大豆产量相关性状的遗传与稳定性分析及QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高产、稳产始终是大豆育种的主要目标,但产量相关性状遗传复杂、易受环境影响,表型选择效率不高而限制了产量相关性状的遗传改良。分子标记技术的发展使得在分子水平上对大豆产量相关性状进行遗传改良成为可能,但前提是要发现与产量相关性状紧密相关的QTL位点。
     目前,国内外有关大豆产量相关性状的QTL定位研究趋向于进行多年多点田间试验,有关大豆产量相关性状稳定性研究主要停留在传统数量遗传学研究阶段,因此,对大豆产量相关性状进行稳定性分析,并深入研究其数量遗传学特征,十分必要。本研究以中豆29和中豆32通过杂交和连续自交形成的大豆重组自交系群体为研究材料,采用植物数量性状新模型和分子标记技术为研究手段,对大豆产量相关性状进行遗传与稳定性分析及QTL定位研究,取得的主要结果如下:
     通过4种环境下的田间试验,利用数量性状主基因+多基因混和遗传模型对大豆重组自交系群体的产量相关性状进行遗传分析,结果表明:主茎节数和长分枝符合多基因模型,短分枝符合2~3对主基因+多基因模型,株高、一粒荚、三粒荚、四粒荚、单株荚数、单株粒数和每荚粒数均符合2对主基因+多基因模型,二粒荚符合3对主基因+多基因模型。对各遗传模型的一阶及二阶遗传参数的估算表明:株高、主茎节数、长分枝和短分枝的遗传主要受多基因控制,一粒荚、二粒荚、三粒荚、四粒荚、单株荚数、单株粒数和每荚粒数的遗传主要受主基因控制。
     利用SSR、AFLP、SRAP和形态标记构建了一张大豆遗传连锁图谱,该图谱包含27个连锁群,共计227个标记,遗传距离1310.88 cM,平均标记间距为5.77 cM。根据锚定的SSR标记,该图谱中的26个连锁群可以和公共图谱上相应的连锁群对应,且SSR标记在连锁群上的排列顺序和公共图谱一致,距离相当。
     采用复合区间作图法,在6种环境下对14个大豆产量相关性状进行了QTL定位,共检测到154个QTL,分布于21个连锁群中。其中位于15号(F)连锁群EA2MC8-2~Satt554标记区间的qPH-15-1; 19号(I)连锁群LS~Sat_268标记区间的qDP-19-1、qTP-19-1、qFP-19-1、qNSP-19-1和qSW-19-1在5~6种环境中均被重复检测到,且解释了较大的遗传变异,为稳定主效QTL。对QTL定位结果与模型分析结果的比较分析表明,控制相关性状的主效基因数基本相似,但QTL定位分析中检测到的主要基因的数目通常大于模型分析所检测到的主基因的数目。
     利用6种环境下估算的Shukla稳定性方差对大豆产量相关性状的稳定性进行了QTL定位分析。采用复合区间作图法,共定位到株高、长分枝等7个性状共19个QTL,分布于8、13、15等7个连锁群中。其中与株高稳定性相关的QTL共检测到2个,分布于15和20连锁群;与长分枝稳定性相关的QTL共检测到2个,分布于24号连锁群不同的标记区间;与总分枝稳定性相关的QTL共检测到3个,分布于20和26号连锁群;与三粒荚稳定性相关的QTL共检测到5个,分布于8、19和20号连锁群;与四粒荚稳定性相关的QTL共定位到2个,分布于15号和19号连锁群;与单株荚数稳定性相关的QTL共定位到1个,位于20号连锁群;与百粒重稳定性相关的QTL共定位到4个,位于13、19和26号连锁群。其中位于19号(I)连锁群的LS~Sat_268标记区间聚集了与三粒荚、四粒荚和百粒重稳定性相关的3个QTL,该区间同时也检测到了与三粒荚、四粒荚和百粒重相关的主效QTL,这可能是三粒荚、四粒荚和百粒重相关主效QTL对其性状的稳定性起到了重要作用。
     本研究构建的大豆分子连锁图谱为后续相关性状的QTL定位奠定了基础,大豆产量相关性状主效QTL的初步定位为主效QTL精细定位和分子标记辅助育种提供了依据,大豆产量相关性状稳定性QTL的初步定位为大豆的稳产育种提供了一条新的途径和方法。所获得的QTL将对大豆高产、稳产新品种的选育具有重要的理论指导意义。
High-yield and steady-yield is always the main goal of soybean breeding, but yield traits are genetic complex quantitative traits which are vulnerable to the environmental impact, phenotypic selection efficiency is not high enough to limit the yield traits’genetic improvement. With the development of molecular marker technology, it is possible to improve soybean yield traits at molecular level, but the precondition is to discover the quantitative trait loci (QTL) closely related to the yield traits.
     Presently, the researches on mapping QTLs associated with soybean yield related traits tend to conduct multi-environment field trials, while studies on stability of yield related traits stay at the traditional quantitative genetic analysis level. Therefore, it is necessary to conduct researches on stability of yield related traits and their quantitative characters. In this study, a recombinant inbred lines (RIL) population derived from the Zhongdou 29 and Zhongdou 32 cross was used, and new developed inheritance models and molecular marker technology were used to study the above aspects. The main results were as follows:
     A mixed major gene plus polygene inheritance model was used to perform the genetic analysis of twelve yield related traits in the RIL population under four environments. The joint segregation analysis results showed that: For number of nodes on main stem(NM) and number of long-branch per plant(NLB), the best fitting genetic models were polygene model; For number of short-branch per plant(NSB), the best fitting model was two or three major genes plus ploygenes model; For plant height(PH), number of one-seed pods(OP), number of three-seed pods(TP), number of four-seed pods(FP), number of pods(NP), number of seeds per plant(NS), number of seeds per pod(NSP), all of the best fitting models were two major genes plus polygenes; For number of double-seed pods(DP), the best fitting model was three major genes plus polygenes. At the same time, the 1st order parameters and the 2nd order parameters of the genetic models for the yield related traits were estimated, the results showed that PH, NM, NLB and NSB were mainly controlled by polygenes, while OP, DP, TP, FP, NP, NS and NSP were mainly controlled by major genes.
     Based on the RIL population consisting of 255 lines, a genetic linkage map of soybean genome was constructed, which consisted of 27 linkage groups with 131 simple sequence repeat (SSR) markers, 96 amplified fragment length polymorphism (AFLP) markers, 14 sequence-related amplified polymorphism (SRAP) markers and 2 classical markers. The map covered 1310.88 cM and the average distance between markers was 5.77 cM. Twenty-six linkage groups (LG) of the map fit the“Consensus Linkage Map”well both in the order of arrangement and the distances of the SSR markers.
     A total of 154 QTLs for 16 yield related traits under 6 different environments were identified by using the composite interval mapping (CIM) method. One QTL, qPH-15-1, mapped in the interval of EA2MC8-2~Satt554 on LG F, together with five QTL, qDP-19-1, qTP-19-1, qFP-19-1, qNSP-19-1 and qSW-19-1, mapped in the interval of LS~Sat_268 on LG I, were detected in at least five environments and explained most of the variation. Compared to the results in inheritance analysis, it was found that QTL analysis always detected more major genes than those of model analysis.
     Shukla’s stability variance of the RIL population and the parents under six different environments were estimated for the stability of soybean yield traits. Using CIM method, nineteen QTLs associated with stability of yield related traits were detected and located on seven linkage groups. Among which, two QTLs related to PH stability were located on LG F and LG G; two QTLs associated with NLB stability were mapped in different marker intervals on LG N; three QTLs contributed to NB stability were identified on LGG and LG O; five QTLs related to TP stability were located on LG C2, LG I and LG G; two QTLs associated to FP stability were mapped on LG F and LG I; one QTL contributed to NP stability was identified on LG G; four QTLs related to weight of 100-seeds(SW) stability were located on LG E, LG I and LG O. The marker interval LS~Sat_268 on LG I clustered three QTLs associated with TP, FP, SW stability and three major QTLs related to TP, FP, SW, the possible reason might be that the major effect QTLs for TP, FP and SW played important roles in the stability of yield related traits.
     In this study, the construction of soybean molecular linkage map established the foundation for the follow-up QTL mapping of the relevant traits, the primary QTL mapping of yield related traits provided basis for the further fine mapping of major QTLs and molecular marker-assisted breeding of the related traits. At the same time, mapping of QTLs associated with the stability of soybean yield related traits provided a new approach and methodology for soybean steady-yielding breeding. The genetic information about soybean yield related traits would provide important theoretical guide the high-yield and steady-yield soybean breeding.
引文
1 陈庆山, 张忠臣, 刘春燕, 王伟权, 李文滨. 应用 Charleston×东农 594 重组自交系群体构建SSR 大豆遗传图谱. 中国农业科学,2005,38(7):1312-1316
    2 方宣钧,吴为人,唐纪良. 作物 DNA 标记辅助育种. 北京:科学出版社,2001
    3 盖钧镒,章元明,王建康. 植物数量性状 QTL 混和遗传模型扩展至 2 对主基因+多基因时的多世代联合分析. 作物学报,2000,26:385-391
    4 盖钧镒,章元明,王建康. 植物数量性状遗传体系. 北京:科学出版社,2003
    5 郭龙彪,罗利军,邢永忠,徐才国,王一平,梅捍卫,钟代彬,应存山,石春海. 水稻汕优63 重组自交系重要农艺性状的 QTLs 和互作分析. 农业生物技术学报,2002,10(4):327-333
    6 韩龙植,乔永利,张三元,曹桂兰,叶昌荣,徐福荣,戴陆园,芮钟斗,高熙宗. 不同生长环境下水稻主要农艺性状的QTL分析. 中国农业科学,2005,38(6):1080-1087
    7 胡中立,章志宏,章元明. 质量-数量性状遗传参数估计的P1、P2、DH联合分析方法. 作物学报,2000,26:631-634
    8 胡中立,章志宏. 质量-数量性状的遗传参数估计. Ⅱ.利用 DH 群体或 RIL 群体. 武汉大学学报(自然科学版),1998,144:784-788
    9 兰进好,李新海,高树仁,张宝石,张世煌. 不同生态环境下玉米产量性状 QTL 分析. 作物学报,2005,31(10):1253-1259
    10 林忠旭,张献龙,聂以春. 新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析. 遗传学报,2004,31(6):622-626.
    11 刘大群,王恒立. 品种稳定性评价方法的比较和分析. 作物学报,1988, 14(4):290-295
    12 刘峰,陈受宜,庄炳昌. 大豆基因组 F 连锁群较高密度图谱的构建和基因定位. 自然科学进展,2000,10(11):1012-1017.
    13 刘峰,庄炳昌,张劲松,陈受宜. 大豆遗传图谱的构建和分析. 遗传学报,2000,27(11):1018-1026
    14 刘录祥,赵锁劳.作物品种的稳定性和适应性育种.陕西农业科学,1992,6:42-48
    15 刘仁虎,孟金陵. MapDraw,在 Excel 中绘制遗传连锁图的宏. 遗传,2003,25(3):317-321.
    16 马育华. 植物育种的数量遗传学基础. 江苏:江苏科学技术出版社,1982
    17 莫惠栋. 质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别. 作物学报,1993a,19(1):1-6
    18 莫惠栋. 质量-数量性状的遗传分析Ⅱ. 世代平均数和遗传方差. 作物学报,1993b,19(3):193-200
    19 彭玉华,朱健超,杨国保,袁建中. 大豆叶形分布与四粒荚. 作物学报,1994,20(4):501-503
    20 钱文成,张桂华,陈飞雪,韩毅科,陈德富,杜胜利,陈喜文. SRAP 在检测黄瓜基因组多态性中的特征. 遗传,2006,28(11):1453-1439.
    21 邱丽娟,王昌陵,周国安,陈受宜,常汝镇. 大豆分子育种研究进展. 中国农业科学,2007,40(11):2418-2436
    22 宛煜嵩. 大豆遗传图谱的构建及若干农艺性状的 QTL 定位分析. [博士学位论文]. 北京:中国农业科学院研究生院,2002
    23 王建康,盖钧镒. 利用杂种F2世代鉴定数量性状主-多基因混和遗传模型并估计其遗传效应. 遗传学报,1997a,24(5):398-404
    24 王建康,盖钧镒. 利用杂种F2世代鉴定数量性状主-多基因混和遗传模型并估计其遗传效应. 遗传学报,1997b,24:432-440
    25 王建康,盖钧镒. 数量性状主-多基因混和遗传的P1,P2,F1,F2和F2:3联合分析方法. 作物学报,1998,24(6):651-659
    26 王磊. 作物品种区域试验统计分析系统(RCTAS)简介. 中国稻米,2006,4:26-26,29
    27 王贤智,张晓娟,周蓉,沙爱华,吴学军,蔡淑平,邱德珍,周新安. 大豆重组自交系群体荚粒性状的 QTL 分析. 作物学报,2007,33(3):441-448
    28 王燕,龚义勤,赵统敏,刘广,郁樊敏,叶海龙,柳李旺. 番茄 SRAP-PCR 体系优化与品种分子鉴定. 南京农业大学学报,2007,30(1):23-29
    29 王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒. 大豆作图群体检验与调整后构建的遗传图谱. 中国农业科学,2003,36(11):1254-1260
    30 文雁成,王汉中,沈金雄,刘贵华,张书芬. 用 SRAP 标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础. 中国农业科学,2006,39(2):246-256
    31 吴金红,蒋江松,陈惠兰,王石平. 水稻稻瘟病抗性基因 Pi-2(t)的精细定位. 作物学报,2002,28(4):505-509
    32 吴晓雷,贺超英,王永军,张志永,东方阳,张劲松,陈受宜,盖钧镒. 大豆遗传图谱的构建和分析. 遗传学报,2001,28(11):1051-1061
    33 许乃银,陈旭升,狄佳春,肖松华,刘剑光. 棉花区域试验中品种稳定性分析方法探讨. 江西棉花,2004,26(4):9-13
    34 杨喆,关荣霞,王跃强,刘章雄,矵暾颍跏锩鳎窭鼍? 大豆遗传图谱的构建和若干农艺性状的 QTL 定位分析. 植物遗传资源学报,2004,5(4):309-314
    35 殷剑美,武耀廷,朱协飞,张天真. 陆地棉产量与品质性状的主基因与多基因遗传分析. 棉花学报,2003,15(2):67-72
    36 俞世蓉,吴兆苏. 小麦品种区域试验上的几个问题的探讨. 中国农业科学,1986,(3):20-24
    37 张德水,陈受宜,惠东威,庄炳昌. 栽培大豆与半野生大豆间大杂种F2群体中RFLP标记的偏分离及其形成原因的分析. 遗传学报,1997c,24:362-367
    38 张德水,董 伟,惠东威,陈受宜,庄炳昌. 用栽培大豆与半野生大豆间的杂种F2 群体构建基因组分子标记连锁框架图. 科学通报,1997,42(12):1326-1330
    39 张培通,朱协飞,郭旺珍,俞敬忠,张天真. 高产棉花品种泗棉 3 号产量及其产量构成因素的遗传分析. 作物学报,2006,32(7):1011-1017
    40 张泽民,张桂权. 水稻 S-C 座位的 PCR 标记精细定位及分子标记辅助选择. 作物学报,2001,27(6):704-709
    41 章元明,盖钧镒,戚存扣. 数量性状分离分析的精确度及其改善途径. 作物学报,2001,6: 110-116
    42 章元明,盖钧镒,王建康. 利用BB1和B2或F2群体鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 生物数学学报,2000,15(3):358-366
    43 章元明,盖钧镒,王永军. 利用P1、P2和DH或RIL群体联合分离分析的拓展. 遗传,2001,23:467-470
    44 章元明,盖钧镒. 利用 DH 或 RIL 群体检测 QTL 体系并估算其遗传效应. 遗传学报,2000b,27:634-640
    45 周新安,王贤智,吴学军,蔡淑平,沙爱华,邱德珍,张晓娟. 大豆重组自交系群体三、四粒荚变异及其与产量的关系. 中国油料作物学报,2005,27(4):22-25
    46 Akaike H. On entropy maximum principle. In: Krishnaiah P R eds. Applications of statistics. Amsterdam: North-Holland publishing company,1977,27-41
    47 Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132:1131-1139
    48 Allard R W, Bradshaw. Implications of genotype-environmental interactions in applied plant breeding. Crop Sci, 1964, 4:503-508
    49 Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. PNAS, 1996,93:15503-15507
    50 Apuya N R, Frazier Keim P, Roth E J, Lark K G. Restriction fragment length polymorphism as genetic markers in soybean (Glycine max L. Merrill.). Theor Appl Genet, 1988, 75: 889-901
    51 Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Rep,1991,9(3):208-219
    52 Babu R, Nair S K, Prasanna B M, Gupta H S. Integrating marker-assisted selection in crop breeding–Prospects and challenges. Current Science, 2004, 87:607–619
    53 Beavis W D, Keim P. Identification of quantitative trait loci that are afected by environment. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, Florida, USA, 1996,pp 123-149
    54 Becker H C, Leon J. Stability analysis in plant breeding. Plant Breeding, 1998,101:1-23
    55 Boer M P, Ter Braak C J F, Jansen R C. A penalized likelihood method for mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics, 2002, 162:951-960
    56 Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32:314-331
    57 Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C.Mapping QTL for seed protein and oil content in eight soybean populations. Crop Science, 1997,37:370-378
    58 Butruille D V, Guries R P, Osbom T C. Linkage analysis of molecular markers and quantitative trait loci in population of inbred backcross lines of Brassica napus L. Genetics,1999,153: 949-964
    59 Chang S J C, Doubler T W, Kilo V, Suttner R, Klein J, Schmidt M E, Gibson P T, Lightfoot D A. Two Additional Loci underlying Durable Field Resistance to Soybean Sudden Death Syndrome (SDS). Crop Sci,1996,36:1684-1688
    60 Chao Y T, Ukai Y. Sample size required for marker assisted selection in improving quantitative traits of self-fertilizing species. Euphytica, 2000,116:87-94
    61 Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000,100(5):712-722
    62 Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E, The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003,43:1053-1067
    63 Concibido V C, Denny R L, Lange D A, Danesh D, Orf J H, Young N D. Genome mapping on soybean cyst nematode resistance genes in Peking, PI90763 and PI88788 using DNA markers. Crop Sci, 1997, 37:258-264
    64 Concibido V C, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultival. Theor Appl Genet,2003,106(4):575-582
    65 Concibido V C, Young N D, Lange D A, Denny R L, Orf J H. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci,1996,36:1643-1650
    66 Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An intergrated genetic linkage map of the soybean genome. Crop Science,1999a,39:1464-1490
    67 Crossa J, Vargas M, van Eeuwijk FA, Jang C, Edmeades G O, Hoisington D. (1999) Interpreting genotype× environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet, 1999,99: 611-625
    68 Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theor Appl Genet, 1992,83:608-612
    69 Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386:485-488
    70 Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimural A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18:926-936
    71 Eberhart S A, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6(1):36-40
    72 Elston R C, J Steward. The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics, 1973,73:695-711
    73 Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers. Genet Res Crop Evol, 2003,50(3): 227–238
    74 Flint-Garcia S A, Darrah L L, McMullen M D, Hibbard B E, Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet, 2003, 107:1331–1336
    75 Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(5476): 85-88.
    76 Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgression. Science,2004,305:1786-1789
    77 Fridman E, Liu Y S, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics,2002,266(5):821-826
    78 Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. PNAS, 2000,97: 4718-4723
    79 Frisch M, Bohn M, Melchinger A E. Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci,1999a,39:967-975
    80 Fulton T M, Beck Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet, 1997, 95: 881-894
    81 Gai J, Wang J. Identification and estimation of a QTL model and its effect. Theor Appl Genet,1998, 97(7): 1162-1168
    82 Gurley W B, Hepburn A G, Key J L. Sequence organization of the soybean genome. Biochem Biophys Acta, 1979,561:167-183
    83 Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity,1992, 69: 315-324
    84 Han F, Ullrich S E, Clancy J A. Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Science,1999,143:113-118
    85 Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet, 1996, 92:145-150
    86 Hnetkovsky N, Chang S J C, Double T W, Gibson P T, Lightfoot D A. Genetic mapping of loci underlying field response to soybean sudden death syndrome (SDS). Crop Sci,1996, 36: 393-400
    87 Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cinazio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43:68-74
    88 Hu J, Vick B A. Target Region Amplification Polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Reporter ,2003, 21 : 289-2941
    89 Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS,2003,100(5), 2574-2579
    90 Hyne V, Kearsey M J. QTL analysis: further uses of ‘marker regression’. Theor Appl Genet,1995, 91:471-476
    91 Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet,2004,109: 552-561
    92 Jansen R C. A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet,1992,85: 252-260
    93 Jansen R C. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics, 1994,138: 871-881
    94 Jeong S C, Kristipati S, Hayes A J, Maughan P J, Noffsinger S L, Gunduz I, Buss G R, Saghai Maroof M A. Genetic and Sequence Analysis of Markers Tightly Linked to the Soybean mosaic virus Resistance Gene, Rsv3. Crop Science,2002,42:265-270
    95 Jiang C J, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics,1995,140: 1111-1127
    96 Kabelka E A, Diers B W, Fehr W R, LcRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Science,2004,44: 784-791
    97 Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introduction. Crop sci,2004,44:784-791
    98 Kearsey M J, Hyne V. QTL analysis: a simple ‘marker-regression’ approach. Theor Appl Genet, 1994, 89: 698-702
    99 Kearsy M J, Farquhar A GL. QTL analysis in plant: where are we now? Heredity, 1998, 80:137-142
    100 Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742
    101 Keim P, Schupp J M, Travis S E, Clayton K, Zahu T, Shi L, Ferreria A, Webb D M A. high-density soybean genetic map based on AFLP markers. Crop Science, 1997, 37(2):537-543
    102 Kesseli R V, Paran I, Michelmore R W. Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD markers. Genetics, 1994,136:1435-1446
    103 Knapp S J. Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci,1998,38:1164-1174
    104 Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol,2002,43 (10):1096-1105
    105 Konishi T, Yano Y, Abe K. Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theor Appl Genet ,1992, 85:419-422
    106 Lande R and Thompson R. Efficiency of marker-assisted selection in improvement of quantitative traits. Genetics,1990,124:743-756
    107 Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121: 185-199
    108 Lark K G, Weisemann J M, Matthews B E, Palmer R, Chase K, Macalma T. A genetic map of soybean(Glycine max.) using an intraspecific cross of two cultivars: 'Minsoy' and 'Noir 1'. Theor Appl Genet , 1993, 86: 901-906
    109 Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet,2004,109:658-668
    110 Lee S H, Bailey M A, Mian M A R, Carter Jr T E, Shipe E R, Ashley D A, Parrot W A, Hussey R S, Boerma H R. RFLP loci associated with soybean seed protein and oil content across population and location.Theor Appl Genet,1996,93:649-657
    111 Li J M,Thomson M,McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics,2007,168:2187-2195
    112 Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arobidopsis genomes by direct transcriptome mapping. Theor Appl Genet,2003 ,107 :168-1801
    113 Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001, 103: 455-461
    114 Lin Z , Zhang X , Nie Y, He D, Wu M. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulletin ,2003 ,48 (19) :2063-2067
    115 Liu J, Van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS, 2002,99,13302-13306
    116 Lorieux M, Goffinet B, Perrier X, Gonzalez D de L , Lanaud C. Maximum-likelihood models formapping genetic markers showing segregation distortion.1. Backcross population.Theor Appl Genet, 1995a,90:73-80
    117 Lorieux M, Perrier X, Goffinet B, Lanaud C and Fonzalez D de L. Maximun-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet, 1995b, 90:81-89
    118 Lu H.,Romeror Severson J.,Bernardo R. Chromosomal regions associated With segregation distortion in maize. Theor Appl Genet,2002,105:622-628
    119 Mackill D J,Zhang Z,Redona E D,Colowit P M. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome,1996,39:969-977
    120 Mahalingam R, Skorupska H T. DNA markers for resistance to Heterodera glycines race 3 in soybean peking. Breeding Sci, 1995, 45: 435-443
    121 Mandel J. A new analysis of variance model for non-additive data. Technometrics, 1971,13:1-18
    122 Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36(5): 1327-1336
    123 Mansur L M, Orf J H, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed trait of Soybean(Glycine max L. Merr.). Theor Appl Genet, 1993,86:907-913
    124 Mansur L M, Orf J, Lark K G. Determining the linkage of quantitative trait loci to RFLP marker using extreme phenotype of recombinant inbreds of soybean (Glycine max (L.) Merr.). Theor Appl Genet, 1993, 37: 370-378
    125 Martinez O, Curnow R N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet,1992,85: 480-488
    126 Matsushita S, Iseki T, Fukuta Y, Araki E, Kobayashi S, Osaki M and Yamagishi M. Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica, 2003, 134: 27~32
    127 Maughan P J, Saghai Maroof M A, Buss G R, Huestis G M. Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet,1996,93(3):1432-2242
    128 McCoucH S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl ,1997,14:11-13
    129 Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, CarterTE, Jr. Parrott WA, Ashley DA, HusseyR S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93:1011-1016
    130 Mian,M.A.R.,Wells R.,Carter T.E. RFLP tagging of QTLs conditioning specific leaf weight and leaf size in soybean. Crop Sci,1998b,96:354-360
    131 Moreau L, Charcosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populationsof finite size. Genetics,1998,148:1353–1365
    132 Morton N E and C J MacLean. Analysis of family resemblance. Ⅲ. Complex segregation of quantitative traits. Am J Hum Genet, 1974,26:489-503
    133 Murigneux A, Baud S, Beckert M. Molecular and morphological evaluation of doubled-haploid lines in maize.2.Comparison with single-seed descent lines. Theor Appl Genet ,1993, 87:278~287
    134 Nilsson-Ehle H. Kreuzunguntersuchungen an Hafer und Weisen. Lund, Lunds Univ. Aerskr, NF.1909
    135 Njiti V N, Meksem K, Iqbal M J, Johnson J E, Kassem M A, Zobrist K F, Kilo V Y, Lightfoot D A. Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet, 2002, 104: 294-300
    136 Olson M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science, 1989, 254(4925): 1434-1435
    137 Orf J H, Chase K, Alder F R, Mansur L M, Lark K G. Genetics of Soybean Agronomic Traits: II. Interactions between Yield Quantitative Trait Loci in Soybean. Crop sci,1999,39(6):1652-1657
    138 Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits:I.Comparison of three related recombinant inbred populations. Crop sci, 1999, 39:1642-1651
    139 Palmer R G, Hedges B R. Linkage map of soybean(Glycine max L. Merr.). In: O′Brien, S. J. (ed.) Cold Spring Harbor Laboratory Press. New York, 1987, pp. 6.139-6.148
    140 Palmer R G, kilenT C. Qualitative genetics and cytogenetics. In: Wilcox, J. R., (ed.). Soybeans: Improvement, Production, and Uses. 2nd edn. No. 16. American Society of Agronomy. Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., Madison, Wisconsin, pp. 135-209
    141 Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science,2005,45:2015-2022
    142 Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome, 1991, 34(6): 1021-1027
    143 Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparative across species, generations, and environments. Genetics,1991,127:181-197
    144 Paterson A H, Lander E S, Hewiit J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature, 1988, 335:721-726
    145 Pawlowshi W P, Torbert K A, Rines H W, Somers D A. Irregular patterns of transgene silencing in allohexaploid oat. Plant Molecular Biology, 1998, 38:597-607
    146 Pejic I, Ajmone-Marsan P, Morgante M, Kozumplik V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet,1998,97:1248-1255
    147 Pereira M G, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome,1994, 37:236~243
    148 Perkins J M and Jinks J L. Environmental and genotype-environmental components of variability. Ⅲ.Multiple lines and crosses. Heredity,1968,23:339-356
    149 Plieske J, Struss D. Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet,2001,102(5): 689-694
    150 Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D. A high-density linkage map in Brassica juncea(Indian mustard) using AFLP and RFLP markers. Theor Appl Genet, 2003,106: 607-614
    151 Prince I P, Pochard E, Tanksley S D. Construction of a molecular map of pepper and a comparison of synteny with tomato. Genome,1993, 36:404-417
    152 Reinprecht Y, Poysa V W, Yu K, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006, 49(12):1510-1527
    153 Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics,1993,134: 1277-1288
    154 Saito K,Hayano-Saito Y,Maruyama-Funatsuki W,Sato Y, Kato A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet,2004,109:515-522
    155 Schneider K A, Brothers M E, Kelly J D. Marker-assisted selection to improve drought resistance in common bean. Crop Sci,1997,37:51–60
    156 Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increase seed protein concentration in soybean. Crop sci,2000,40(5)1438-1444
    157 Shoemaker R C, Olson T C. Molecular linkage map of soybean [(Glycine max.) Merr] In: O′Brien, S. J. (ed.) Genetic maps. Cold Spring Harbor Laboratory Publisher. Cold Spring Harbor, New York, pp. 6131-6138
    158 Shoemaker R C, Specht J E. Integration of the soybean molecular and classical genetic linkage groups. Crop Science, 1995, 35:436-446
    159 Shukla G K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity,1972a,29:237-245
    160 Sibov S T, de Souza Jr C L, Garcia A A F, Garcia A F, Silva AR, Mangolin C A, Benchimol L L , de Souza A P. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas, 2003,139:96-106
    161 Silvio S,Roberto T,Elena C,Marco M, Stanislas V, Leon V B, Peter I, Keith E, Ronald L P. Toward positional cloning of Vgt1, a QTL controlling the transiton from the vegetative to the reproductive phase in maize,Plant Molecular Biology,2002,48:601-613
    162 Singh R J, Hymowitz. T. The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet, 1988, 76(5):705-711.
    163 Smalley M D, Fehr W R, Cianzio S R, Han F, Sebastian S A, Streit L G. Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Science,2004,44(2):436-442
    164 Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of soybean. Theor Appl Genet, 2004,109:122-128
    165 Specht J E, Chase K, Macrande M, Graef G L, Chun J g, Markwell J P, Germann M, Orf H H, Lark K.G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41:493-509
    166 Specht J E, Hume D J, Kumudini S V. Soybean yield potential-a genetic and physiological perspective. Crop Science, 1999, 39: 1560-1570
    167 Taamino G, Tinger S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome, 1996, 39(2): 277-287
    168 Tai George C C, Genotypic stability analysis and its application to potato regional trials. Crop Sci., 1971,11:184-190
    169 Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity,encodes the -subunit of protein kinase CK2. PNAS,2001,98,7922-7927
    170 Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet,2001,28,286-289
    171 Van Berloo R and Stam P. Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor Appl Genet,2001,102:1107-1112
    172 Van Berloo R, Stam P. Marker assisted selection in autogamous RIL populations: a simulation study. Theor Appl Genet,1998, 96:147–154
    173 Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res,1995, 23:4407-4414
    174 Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X, Cheng Z J. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects,Theor Appl Genet,2006,112:1258-1270
    175 Wang D, Arelli P R, Shoemaker R C, Diers B W. Loci underlying resistance to Race3 of soybean Cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet,2001, 103:561-566
    176 Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual, Department of Statisitcs, N.C.State University, Raleigh,N.C. 2005
    177 Wang Y G, Xing Q H, Deng Q Y, Liang F S, Yuan L P, Weng M L, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor Appl Genet,2003,107:917-921
    178 Wang Z, Weber J K, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeat. Theor Appl Genet, 1998, 88(1): 1-6
    179 Westcott B. Some methods of analyzing genotype-environment interactions. Heredity, 1986, 56:243-253
    180 Wiliams J C K, Kubelik A R, Livak K J, Rafalshi J A, Tingey S V. DNA polymorphisms amplified by arbitrary primes are useful as genetic markers. Nucl Acids Res,1990, 18(22): 6531-6535
    181 Xie C Q, Xu S Z. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity,1998,80: 489-498
    182 Xu S Z. A comment on the simple regression method for interval mapping. Genetics,1995, 141:1657-1659
    183 Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid, and recombinant inbred populations in rice ( Oryza sativa L.) . Molecular and General Genetics, 1997, 253: 535-545
    184 Yamanaka N, Watanabe S, Masaki K T, Fuchigami H H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet, 2005, 110: 634-639
    185 Yano M, katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12: 2473-2483
    186 Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997,35:145-153
    187 Yates F, Cochram W G. The analysis of groups of experiments. J Agr Sci,1938, 28:556-580
    188 Yu Y G, Saghai Maroof M A, Buss G R, Maughan P J, Tolin S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology,1994,84:60-64
    189 Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem M A, Davis G T, Schmidt M E, Lighfoot D A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Science, 2002, 42:271–277
    190 Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468
    191 Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. PNAS,USA ,1993,90: 10972-10976
    192 Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y,Chen S Y. QTL mapping of ten agronomic traits on the soybean(Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004,108(6): 1131-1139.
    193 Zhu H, Briceno G, Dovel R, Hayes P M, Liu B H, Liu C T, Ullrich S E. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor Appl Genet, 1999,98(5):772-779
    194 Zhu J, Weir B S. Mixed model approaches for the genetics of quantitative traits. In: Chen LS, Ruan SG, Zhu J (eds) Advanced topics in biomathematics: Proc Int Conf on Mathematical Biology, World Scientific Publishing Co, Singapore, 1998,pp:321-330
    195 Zou J J, Singh R J, Lee J, Xu S J, Cregan P B, Hymowotz T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet, 2003, 107(4):745-750

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700