (11):11102-1115.
    [278]Sargis R M, Subbaiah P V. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation.[J]. Antioid Redox Signal,2006,7:964-972.
    [279]Calabrese V, Lodi R, Tonon C. Oxidative stress,mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.[J]. J Neurol Sci,2005,233:115-122.
    [280]Clarke H E, Coates M E, Eva J K. Dietary standards for laboratory animals:report of the Laboratory Animals Centre Diets Advisory Committee.[J]. Laboratory Animals,1977,1: 1-28.
    [281]于平.超氧化物歧化酶研究进展[J].生物学通报,2006,41(1):4-7.
    [282]马森.谷胱甘肽过氧化物酶和谷胱甘肽转硫酶的研究进展[J].动物医学进展,2008,29(10):53-56.
    [283]Svetlana L S, Natalie L, Barnes M Y. Function and Regulation of Human Copper-Transporting ATPases.[J]. Physiol Rev,2007,87:1011-1046.
    [284]Terada K, Nakako T, Yang X L. Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA.[J]. J Biol Chem 1998,273: 1815-1820.
    [285]Meyer L A, Durley a P, Prohaska J R. Copper transport and metabolism are normal in aceruloplasminemic mice.[J]. J Biol Chem,2001,276:36857-36861.
    [286]杨学礼,冯娟.一氧化氮的生物效应及其作用机制的研究[J].生理科学进展,2008,39(1):91-96.
    [287]徐欧亚,王永,郑玉才.ZFX、ZFY基因与动物进化关系的分析[J].Schuan Animal and veterinary sciences,2003,30 (8):11-13.
    [288]郭小参,崔保安,陈红英.淮南猪IL-2全基因的克隆与遗传进化分析[J].华北农学报,2008.23:14-18.
    [289]吴萧,王起山,潘玉春.猪MMP9基因序列及分子进化分析[J].上海交通大学学报,2009,27:34-38.
    [290]谢成侠.中国猪种的起源和进化史[J].中国农史,1992,2:84-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700