籼爪重组自交系耐高温的生理与分子机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以籼爪亚种间杂交稻产生的重组自交系群体RIL47以及从中筛选获得的耐高温和高温敏感株系为材料,通过抽穗扬花期高温处理和自然温度对比试验,从高温对群体结实率影响、不同耐热性材料的生理物质含量动态变化、高温相关的QTL定位以及高温相关基因的分离和分析等方面,对籼爪重组自交系结实率对高温敏感的生理与分子机理进行了初步研究,获得如下研究结果:
     (1)重组自交系群体RIL47(107个株系)在自然温度下结实率表现正常,且群体结实率呈正态分布,高温使该群体结实率极显著下降;以热害指数为主要筛选指标,从该群体中获得07C1619、07C1590、07C1521、07C1706、07C1608等5个耐高温株系和07C1751、07C1710、07C1719等3个高温敏感株系,它们可以作为水稻抗高温相关方面的研究材料。
     (2)以耐热性不同的水稻株系07C1521和07C1751为材料,对高温和自然温度下穗中植物激素和脯氨酸含量动态变化进行了研究,结果表明,自然温度下随着水稻穗的抽出,穗中玉米素(ZR)、脱落酸(ABA)和游离脯氨酸(Pro)含量呈逐渐减少的趋势,而生长素(IAA)含量在此过程中先降后升再下降;与自然温度相比,抽穗扬花期高温使穗中ZR和Pro含量先升后降,使ABA含量始终增加,而对IAA含量影响较小;自然温度下,耐高温材料穗中的ZR、ABA和Pro含量都显著低于高温敏感材料,且高温下耐高温材料Pro含量变化比高温敏感材料更激烈。
     (3)以耐高温株系07C1590为材料,进行了高温诱导的基因差异表达研究,获得7个差异片段,其中5个是高温上调序列,2个为下调序列;同源性分析结果显示,e9-H、g6-H、g7-H、i9-H、k4-N等5个片段在mRNA和EST数据库中找到了高度同源的序列,但未找到高度同源蛋白;f9-H片段在EST中找到一个同源性达96.7%的未知功能序列;k7-N与编码NADH脱氢酶K亚基高度同源,通过分析,推测其功能可能与高温引起的水稻育性下降和光氧化胁迫有关。
     (4)以RIL47的111个株系为作图群体,采用SSR标记,构建了一张由61个SSR标记组成的分子连锁遗传图谱,该图谱覆盖水稻基因组12条染色体,全长2025.0 cM,标记间的平均距离为33.20 cM;偏分离分析结果表明,有43个标记发生显著或极显著偏分离,偏分离比例达到71.0%,其中30个标记偏向亲本43s,13个标记偏向亲本770;通过初步的单标记定位分析,分别检测到与自然温度结实率、高温结实率和结实率下降绝对值连锁的SSR标记若干,可靠性需要进一步验证。
In order to explore the physiological and molecular mechanism of high temperature tolerance in indica/javanica recombinant inbreed line, the studies including effect of temperature on seed set, dynamic changes of plant hormones, genes differential expression and quantitative trait loci mapping were conducted by using of population of recombinant inbreed line, named as RIL47, under the treatment of high and natural temperature at flowering stage. The detailed results are as follows:
     1. The effect of high temperature on seed set of recombinant inbreed line population RIL47 at flowering stage has been studied. The results indicated that the seed set of population RIL47 was normal in the natural environment, but decreased significantly under the high temperature. Five heat tolerant lines (07C1619,07C1590, 07C1521,07C1706 and 07C1608) and three heat sensitive lines (07C1751,07CI710 and 07C1719) were selected from the 107 lines of population RIL47 by heat injured index.
     2. The endogenous plant hormone and free proline content (Pro) in panicle of line 07C1521 and 07C1751 at flowering stage were studied under different temperature. The results indicated that the contents of ZR, ABA and Pro in panicle were reduced gradually along with development of panicle under the natural temperature, but the contents of IAA in panicle fluctuated as low-high-low pattern. The contents of ZA and Pro in panicle of both lines increased at early stage and then decreased late but the ABA content increased all the time under high temperature. However the effect of high temperature on content of IAA in panicle was small after high temperature trarment. In addition, the contents of ZR, ABA and Pro in high temperature tolerant line 07C1521 were much lower than those in high temperature sensitive line 07C1571 under natural temperature, and the changes of Pro content in line 07C1521 were much more than those in line 07C1571 under high temperature.
     3. mRNA differential display technique has been used for exploring gene differential expression of 07C1590 treated with different temperature. Seven differentially expressed DN A fragments were obtained, five of them were specially expressed under high temperature, and the rest were specially expressed under natural temperature. Results of homological analysis indicated that:e9-H, g6-H, g7-H, i9-H and k4-N were highly homologous with the sequences in databases of mRNA and EST, but highly homologous sequences were not founded in database of proteins and the function of them could not be defined now. The highly homologous sequence of f9-H was not found in database of mRNA, and a highly homologous sequence was founded in database of EST but the function was not explained. The protein sequence of k7-N was highly homologous with that of NADH dehydrogenase subunit K.
     4. The whole genome molecular linkage map of SSR markers was constructed by use of 111 lines of recombinant inbred line population RIL47 as a mapping population. The molecular map comprises 61 SSR loci which covered a total distance of 2025.0 cM and the average distance between two loci was 33.20 cM. Among these SSR markers,43 markers (71.0%) exhibited distorted segregation (p<0.05), in which 30 of them leaned to 43S, the rest deviated to 770. Several SSR loci relate to seed set have been found by single marker analysis, but their dependability need to be validated.
引文
[1]蒋开锋,郑家奎,赵甘霖,等.杂交水稻产量性状稳定性及其相关性研究[J].中国水稻科学,2001,15(1):67-69.
    [2]于淑秋.近50年我国日平均气温的气候变化[J].应用气象学报,2005,16(6):787-793.
    [3]陈超,金之庆,郑有飞,等.C02倍增时气候及其变率变化对黄淮海平原冬小麦生产的影响[J].江苏农业学报,2004,20(1):7-12.
    [4]刘敏华,黄仲青.安徽省1988年高温天气对杂交早中稻结实率的影响[J].安徽农业科学,1989(3):16-19.
    [5]夏明元,戚华雄.高温热害对四个不育系配制的杂交组合结实率的影响[J].湖北农业科学,2004,(2):21-22.
    [6]杨惠成,黄仲青,蒋之埙,等.2003年安徽早中稻花期热害及防御技术[J].安徽农业科学,2004,32(1):3-4.
    [7]刘厚敖,宋忠华,刘云开,等.湖南省高温的时空分布与水稻生产的利用对策[J].农业现代化研究,2005,26(6):453-455.
    [8]袁隆平主编.杂交水稻学[M].北京:中国农业出版社,2002.
    [9]徐春芳,夏胜平,贾先勇,等.气候因子对杂交稻金优组合结实率的影响研究[J].杂交水稻,1997,12(2):25-28.
    [10]盛婧,陈留根,朱普平,等.不同水稻品种抽穗期对高温的响应及避热的调控措施[J].江苏农业学报,2006,22(4):325-330.
    [11]童志婷,李守华,段维新,等.中稻花期致害高温主导的田间气象特征及其对不同杂交组合水稻结实的影响[J].中国生态农业学报,2008,16(5):1163-1166.
    [12]陈良碧,周广恰.光温敏核不育水稻结实率与温度相关性研究[J].杂交水稻,1992,(2):35-39.
    [13]解平强,龙国炳,李卓吾,等.亚种间杂交稻F1代结实率的气候生态条件研究初报[J].湖南农业科学,1989(3):7-8.
    [14]李会兴,涂枕梅,刘仁根.二晚旱育播扦期和穗期温度与结实率关系的研究[J].江西农业学报,1998,10(1):6-16.
    [15]吕川根,王才林,宗寿余,等.温度度对水稻亚种间杂种育性及结实率的影响[J].作物学报,2002,28(4):499-504.
    [16]曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J].作物学报,2008,34(12):2134-2142.
    [17]李贤勇,李顺武,何永歆,等.穗层自然高温对杂交水稻结实的影响[J].西南农业学报,2008,21,(1):44-47.
    [18]池忠志,姜心禄,郑家国.杂交籼稻结实率的高温响应研究初报[J].西南农业学报,2008,21,(1):235-237.
    [19]张彬,芮雯奕,郑建初,等.水稻开花期花粉活力和结实率对高温的响应特征[J].作物学报,2007,33(7):1177-1181.
    [20]唐永红,张嵩午,高如嵩,等.温度对稻米品质的时段效应分析[J].中国农业气象[J],1997,18(1):9-12.
    [21]任昌福.高温对杂交水稻开花结实期的影响[J].西南农学院学报,1984,6(1):85-30.
    [22]王光明,杨贵旭,朱自均.高低温对水稻Ⅱ优6078开花结实的影响研究[J].两南农业大学学报,1998,20(1):24-27.
    [23]朱兴明,曾庆曦,宁清利.自然高温对杂交稻开花受精的影响[J].中国农业科学,1983,16(2):37-43.
    [24]郑建初,盛婧,汤日圣,等.南京和安庆地区高温发生规律及高温对水稻结实率的影响[J].江苏农业学报,2007,23(1):1-4.
    [25]陶龙兴,谈惠娟,王熹,等.超级杂交稻国稻6号对开花结实期高温热害的反应[J].中国水稻科学,2007,21(5):518-524.
    [26]隗溟,王光明,陈国惠,等.盛花期高温对两系杂交稻两优培九结实率的影响研究[J].杂交水稻,2002,17(1):51-53.
    [27]王才林,仲维功.高温对水稻结实率的影响及其防御对策[J].江苏农业科学,2004,(1):15-18.
    [28]方先文,汤凌华,王艳平.水稻孕穗期耐热种质资源的初步筛选[J].植物遗传资源学报,2006,7(3):342-344.
    [29]龚红兵,周义文,李闯,等.高温对大面积应用杂交籼稻组合结实率的影响 [J].江苏农业科学,2008,(2):23-25.
    [30]王前和,潘俊辉,李晏斌.武汉地区中稻大面积空壳形成的原因及防止途径[J].湖北农业科学,2004,(1):27-30.
    [31]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花粉粒性状及花药显微结构的影响[J].生态学报,2008,28,(3):1089-1097.
    [32]高亮之,李林主编.水稻气象生态[M].北京:农业出版社,1992:54-66.
    [33]徐海波,王光明,隗溟,等.高温胁迫下水稻花粉粒性状与结实率的相关分析[J].西南农业大学学报,2001,23(3):205-207.
    [34]贺超兴,白书农,谭克辉.高温对光敏水稻与普通水稻结实率降低方式的分析[J].杂交水稻,1998,13(2):29-32.
    [35]黄英金,罗永锋,黄兴作,等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系[J].中国水稻科学,1999,13(4):205-210.
    [36]欧志英,林佳珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应[J].中国水稻科学,2005,19(3):249-254.
    [37]郭文善,施劲松,彭永欣,等.灌浆期高温对小麦光合产物运转的影响[J].核农学报,1998,12(1):21-27.
    [38]郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响[J].中国农业大学学报,1999,4(1):73-76.
    [39]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响[J].植物学报,2000,42(7):673-678.
    [40]王加龙,陈信波.水稻耐热性研究进展[J].湖南农业科学,2006,(6):23-26
    [41]张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展[J].杂交水稻,2005,20(1):1-5
    [42]张桂莲,陈立云,张顺堂,等.抽穗开花期高温对水稻剑叶理化特性的影响[J].中国农业科学,2007,40(7):1345-1352.
    [43]汤日圣,郑建初,陈留根,等.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响[J].植物生理与分子生物学学报,2005,31(6):657-662.
    [44]李稳香,陈立云,雷东阳,等.高温条件下杂交中稻结实率与生理生化特性变化的相关性研究[J].种子,2006,25(5):12-16.
    [45]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J].作物学报,2006,32(9):1306-1310.
    [46]刘媛媛,滕中华,王三根,等.高温胁迫对水稻可溶性糖及膜保护酶的影响研究[J].西南大学学报(自然科学版),2008,30(2):59-63.
    [47]李敏,马均,王贺正,等.水稻开花期高温胁迫条件下生理生化特性的变化及其与品种耐热性的关系[J].杂交水稻,2007,22(6):62-66.
    [48]郑小林,董任瑞.水稻热激反应的研究Ⅲ.高温对水稻幼苗叶片过氧化物酶的影响[J].湖南农业大学学报,1998,24(6):432-435.
    [49]雷东阳,陈立云,李稳香,等.杂交水稻抽穗扬花期高温对结实率及相关生理特性的影响[J].杂交水稻,2006,21(3):68-71.
    [50]汤日圣,张大栋,童红玉.高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节[J].江苏农业学报,2005,21(3):145-149.
    [51]Li T,Ltu QH,Ryu O,et al.Efect of High Temperature on Sucrose Content and Sucrose Cleaving Enzyme Activity in Rice Grain During the Filling Stage. Rice Science,2006,13(3):205-210.
    [52]任昌福,陈安和,刘保国.高温影响杂交水稻开花结实的生理生化基础[J].西南农业大学学报,1990,12(5):440-444.
    [53]郑小林,董任瑞.水稻热激反应的研究Ⅰ.幼苗叶片的膜透性和游离脯氨酸的含量变化[J].湖南农业大学学报,1997,23(2):109-112.
    [54]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻剑叶氮代谢的影响[J].杂交水稻,2007,22(4):57-61.
    [55]吕川根,宗寿余,赵凌,等.两系法杂交稻两优培九结实率稳定性及其与温度的关系[J].中国水稻科学,2003,17(4):339-342.
    [56]王丰,程方民,刘奕,等.不同温度下灌浆期水稻籽粒内源激素含量的动态变化[J].作物学报,2006,32(1):25-29.
    [57]滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响[J].作物学报,2008,34(9):1662-1666.
    [58]郑小林,董任瑞.水稻热激反应的研究Ⅱ.高温对晚稻幼苗叶片叶绿体的Hill反应及超微结构的影响[J].湖南农业大学学报,1998,24(5):351-354.
    [59]Schnettger B, Critchley C, Santore U J. Relationship between photo-inhibition of photosynthesis, DI protein turnover and chloro-plast structure:Effect of protein synthesis[J].Plant Cell Environ,1994,17:55-64.
    [60]Pastenes C,Horton P.Effect of high temperature on photosynthesis in beans.Plant Physiol.1996,112:1245-1251.
    [61]肖浪涛,王三根主编.植物生理学[M].北京:中国农业出版社,2004.
    [62]Yi T H, Mei C K,Ching H K,et al. Cadmium-induced ammonium ion accumulation of rice seedlings at high temperature is mediated through abscisic acid[J]. Plant Soil,2006,(287):267-277.
    [63]曹云英,赵华.高温胁迫下油菜素内酯对水稻幼苗的保护作用[J].中国水稻科学,2007,21(5):525-529.
    [64]Guo P G,Li R H.Effects of high nocturnal temperature on photosynthetic organization in rice leaves[J].Acta Bot Sin,2000,42(7):673-678.
    [65]Lu C QZou J S,Ikehashi H.Spikelet fertility affected by low temperature in indica-japonica hybrids of rice [J]. Japan J Trop Agr.1999,43:254-259.
    [66]Crafts-Brandner S J,Salvucci M E.Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2[J].Proc Natl Acad Sci USA,2000,(97):13430-13435.
    [67]Lander E S,Botstein D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121:185-199.
    [68]Zeng Z B.Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci[J].Proc Natl Acal Sci USA,1993,90:10972-10976.
    [69]Zeng Z B.Precision mapping of quantitative trait loci [J]. Genetics,1994,140: 745-754.
    [70]Kao C H,Zeng Z B,Teasdale R D.Multiple interval mapping for quantitative trait loci[J].Genetics,1999,152:1203-1216.
    [71]洪国藩.水稻基因组工程[M].上海:上海科学技术出版社,1999.
    [72]毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析[J].农业生物技术学报,1999,7(4):386-394.
    [73]Hyne V, Kearsey MJ, Pike D J, et al. QTL analysis:unreliability and bias in estimation procedures[J]. Molecular Breeding,1995,1:273-282.
    [74]Xiao J, Li J, Yuan L,et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics,1995,140: 745-754.
    [75]Xiao J,Li J,Yuan L,et al. Identification of quantitative trait loci controlling heading date in rice using a high density linkage map[J]. Theor Appl Genet,1996,92: 230-244.
    [76]You A, Lu X,Jin H, et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice[J]. Genetics,2006,172:1287-1300.
    [77]Kobayashi S, Fukuta Y, Yagi T, et al.Indentification and characterization of quantitative trait loci affecting spikelet number per panicle in rice(Oryza sativa)[J]. Field Crops Research,2004,89:253-262.
    [78]李仕贵,马玉清,何平,等.不同环境条件下水稻生育期和株高的QTL分析[J].作物学报,2002,28:546-550.
    [79]李杰勤,张启军,叶少平,等.四种不同QTL作图方法的比较研究[J].作物学报,2005,31:1473-1477.
    [80]Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphism of simple sequence repeat DNA in soybean[J]. Genetics,1992,132:1131-11391.
    [81]Yang G P, Saghai MA,Xu C G,et al. Comparative analysis in landraces and cultivars of rice[J]. Mol Gen Genet,1994,245:187-194.
    [82]Saghai Maroof M A, Biyashev R M, Yang G P, et al. Extraordinarily polymorphic microsatellite DNA in barley:species diversity, chromosomal loca-Tions, and population dynamics [J]. Proc Natl Acad Sci.USA,1994, 91:5466-54701.
    [83]Roder M,Plaschke J, Kienig S U,et al.Abundance variability and chromosomal location of microsatellites in wheat. Mol Gen Genet,1995,246:327-331.
    [84]Weber J L, Wong C..Mutation of human short tandem repeats. Hum Mol Genet, 1993,2:1123~1128.
    [85]张启军,叶少平,李杰勤,等.利用两个测序水稻品种构建微卫星连锁图谱[J].遗传学报,2006,33(2):152-160.
    [86]McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.) [J]. DNA Res,2002,9:199-207.
    [87]Blair M W, McCouch S R. Microsatellite and sequence tagged site markers diagnostic for the rice bacterial leaf blight resistance gene xa-5[J]. Thero Appl Genet, 1997, (94):341-349.
    [88]Sharma T R, Madhav M S, Singh B K, et al. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea [J]. Mol Gen Genomics,2005,274:569-578.
    [89]Nguyen T T, Koizumi S, La T N, et al. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188 [J]. Theor Appl Genet,2006, 113:697-704.
    [90]苏昌潮,翟虎渠,王春明,等.利用SSR定位籼稻品种Kaharamana中抗褐飞虱基因Bph9[J].遗传学报,2006,33(3):262-268.
    [91]Wang G W, He Y Q, Xu C G, et al. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice(Oryza sativa L.) [J]. Theor Appl Genet,2006,112(2):382-387.
    [92]Wan X Y, Wan J M, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects [J]. Theor Appl Genet 2006,112:1258-1270.
    [93]Ma H L, Zhang S B, Ji L, et al. Fine mapping and in silico isolation of the Euil gene controlling upper internode elongation in rice [J]. Plant Molecular Biology,2006, 60(1):87-94.
    [94]Yue B, Xue W X, Xiong L Z, et al. Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance [J]. Genetics,2006,172:1213-1228.
    [95]郝伟,金健,孙世勇,等.覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定[J].植物生理与分子生物学学报.2006, 32(3):354-362.
    [96]游均,李强,岳兵,等.水稻种子萌发和苗期ABA敏感性的QTL定位分析[J].遗传学报,2006,33(6):532-541.
    [97]万建林,翟虎渠,万建民,等.水稻耐亚铁毒QTLs的定位[J].遗传学报,2005,32(11):1156-1166.
    [98]Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci USA,1997,94(17):9226-9231.
    [99]郑景生,李义珍,林文雄.SSR标记定位水稻再生力和再生产量及其构成的QTL[J].分子植物育种,2004,2(3):342-347.
    [100]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reation [J].Science,1992(5072),257:967-971.
    [101]Tyagi A, Chandar A. Isolation of stress responsive Psb A gene from rice (Oryza sativa L.) using differential display [J]. India J Biochem Biophys,2006,43(4) 244-246.
    [102]陈永华,赵森,严钦泉,等.利用差异显示法研究水稻耐淹涝相关基因[J].农业生物技术学报,2006,14(6):894-898.
    [103]Watanabe H, Saigusa M, Hase S,et al. Cloning of cDNA encoding an ETR2-like protein(Os-ERL1) from deep water rice(Oryza sativa L.) and increase in its mRNA level by submergence, ethylene, and gibberellin treatments [J]. Journal of Experimental Botany,2004,55(399):1145-1148.
    [104]张弛,陈受宜DDRT-PCR技术分析在盐胁迫下水稻耐盐突变体中特异表达基因[J1.中国科学(B辑),1995,25:840-847.
    [105]Li Z Y, Chen S Y. Inducible expression of translation elongation factor 1A gene in rice seedlings in response to environmental stresses [J]. Acta Botanica Sinica,1999, 41(8):800-806.
    [106]Liu D,Zhang X, Cheng Y, et al. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.) [J]. Plant Physiol Biochem,2006,44(5/6):380-386.
    [107]周建明,朱群,白永延.稻瘟病侵染诱导的水稻早期反应基因cDNA片段克 隆与序列分析[J].植物生理学报,1999,25(2):115-120.
    [108]何祖华,董海涛,李德葆,等.水稻受稻瘟病菌诱导基因的分离和克隆[J].科学通报,1997,42(17):1874-1875.
    [109]董继新,董海涛,何祖华,等.一个水稻与稻瘟病菌(Magnaporthe grisea)互作相关新基因的克隆[J].农业生物技术学报,2001,9(1):4144.
    [110]董海涛,董继新,何祖华,等.水稻受稻瘟病菌诱导的转座类似蛋白新基因RIM2的分离与鉴定[J].农业生物技术学报,2001,9(2):113-118.
    [111]Kearsey M. J.. The principles of QTL analysis (a minimal mathematics approach)[J].Exp.Bot,1998,49(327):1619-1623.
    [112]Zhang H Y, Liu Y, Liu D C, et al. Identification of genes related to resistance to Magnaporthe grisea using differential display technique in rice [J]. Yi Chuan Xue Bao,2005,32(7):719-725.
    [113]赵莉,邓晓玲,贾显禄.稻瘟病菌激发子诱导的水稻叶片mRNA差异表达研究[J].分子植物育种,2006,4(4):535-539.
    [114]王洁,王春连,樊金娟,等.用mRNA差异显示法分离水稻抗白叶枯病相关基因[J].作物学报,2005,31(10):1373-1376.
    [115]程志强,董海涛,吴玉良,等.水稻受白叶枯病菌诱导抗性相关基因片段的克隆[J].农业生物技术学报,2000,8(1):45-48.
    [116]田翠,张涛,蒋开锋,等.水稻QTL定位研究进展[J].基因组学与应用生物学,2009,28(3):557-562.
    [117]丁秀英,张军,崔霞,等.低温胁迫下IPT诱导水稻幼苗根中的RNA差别显示分析[J].作物学报,2001,27(6):935-940.
    [118]殷奎德,张兴梅,刘世强,等.冷胁迫诱导、咖啡因抑制的水稻根新基因片段的分离及表达分析[J].生物工程学报,2002,(4):468-471.
    [119]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol,1980,(31):491-543.
    [120]黄显波,严寒,胡建林,等.高温胁迫下水稻幼苗几个相关生理指标的变化[J].长江大学学报(自然科学版),2008,5(2):50-53.
    [121]McCouch S R, Doerge R W.QTL mapping in rice[J].Trend Genet,1995,11: 482-487.
    [122]张立平,吴平,祝金明,等.利用DDRT-PCR技术分析水稻铝诱导基因的表达差异[J].中国农业科学,1997,30(5):71-74.
    [123]Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science,2002,296:79-100.
    [124]Richards RJ, Sutherland GR. Dynamic mutations:a new class of mutations causing human disease [J]. Cell,1992,70:709-712.
    [125]Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomics: survey and analysis [J]. Genome Res,2000,10:967-981.
    [126]陈庆全,余四斌,李春海,等.水稻抽穗开花期耐热性QTL的定位分析[J].中国农业科学,2008,41(2):315-321.
    [127]张涛,杨莉,蒋开锋,等.水稻抽穗扬花期耐热性的QTL分析[J].分子植物育种,2008,6(5):867-873.
    [128]朱昌兰,肖应辉,王春明,等.水稻灌浆期耐热害的数量性状基因位点分析[J].中国水稻科学,2005,19(9):117-121.
    [129]赵志刚,江玲,肖应辉,等.水稻孕穗期耐热性QTLs分析[J].作物学报,2006,32(5):640-644.
    [130]Zhang G. L., Chen L. Y., Xiao G. Y, et al. Bulked segregant analysis to detect QTL related to heat tolerance in rice(Oryza sativa L.) using SSR markers[J]. Agricultural Sciences in China,2009,8(4):482-487.
    [131]曹立勇,赵建根,占小登,等.水稻耐热性的QTL定位及耐热性与光合速率的相关性[J].中国水稻科学,2003,17(3):223-227.
    [132]曹立勇,朱军,赵松涛,等.水稻籼粳交DH群体耐热性的QTL s定位[J].农业生物技术学报,2002,10(3):210-214.
    [133]于福同,张爱民,陈受宜,等.一个高亲和力水稻根系磷转运蛋白候选基因片段的克隆[J].遗传学报,2001,28(2):144-151.
    [134]孔维文,邵敏,彭建令,等.受白叶枯病菌诱导的水稻抗病相关基因rgi97的部分序列克隆[J].南京农业人学学报,2003,26(4):36-40.
    [135]程艳军,郭士伟,高东迎,等mRNA差异显示法分离与水稻籼粳亚种间杂交稻低温敏感不育性相关的cDNA片段[J].江苏农业学报,2004,20(3):140-143.
    [136]王曼玲,PEDROR,李落叶,et al.应用基因表达芯片分析水稻高温胁迫相关基因[J].生物技术通报,2009,25(10):92-7.
    [137]Yamanouchi U.,Yano M., Lin H. X., et al. A rice spotted leaf gene,Spl 7,encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of USA,2002,99(11):7530-7535.
    [138]陈立云,熊炜,阳菊华,等.亚种间杂交稻结实率稳定性的研究[J].杂交水稻,2003,18(3):49-52.
    [139]吕川根,邹江石.两系超级杂交稻两优培九适宜种植条件的分析[J].杂交水稻,2004,19(2):45-49.
    [140]郭萌生,张红林,谢勇,等.温度条件对杂交中晚稻结实率的影响[J].中国农业气象,2008,29(3):304-307.
    [141]石春林,金之庆,郑建初,等.减数分裂期高温对水稻颖花结实率影响的定量分析[J].作物学报,2008,34(4):627-631.
    [142]岳伟,马晓群.高温对安徽省水稻汕优63结实率、千粒重的影响分析[J].中国农学通报,2009,25(18):399-402.
    [143]肖国樱,邓晓湘,唐俐,等.爪哇稻与其杂交种的性状相关性和超亲优势研究[J].中国农学通报,2001,17(3):33-35.
    [144]樊庆鲁,郭加沅,肖国樱.水稻籼爪重组自交系群体芽期耐旱性鉴定[J].广西植物,2009,29(1):74-77.
    [145]Koti S, Reddy K R, Reddy V, et al. Interactive effects of carbon dioxide, temperature, and ultraviolet-b radiation on soybean(Glycine max L.)flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany,2005,56:725-736.
    [146]Matsui T, Omasa K. Rice(Oryza sativa L.) cultivars tolerant to high temperature at flowering:anther characteristics. Annals of Botany,2002,89:683-687.
    [147]Hsu Y T, Kuo M C, Kao C H, et al. Cadmium-induced ammonium ion accumulation of rice seedlings at high temperature is mediated through abscisic acid. Plant Soil,2006(287):267-277.
    [148]Tang R S, Zheng J C, Jin Z Q, et al. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice(Oryza sativa L.). Plant Growth Regulation,2008,54(1):37-43.
    [149]萧浪涛,王三根.植物生理学实验技术[M].第1版.北京:中国农业出版社,2005:169-174.
    [150]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].第1版.北京:科学出版社,1999:303.
    [151]Prasad PV, Bootek J, Allen L H, etal. Species, ecotype and cultivar differences in spikelet fertility stress[J]. Field Crops Research,2006,95:398-411.
    [152]Matsui T, Kobayasi K M, Hasegawa T. Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales[J]. Australia Plant Prod Sci,2007,10:57-64.
    [153]李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开及授粉量的影响[J].作物学报,2005,31(1):134-136.
    [154]谢晓金,李秉柏,申双和,等.抽穗期高温胁迫对水稻花粉活力与结实率的影响[J].江苏农业学报,2009,25(2):238-241.
    [155]王兰,龙云铭,刘耀光.一种用于PCR的植物基因组DNA快速制备方法[J].分子植物育种,2009,7(2):425-428.
    [156]李拥军,敖红,孙桂金.mRNA差异显示技术中特异条带回收方法的比较[J].生物技术,2005,15(3):43-44.
    [157]李春峰,夏庆友,周泽扬AL4/UAS系统在转基因技术中的应用研究进展[J].生物技术,2006,16(1):78-81.
    [158]陈永华,严钦泉,余建蒲,等mRNA差异显示技术的研究进展[J].西北农业学报,2005,(2):9-12.
    [159]Lin S K, Chang M C, Tsai Y C, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression[J].Proteomics,2005(5):2140-2156.
    [160]黄敏,王艳,潘琳,等.杂交水稻中耐热基因的筛选和验证[J].西南农业学报,2009,22(5):1199-1203.
    [161]王风华,赖钟雄,郑金贵,等.龙眼胚性愈伤组织维生素C过氧化物酶基因(apx)及NADH脱氢酶基因(nad2)部分序列的克隆[J].应用与环境生物学报, 2005,11(1):45-48.
    [162]Arora J, Nath P, Sane PV, et al. Translocation of adenine nucleotides in the mitochondria of male sterile and male fertile sorghum[J].Z Naturforsch,1993, 48(9-10):795-798.
    [163]冯冬林,陈文辉,林义章,等.大白菜胞质雄性不育线粒体基因特异分子RAPD标记及克隆[J].中国农学通报,2008,24(10):61-65.
    [164]Casano L M, Martin M, Sabater B.Hydrogen peroxide mediates the induction of chloroplastic Ndh Complex under photooxidative stress in barley. Plant Physiol,2001, 25:1450-1458.
    [165]Guera A, de Nova P G, Sabater B.Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: Changes during photomorphogenesis of chloroplasts. Plant Cell Physiol,2000,41: 49-59.
    [166]Guera A, Sabater B. Changes in the protein and activity levels of the plastid NADH-plastoquinone-oxidoreductase complex during fruit development. Plant Physiol Biochem,2002,40:423-429.
    [167]王鹏,叶济宇,沈允钢,等.烟草叶绿体NAD(P)H脱氢酶在抵御高温胁迫中的作用[J].中国科学C辑生命科学,2006,36(2):109-117.
    [168]Elstner E F. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol, 1982,33:73-96.
    [169]姚正菊,叶济宇,米华玲.高温胁迫对烟草叶绿体NADPH脱氢酶复合体活性的促进.植物生理与分子生物学学报,2003,29(5):395-400.
    [170]王关林,方宏筠主编.植物基因工程[M].北京:科学出版社,2002:742-744.
    [171]刘欣,郑文静,张少斌.水稻SSR-PCR技术反应体系的优化[J].湖北农业科学,2009,48(7):1540-1543.
    [172]王忠安.两系杂交水稻亲本间多念性的SSR分析[J].杂交水稻,2004,19(2):59-61.
    [173]肖小余,王玉平,张建勇,等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用[J].中国水稻科学,2006,20(1):1-7.
    [174]Li Y. L., Yang X. X., Zhao F. P., et al. SSR Marker Analysis on indica-japonica Differentiation of Natural Population of Oryza rufipogon in Yuanjiang, Yunan Province. Rice Science,2006,13(1):71-74.
    [175]鲍根良,小林麻子,富田桂,等.粳稻近缘品种的SSR分析.中国水稻科学,2005,19(1):21-24.
    [176]李冬波,张端品,林兴华.SSR标记在疣粒野生稻和普通栽培稻中的多态性研究[J].华中农业大学学报,2009,28(1):1-4.
    [177]时宽玉,洪德林.6个水稻杂交组合与其亲本的SSR标记多态性及其应用[J].南京农业大学学报,2005,28(4):1-5.
    [178]Lu H., Romero-Severson J., and Bernardo R., et al. Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet.,2002, 105(4):622-628.
    [179]彭勇,梁水书,王世全,等.水稻SSR标记在RI群体的偏分离分析[J].分子植物育种,2006,4(6):786-790.
    [180]Xu Y, Zhu L.,Huang N.,and McChouch S.R.,et al. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubledhaploid, and recombinant inbred populations in rice (Oryza sativa L.), Mol. Gen. Genet.,1997,253:535-545.
    [181]兰涛,郑军,吴为人,等.用微卫星标记构建两系稻培矮64s/E32的分子遗传连锁图[J].遗传,2003,25(5):557-562.
    [182]张玉山,陈庆全,吴薇,等.水稻SSR标记遗传连锁图谱着丝粒的整合及其偏分离分析[J].华中农业大学学报,2008,27(2):167-171.
    [183]陈庆全,张玉山,等.籼型水稻SSR标记遗传连锁图谱的构建及偏分离分析[J].分子植物育种,2009,7(4):685-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700