绵羊胴体成分性状QTL的元分析及相关基因的克隆、时空表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胴体成分是绵羊育种中一个非常重要的经济性状。与其它复杂的生理性状相比,表型值的测定也相对简单。因此,针对胴体成分及其相关性状的QTL定位已经有了许多报道。综合这些信息将有助于深入理解胴体成分性状的遗传变异机制。本研究对156个影响胴体成分的QTL进行了综合分析。先将原始的QTL进行映射,并用元分析法对映射后的QTL进行分析,产生了12个MQTL。这些MQTL与原始的QTL相比,定位的准确性都得到了提高。然后,对MQTL和绵羊已经定位的候选基因进行关联分析。同时,收集牛的胴体成分候选基因,通过比较基因组图定位到参考图谱中,建立与MQTL的关联。通过文献检索和收集,共检索到13篇文献,对检索到的文献进行QTL的信息收集,共收集到156个影响绵羊胴体成分的QTL,涉及9个品种,共计9127个个体。其中,影响胴体体重(CW)的QTL 12个,影响脂肪性状(FAT)的QTL 50个,影响活体体重(LW)的QTL 33个,影响肌肉性状(MUS)的QTL 61个。经映射分析,将搜集的绵羊胴体成分相关的QTL整合在一张遗传图谱上。映射后的QTL没有覆盖整个基因组,而是分布在1,2,3,4,5,6,8,11,18,20,21号染色体。并且在这些染色体上的QTL分布明显不平衡。2号和18号染色体包括了56%的QTL,2号和18号染色体均包含了25个以上的QTL,而4,8,11和21号染色体上的QTL数目都未超过3个。同时,不同染色体上的分布方式也有所不同,有的表现为簇集在一定区域内。映射后的156个QTL中,有10个是单个QTL,剩下的146个QTL经元分析,产生了12个MQTL。最准确的MQTL分别位于2号和18号染色体上,相应的CI值为4.37 cM、8.98 cM和4.35 cM。MQTL的估计CI值,降低了原始QTL的平均CI值,降低的范围为0.85~72.65 cM。QTL置信区间平均减少40.54 cM,增加了QTL定位的准确性,有利于相关候选基因的鉴定。1号染色体上共有2个元QTL,MQTL1(215.86 cM)和MQTL2(294.37 cM)。2号染色体上共有3个元QTL,MQTL3(95.41 cM)、MQTL4(143.44 cM)和MQTL5(244.58cM)。3号染色体上共有2个元QTL,MQTL6(19 cM)和MQTL7(243 cM)。5号染色体上有1个MQTL8(0.23 cM)。6号染色体上有1个元QTL9(1.06 cM)。18号染色体上共有2个元QTL,MQTL10(76.18 cM)和MQTL11(100.4 cM)。20号染色体上有1个元QTL12(65.26cM)。根据报道的结果,经映射到参考图谱后,有两个已知的绵羊候选基因与MQTL关联。牛基因组中控制胴体成分性状的基因13个,使用虚拟绵羊图谱,3个基因与元QTL存在关联关系。选择与MQTL4关联最紧密的肌肉生成抑制素(MSTN),以及没有与任何MQTL关联的生肌决定因子(MRF)家族作为功能候选基因。采用荧光定量PCR技术,检测了MSTN和MRF家族在出生后绵羊肌肉中的表达方式及表达的组织特异性,以确定这些基因在胴体组成中的具体功能。荧光定量结果表明:肌肉组织中MSTN mRNA的表达量显著高于大脑、心脏和肝脏组织(P<0.05)。肝脏组织中MSTN mRNA的表达量显著低于肌肉和大脑组织(P<0.05)。大脑组织和心脏组织间MSTN mRNA的表达量差异不显著。出生后到60日龄背最长肌中MSTN mRNA的表达量不断下降,60日龄时最低,60日龄到105日龄开始上升。105日龄到195日龄保持在一个相对稳定的平台期。之后又开始下降。MRF家族仅在骨骼肌中表达,在非肌肉组织均不表达。在所研究的出生后的肌肉发育过程中,MYOD、MYOG和MYF5在出生不久的骨骼肌中表达量很高,但随年龄的增长,处于不断的减少中,虽然,MYF6 mRNA的表达量105日龄最高,但差异不显著。同时MYF6在研究的整个过程中,表达量没有呈一个固定的变化趋势,基本维持衡定。这一结果表明,MYF6在维持成年肌肉中发挥作用。MYOD、MYOG、MYF5和MYF6的差异表达可能是控制不同肌细胞发育和肌纤维类型的重要方式。同时,采用RT-PCR方法,得到了MYOG和MYF6的CDS全序列。绵羊MYOG基因CDS区核苷酸序列与普通牛之间的同源性为96%。而绵羊MYF6基因CDS区核苷酸序列与普通牛之间的同源性高达99%。
     本研究筛选出了5个与MQTL关联的候选基因,这些基因可能具有较大的研究价值。结果表明,结合元分析法和比较基因组图是对所研究性状进行新候选基因鉴定的有效方法。另外,MQTL附近的标记有助于标记辅助选择。
Carcass composition is one of the most important economical traits in sheep breeding.It is also relatively easy to score when compared to other physiological traits that require heavy experimentation,so that several studies have addressed QTL mapping populations.Synthesizing this information provides a unique opportunity to understand the genetic variation of carcass composition within a large range of diversity.Genetic architecture of carcass composition in sheep was addressed by synthesizing a total of 156 quantitative trait Loci(QTL) available for this trait. These were analyzed first with a projection,and then with a meta-analysis method that yielded a synthetic genetic model with 12 consensus QTL.Meta-analysis led in this case to an increase in the precision in QTL position estimation,when compared to initial QTL position within the corresponding region.The MQTL were compared first to the positions of the few carcass composition candidate genes that have been mapped in sheep.We then projected cattle candidate genes onto the sheep genome using a comparative mapping,analyzed the association of QTL with candidate genes.A total of 156 QTL from 13 studies.Collectively,these studies include data from 9 different breeds and 9127 individual animals.12 were carcass weight(CW),50 were fatness (FAT),33 were live weight(LW),61 were muscle(MUS).A total of 156 QTL have been projected onto the reference map.The QTL for carcass composition are not distributed within the whole sheep genome.All the QTL project to 1,2,3,4,5,6,8,11,18,20 and 21 chromosomes.There was a significant imbalance in QTL breakdown between the 11 chromosomes.Chromosome 2 and 18 together accounted for 56%of QTL.Each 2 and 18 chromosome contained more than 25 QTL, but otherwise chromosome 4,8,11 and 21 contained no more than three QTL.Individual QTL clearly be pooled in one cluster.Of the 156 QTL that could be projected on the reference map,10 were alone in the linkage group,so 146 were candidates for aggregation in the so-called MQTL using a meta-analysis approach.Meta-analysis resulted in 12 MQTL.The most accurate MQTL were located on 2 and 18 chromosomes,with CI values of 4.37 cM,8.98 cM and 4.36 cM, respectively.With respect to the reduction in the length from mean initial to meta-QTL CI,the gain in accuracy ranged from 0.85 cM-72.65 cM.Therefore increases the precision of QTL mapping,which facilitates the identification of relevant candidate genes.Chromosome 1 has been identified two MQTL,MQTL1(215.86 cM) and MQTL2(294.37 cM).Chromosome 2 has been identified three MQTL,MQTL3(95.41 cM),MQTL4(143.44 cM) and MQTL5(244.58 cM). Chromosome 3 has been identified two MQTL,MQTL6(19 cM) and MQTL7(243 cM). Chromosome 5 and Chromosome 6 have been identified only one MQTL,MQTL8(0.23 cM) and QTL9(1.06 cM),respectively.Chromosome 18 has been identified two MQTL,MQTL10(76.18 cM)和MQTL 11(100.4 cM).Chromosome 20 has been identified one MQTL,QTL 12(65.26 cM). Loci involved in carcass composition defined by the meta-analysis method are associated with only two sheep genes already know.We then projected 13 cattle candidate genes onto "Virtual Sheep Genome".This yielded 3 associations between sheep QTL and genes involved in carcass composition in cattle.The Myostatin(MSTN) which was associated the MQTL4 and the myogenic regulator factors(MRFs) which were not associated the MQTL were selected as candidate genes. To investigate the muscle developmental and organizational expression patterns of Myostatin (MSTN),myogenic determining factor(MYOD),myogenin(MYOG),myogenic factor5(MYF5) and myogenic factor5(MYF5),Real-time fluorescence quantitative PCR was applied.Understanding how these factors function requires a detailed expression of these factors in postnatal sheep muscle. Results showed that:the expression level of MSTN mRNA in skeletal muscle was significantly higher than cerebrum,heart and liver(P<0.05).The expression level of MSTN mRNA in liver was significantly lower than cerebrum and skeletal muscle(P<0.05).The expression level of MSTN mRNA in cerebrum and heart were no significantly difference.After birth,MSTN mRNA abundance gradually decreased to its lowest level of expression when sheep were 60 days,but returned back to peak between 60 days and 105 days.And then plateaued between 105 days and 195 days.Thereafter,mRNA decreased again.We here report that MYOD,MYOG and MYF5 transcripts are expressed at high levels in the longissimus of newborn lamb and their level of expression continuously declines throughout postnatal life.MYF6 transcript,on the other hand,is present at a constant level through the life span of the study.This result indicated that this level of MYF6 expression is maintained in the adult.Differences in the expression patterns for MYF5, MYOD,MYOG and MYF6 between skeletal muscle development suggest that the relative timing of expression for each muscle regulatory factor may control the distinct phenotypes associated with myotomal myocytes and multinucleate myofibers.And we obtained the corresponding complete CDS sequences in sheep by RT-PCR method.The homology of MYOG and MYF6 nucleotide sequences between Bos Taurus and sheep were 96%and 99%,respectively.
     These results highlight five possible candidate genes which associated with MQTL for sheep carcass composition.Results suggest that the combination of meta-analysis within a species of interest and comparative genome map can be an efficient strategy for identifying new candidate genes for trait variation.Markers at this MQTL should prove helpful in marker-assisted selection.
引文
[1]Bradford G.E.Selection for reproductive efficiency[J].Sheep Goat Res J.2002;17:6-10.
    [2]Montgomery G.W.,Galloway S.M.,Davis G.H.,et al.Genes controlling ovulation rate in sheep[J].Reproduction.2001;121:843-852.
    [3]Waldron D.F.Strategies for genetic improvement of carcass value in lambs[J].Sheep Goat Res J.2002;17:33-37.
    [4]Tatum J.D.,Savell J.W.,Cross H.R.,et al.A national survey of lamb carcass cutability traits[J].SID Res J.1989;5:23-31.
    [5]Jones K.G.Trends in the US sheep industry JR].Agriculture Information Bulletin-United States Department of Agriculture.2004.
    [6]Field R.A.,Whipple G.The relation of slaughter and carcass weights to production and processing efficiency and market acceptability[J].Sheep & Goat Research Journal.1998;14:98-105.
    [7]Jeremiah L.E.,Tong A.K.W.,Gibson L.L.The influence of lamb chronological age,slaughter weight and gender on consumer acceptance[J].Sheep and goat research journal.1998;14:206-213.
    [8]Beermann D.H.,Robinson T.F.,Hogue D.E.Impact of composition manipulation on lean lamb production in the United States[J].Journal of animal science.1995;73:2493-2502.
    [9]Sillence M.N.Technologies for the control of fat and lean deposition in livestock[J].The Veterinary Journal.2004;167:242-257.
    [10]Fulton T.M.,Beck-Bunn T.,Emmatty D.,et al.QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species[J].TAG Theoretical and Applied Genetics.1997;95:881-894.
    [11]Weintraub H.,Tapscott S.J.,Davis R.L.,et al.Activation of muscle-specific genes in pigment,nerve,fat,liver,and fibroblast cell lines by forced expression of MyoD[J].Proceedings of the National Academy of Sciences.1989;86:5434-5438.
    [12]McIntyre C.L.,Hermann S.M.,Casu R.E.,et al.Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum[J].TAG Theoretical and Applied Genetics.2004;109:875-883.
    [13]严建兵,汤华,黄益勤,等.玉米和水稻重要性状QTL的比较研究[J].遗传学报.2004:31:1401-1407.
    [14]Chardon F.,Virlon B.,Moreau L.,et al.Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J].Genetics.2004;168:2169-2185.
    [15]Buske B.,Sternstein I.,Brockmann G.QTL and candidate genes for fecundity in sows[J].Animal reproduction science.2006;95:167-183.
    [16]Khatkar M.S.,Thomson P.C.,Tammen I.,et al.Quantitative trait loci mapping in dairy cattle:review and meta-analysis[J].Genet Sel Evol.2004;36:163-190.
    [17]Goffinet B.,Gerber S.Quantitative Trait Loci A Meta-analysis[J].Genetics.2000;155:463-473.
    [18]Andersson L.,Archibald A.,Ashburner M.,et al.Comparative genome organization of vertebrates.The First International Workshop on Comparative Genome Organization[J].Mammalian genome:official journal of the International Mammalian Genome Society.1996;7:717.
    [19]Womack J.E.,Johnson J.S.,Owens E.K.,et al.A whole-genome radiation hybrid panel for bovine gene mapping[J].Mammalian genome.1997;8:854-856.
    [20]Dalrymple B.,Kirkness E.,Nefedov M.,et al.Using comparative genomics to reorder the human genome sequence into a virtual sheep genome[J].Genome Biology.2007;8:R152.
    [21]Cockett N.E.,Smit M.A.,Bidwell C.A.,et al.The callipyge mutation and other genes that affect muscle hypertrophy in sheep[J].Genet Sel Evol.2005;37:S65-S81.
    [22]Hagen I.J.,Zadissa A.,McEwan J.C.,et al.Molecular and bioinformatic strategies for gene discovery for meat traits:a reverse genetics approach[J].Australian Journal of Experimental Agriculture.2005;45:801-808.
    [23]Ibeagha-Awemu E.M.,Kgwatalala P.,Zhao X.A critical analysis of production-associated DNA polymorphisms in the genes of cattle,goat,sheep,and pig[J].Mammalian genome:official journal of the International Mammalian Genome Society.2008.
    [24]Moody D.E.,Pomp D.,Barendse W.Linkage mapping of the bovine insulin-like growth factor-1receptor gene[J].Mammalian genome:official journal of the International Mammalian Genome Society.1996;7:168.
    [25]Marcq F.,Elsen J.M.,El Barkouki S.,et al.Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep[J].Animal Genetics.1998;29:52.
    [26]Borello U.,Coletta M.,Tajbakhsh S.,et al.Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos[J].Development.1999;126:4247-4255.
    [27]Muroya S.,Nakajima I.,Chikuni K.Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles[J].Zoological science.2002;19:755.
    [28]Page B.T.,Casas E.,Heaton M.P.,et al.Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle[J].Journal of animal science.2002;80:3077.
    [29]Friday B.B.,Mitchell P.O.,Kegley K.M.,et al.Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD[J].Differentiation.2003;71:217.
    [30]Xue K.,Chen H.,Wang S.,et al.Effect of genetic variations of the POU1F1 gene on growth traits of Nanyang cattle[J].Acta Genetica Sinica.2006;33:901-907.
    [31]Barendse W.,Harrison B.E.,Hawken R.J.,et al.Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle[J].Genetics.2007;176:2601.
    [32]储明星.Booroola羊Fec^B基因图谱研究进展[J].中国草食动物.2001;3:43-46.
    [33]Haley C.S.,Knott S.A.,Elsen J.M.Mapping quantitative trait loci in crosses between outbred lines using least squares[J].Genetics.1994;136:1195-1207.
    [34]徐宁迎,傅衍.家畜数量性状基因位点定位的常用统计方法[J].浙江农业科学.2000:146-149.
    [35]王勇强,张沅.家畜数量性状基因定位研究进展[J].中国畜牧杂志.2000;36:41-42.
    [36]Andersson-Eklund L.,Marklund L.,Lundstrom K.,et al.Mapping quantitative trait loci for carcass and meat quality traits in a wild boar x Large White intercross[J].Am Soc Animal Sci;1998:694-700.
    [37]Crawford A.M.,Dodds K.G.,Ede A.J.,et al.An autosomal genetic linkage map of the sheep genome [J].Genetics.1995;140:703-724.
    [38]Galloway S.M.,Hanrahan V.,Dodds K.G.,et al.A linkage map of the ovine X chromosome[J].Genome Research.1996;6:667.
    [39]De Gortari M.J.,Freking B.A.,Kappes S.M.,et al.Extensive genomic conservation of cattle microsatellite heterozygosity in sheep[J].Animal Genetics.1997;28:274.
    [40]Beh K.J.,Hulme D.J.,Callaghan M.J.,et al.A genome scan for quantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep[J].Animal Genetics.2002;33:97.
    [41]Woolaston R.R.,Windon R.G.Selection of sheep for response to Trichostrongylus colubriformis larvae:genetic parameters[J].ANIMAL SCIENCE-GLASGOW-.2001;73:41-48.
    [42]de Gortari M.J.,Freking B.A.,Cuthbertson R.P.,et al.A second-generation linkage map of the sheep genome[J].Mammalian genome.1998;9:204-209.
    [43]Maddox J.F.,Davies K.P.,Crawford A.M.,et al.An enhanced linkage map of the sheep genome comprising more than 1000 loci[J].Cold Spring Harbor Laboratory Press;2001:1275-1289.
    [44]Beraldi D.,McRae A.F.,Gratten J.,et al.Development of a linkage map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep(Ovis aries)[J].Genetics.2006;173:1521.
    [45]朱军.面向21世纪课程教材遗传学(第三版)[M]:北京:中国农业出版社;2002.
    [46]Broad T.E.,Hayes H.,Long S.E.Cytogenetics:Physical chromosome maps[J].CAB International.1997:241-295.
    [47]Burkin D.J.,Broad T.E.,Lambeth M.R.,et al.New gene assignments using a complete,characterized sheep-hamster somatic cell hybrid panel[J].Animal Genetics.1998;29:48-54.
    [48]Sad'di-Mehtar N.,Imam-Ghali M.,Heuertz S.,et al.Sheep gene mapping by somatic cell hybridization [J].Genetics Selection Evolution.1991;23:196-200.
    [49]Segers K.,Vaiman D.,Berghmans S.,et al.Construction and characterization of an ovine BAC contig spanning the callipyge locus[J].Animal Genetics.2000;31:352.
    [50]Liu H.,Liu K.,Wang J.,et al.A BAC clone-based physical map of ovine major histocompatibility complex[J].Genomics.2006;88:88-95.
    [51]Jenkins Z.A.,Dodds K.G.,Henry H.M.,et al.QTLs for wool production traits identified in Merino x Romney backcross flock[Z].1998.
    [52]Maddox J.F.A presentation of the differences between the sheep and goat genetic maps[J].Genetics Selection Evolution.2005;37:1-10.
    [53]Chabrier P.,Gaspin C.,Schiex T.Carthagene:a maximum likelihood multiple population genetic/radiated hybrid mapping software.2000.
    [54]Collins A.,Morton M.E.Human Genome Mapping[J].Human Genome Methods.1998:241.
    [55]白文林,王杰.羊基因图谱的研究现状及展望[J].青海畜牧兽医杂志.2001;31:30-31.
    [56]Soller M.,Brody T.,Genizi A.On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines[J].TAG Theoretical and Applied Genetics.1976;47:35-39.
    [57]Edwards M.D.,Helentjaris T.,Wright S.,et al.Molecular-marker-facilitated investigations of quantitative trait loci in maize[J].TAG Theoretical and Applied Genetics.1992;83:765-774.
    [58]Tanksley S.D.,Medina-Filho H.,Rick C.M.Use of naturally occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato[J].Heredity.1982;49:11-25.
    [59]Lander E.S.,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics.1989;121:185-199.
    [60]Martinez M.L.,Vukasinovic N.,Freeman A.E.Random model approach for QTL mapping in half-sib families[J].Genetics Selection Evolution.1999;31:319-340.
    [61]Zeng Z.B.Precision mapping of quantitative trait loci[J].Genetics.1994;136:1457-1468.
    [62]Kao C.H.,Zeng Z.B.,Teasdale R.D.Multiple interval mapping for quantitative trait loci[J].Genetics.1999;152:1203-1216.
    [63]Davis R.L.,Weintraub H.,Lassar A.B.Expression of a single transfected eDNA converts fibroblasts to myoblasts[J].Cell.1987;51:987-1000.
    [64]Braun T.,Grzeschik K.H.,Bober E.The MYF genes,a group of human muscle determining factors,are localized on different human chromosomes[J].Cytogenet Cell Genet.1989;51:969-978.
    [65]Tapscott S.J.,Davis R.L.,Thayer M.J.,et al.MyoD1:a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts[J].Science.1988;242:405-411.
    [66]Scrable H.J.,Johnson D.K.,Rinchik E.M.,et al.Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11 [J]. Proceedings of the National Academy of Sciences. 1990;87:2182-2186.
    [67] Lattanzi L., Salvatori G., Coletta M., et al. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer [J]. JClin Invest. 1998;101:2119-2128.
    [68] Etzioni S., Yafe A., Khateb S., et al. Homodimeric MyoD preferentially binds tetraplex structures of regulatory sequences of muscle-specific genes [J]. Journal of Biological Chemistry. 2005;280:26805-26812.
    [69] Kocaefe Y. C., Israeli D., Ozguc M., et al. Myogenic program induction in mature fat tissue (with MyoD expression) [J]. Experimental cell research. 2005;308:300-308.
    [70] Jin X., Lee J. S., Kwak S., et al. Myogenic differentiation of p53-and Rb-deficient immortalized and transformed bovine fibroblasts in response to MyoD [J]. Molecules and Cells. 2006;21:206-212.
    [71] Bergstrom D. A., Penn B. H., Strand A., et al. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression [J]. Molecular cell. 2002;9:587-600.
    [72] Wilson E. M., Rotwein P. Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II [J]. Journal of Biological Chemistry. 2006;281:29962-29971.
    [73] Polesskaya A., Duquet A., Naguibneva I., et al. CREB-binding protein/p300 activates MyoD by acetylation [J]. Journal of Biological Chemistry. 2000;275:34359-34364.
    [74] Shi L., Zhao G., Qiu D., et al. NF90 regulates cell cycle exit and terminal myogenic differentiation by direct binding to the 3'-untranslated region of MyoD and p21WAFl/CIPl mRNAs [J]. Journal of Biological Chemistry. 2005;280:18981-18989.
    [75] Wu H. Y., Hamamori Y, Xu J., et al. Nuclear hormone receptor coregulator GRIP1 suppresses, whereas SRC1A and p/CIP coactivate, by domain-specific binding of MyoD [J]. Journal of Biological Chemistry. 2005;280:3129-3137.
    [76] Micheli L., Leonardi L., Conti F., et al. PC4 coactivates MyoD by relieving the histone deacetylase 4-mediated inhibition of myocyte enhancer factor 2C [J]. Molecular and Cellular Biology. 2005;25:2242-2259.
    [77] Langley B., Thomas M., Bishop A., et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression [J]. Journal of Biological Chemistry. 2002;277:49831-49840.
    [78] McFarlane C., Plummer E., Thomas M., et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κB-independent, FoxO1-dependent mechanism Craig McFarlane and Erin Plummer contributed equally to the manuscript [J]. Journal of cellular physiology. 2006;209:501-514.
    [79] Mal A., Harter M. L. MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis [J]. Proceedings of the National Academy of Sciences. 2003;100:1735-1739.
    [80] Mal A. K. Histone methyltransferase Suv39hl represses MyoD-stimulated myogenic differentiation [J]. The EMBO Journal. 2006;25:3323-3334.
    [81] Langen R. C. J., Van Der Velden J., Schols A., et al. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization [J]. FASEB; 2004:227-237.
    [82] Te Pas M. F. W., Soumillion A., Rettenberger G., et al. Characterization of the porcine myogenin gene locus and association between polymorphism and growth traits [J]. Proc Int Soc Anim Genet Tours, France; 1996:21 -25.
    [83] Soumillion A., Erkens J. H. F., Lenstra J. A., et al. Genetic variation in the porcine myogenin gene locus [J]. Mammalian genome. 1997;8:564-568.
    [84]Ernst C.W.,Mendez E.A.,Robic A.,et al.Rapid communication:myogenin(MYOG) physically maps to porcine chromosome 9q2.1-q2.6.1998:328-328.
    [85]Beever J.E.,Fisher S.R.,Guerin G.,et al.Mapping of eight human chromosome 1 orthologs to cattle chromosomes 3 and 16[J].Mammalian genome.1997;8:533-536.
    [86]Ryan A.M.,Schelling C.P.,Womack J.E.,et al.Chromosomal assignment of six muscle-specific genes in cattle[J].Animal Genetics.1997;28:84-87.
    [87]Yee S.P.,Rigby P.W.The regulation of myogenin gene expression during the embryonic development of the mouse[J].Genes & development.1993;7:1277-1289.
    [88]Briley G.P.,Reecy J.M.,Grant A.L.,et al.Cloning and expression of the porcine myogenin gene[J].Animal Biotechnology.1995;6:79-92.
    [89]Neville C.M.,Schmidt M.,Schmidt J.Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle:a possible role for myogenin in denervation supersensitivity[J].Cellular and molecular neurobiology.1992;12:511-527.
    [90]Nabeshima Y.,Hanaoka K.,Hayasaka M.,et al.Myogenin gene disruption results in perinatal lethality because of severe muscle defect[J].Nature.1993;364:532-535.
    [91]Hasty P.,Bradley A.,Morris J.H.,et al.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J].Nature.1993;364:501-506.
    [92]Cheng T.,Tseng B.S.,Merlie J.P.,et al.Activation of the myogenin promoter during mouse embryogenesis in the absence of positive autoregulation[J].Proceedings of the National Academy of Sciences.1995;92:561-565.
    [93]Kim S.Y.,Takahashi J.,Tsutsumi K.,et al.Function of the myogenin gene promoter in the muscular dystrophic transgenic dy/dy mouse[J].Journal of Reproduction and Development.1997;43:39-46.
    [94]Wright W.E.,Sassoon D.A.,Lin V.K.Myogenin,a factor regulating myogenesis,has a domain homologous to MyoD[J].Cell(Cambridge).1989;56:607-617.
    [95]Fujisawa-Sehara A.,Hanaoka K.,Hayasaka M.,et al.Upstream region of the myogenin gene confers transcriptional activation in muscle cell lineages during mouse embryogenesis[J].Biochemical and biophysical research communications(Print).1993;191:351-356.
    [96]Buonanno A.,Edmondson D.G.,Hayes W.P.Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice[J].Nucleic acids research.1993;21:5684-5693.
    [97]Dwyer C.M.,Fletcher J.M.,Stickland N.C.Muscle cellularity and postnatal growth in the pig[J].Am Soc Animal Sci;1993:3339-3343.
    [98]林万华,黄路生.MyoG基因对二花脸猪早期生长性状及肌肉组织学特性的影响[J].农业生物技术学报.2002;10:367-312.
    [99]马海明,柳小春,施启顺,等.猪肌细胞生成素基因3'端侧翼序列PCR-RFLP分析[J].农业生物技术学报。2005;13:493-496.
    [100]刘梅,高勤学,王林云等.申农Ⅰ号猪MyoG基因多态性位点的PCR-RFLP检测[J].上海农业学报.2003;19:80-83.
    [101]储明星,何远清,王金玉,等绵羊肌细胞生成素基因外显子1的PCR-SSCP分析[J].农业生物技术学报.2005;13:77-80.
    [102]Cepica S.,Yerle M.,Stratil A.,et al.Regional localization of porcine MYOD1,MYF5,LEP,UCP3 and LCN1 genes[J].Animal Genetics.1999;30:476-478.
    [103]Vykoukalova Z.,Knoll A.,Dvorak J.,et al.Linkage and radiation hybrid mapping of the porcine MYF6 gene to chromosome 5[J].Animal Genetics.2003;34:238-240.
    [104]Tajbakhsh S.,Rocancourt D.,Buckingham M.Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice[J].Nature.1996;384:266-270.
    [105]Chen Y.H.,Tsai H.J.Treatment with myf5-morpholino results in somite patterning and brain formation defects in zebrafish[J].ORIGINAL ARTICLE.2002;70:447-456.
    [106]Yun K.,Wold B.Skeletal muscle determination and differentiation:story of a core regulatory network and its context[J].Current opinion in cell biology.1996;8:877-889.
    [107]Kitzmann M.,Vandromme M.,Schaeffer V.,et al.cdkl-and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts:role in modulating MyoD half-life and myogenic activity[J].Molecular and Cellular Biology.1999;19:3167-3176.
    [108]Ludolph D.C.,Neff A.W.,Mescher A.L.,et al.Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage [J].Developmental biology.1994;166:18-33.
    [109]Santerre R.F.,Bales K.R.,Janney M.J.,et al.Expression of bovine myf5 induces ectopic skeletal muscle formation in transgenic mice[J].Molecular and Cellular Biology.1993;13:6044-6051.
    [110]Delfini M.C.,Duprez D.Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation,in the chick neural tube[J].Development.2004;131:713-723.
    [111]Rudnicki M.A.,Schnegelsberg P.N.,Stead R.H.,et al.MyoD or Myf-5 is required for the formation of skeletal muscle[J].Cell.75:1351-1359.
    [112]Montarras D.,Lindon C.,Pinset C.,et al.Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects[J].Biology of the Cell.2000;92:565-572.
    [113]Lindon C.,Montarras D.,Pinset C.Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts.Journal of Cell Biology.1998;140:111-118.
    [114]Dosch R.,Gawantka V.,Delius H.,et al.Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus[J].1997:2325-2334.
    [115]Jennings C.G.B.Expression of the myogenic gene MRF 4 during xenopus development[J].Developmental biology(Print).1992;150:121-132.
    [116]Saltis J.TGF-β:receptors and cell cycle arrest[J].Molecular and cellular endocrinology.1996;116:227-232.
    [117]Sherr C.J.G1 phase progression:cycling on cue[J].Cell.1994;79:551-555.
    [118]Kamanga-Sollo E.,Pampusch M.S.,White M.E.,et al.Role of insulin-like growth factor binding protein(IGFBP)-3 in TGF-β-and GDF-8(myostatin)-induced suppression of proliferation in porcine embryonic myogenic cell cultures[J].Journal of cellular physiology.2003;197:225-231.
    [119]Jeanplong F.,Sharma M.,Somers W.G,et al.Genomic organization and neonatal expression of the bovine myostatin gene[J].Molecular and Cellular Biochemistry.2001;220:31-37.
    [120]Lee S.J.,McPherron A.C.Myostatin and the control of skeletal muscle mass Commentary[J].Current opinion in genetics & development.1999;9:604-607.
    [121]Gonzalez-Cadavid N.F.,Taylor W.E.,Yarasheski K.,et al.Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting[J].National Acad Sciences;1998:14938-14943.
    [122]Marcq F.,Elsen J.M.,El Barkouki S.,et al.Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep[J].Animal Genetics.1998;29:52-53.
    [123]Ji S.,Losinski R.L.,Cornelius S.G.,et al.Myostatin expression in porcine tissues:tissue specificity and developmental and postnatal regulation[J].American Journal of Physiology- Regulatory,Integrative and Comparative Physiology.1998;275:1265-1273.
    [124]McPherron A.C.,Lawler A.M.,Lee S.J.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J].Nature.1997;387:83-90.
    [125]Sharma M.,Kambadur R.,Martthews K.G.,et al.Myostatin,a transforming growth factor-βsuperfamily member,is expressed in heart muscle and is upregulated in cardiomyocytes after infarct[J].Journal of cellular physiology.1999;180:1-9.
    [126]Kim H.S.,Liang L.,Dean R.G.,et al.Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures[J].Biochemical and Biophysical Research Communications.2001;281:902-906.
    [127]白素英,刘娣,蒋国红,等.抑肌素基因mRNA在猪肌肉组织表达差异的研究[J].畜牧兽医学报.2004;35:350-352.
    [128]Ostbye T.K.,Galloway T.F.,Nielsen C.,et al.The two myostatin genes of Atlantic salmon(Salmo salar) are expressed in a variety of tissues[J].European Journal of Biochemistry.2001;268:5249-5257.
    [129]Kerr T.,Roalson E.H.,Rodgers B.D.Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish[J].Evolution & Development.2005;7:390-400.
    [130]Carlson C.J.,Booth F.W.,Gordon S.E.Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading[J].American Journal of Physiology- Regulatory,Integrative and Comparative Physiology.1999;277:601-606.
    [131]Wehling M.,Cai B.,Tidball J.G.Modulation of myostatin expression during modified muscle use[J].The FASEB journal:official publication of the Federation of American Societies for Experimental Biology.2000;14:103-110.
    [132]Kocamis H.,McFarland D.C.,Killefer J.Temporal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken[J].Journal of cellular physiology.2001;186:146-152.
    [133]Shibata M.,Ohshima K.,Kojima T.,et al.Nucleotide sequence of myostatin gene and its developmental expression in skeletal muscles of Japanese Black cattle[J].Animal Science Journal.2003;74:383-390.
    [134]Deveaux V.,Cassar-Malek I.,Picard B.Comparison of contractile characteristics of muscle from Holstein and double-muscled Belgian Blue foetuses[J].Comparative Biochemistry and Physiology,Part A.2001;131:21-29.
    [135]Kirk S.,Oldham J.,Kambadur R.,et al.Myostatin regulation during skeletal muscle regeneration[J].Journal of cellular physiology.2000;184:356-363.
    [136]Artaza J.N.,Bhasin S.,Mallidis C.,et al.Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells[J].Journal of cellular physiology.2002;190:170-179.
    [137]Ma K.,Mallidis C.,Artaza J.,et al.Characterization of 5'-regulatory.region of human myostatin gene:regulation by dexamethasone in vitro[J].American Journal of Physiology- Endocrinology And Metabolism.2001;281:1128-1136.
    [138]Kambadur R.,Sharma M.,Smith T.P.,et al.Mutations in myostatin(GDF8) in double-muscled[J]Belgian Blue and Piedmontese cattle.Genome Research.1997;7:910-915.
    [139]Amthor H.,Huang R.,McKinnell I.,et al.The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis[J].Developmental biology.2002;251:241-257.
    [140]Mallidis C.,Bhasin S.,Matsumoto A.,et al.Skeletal muscle myostatin in a rat model of aging-associated sarcopenia[J].1999:9-1.
    [141]Welle S.,Bhatt K.,Shah B.,et al.Insulin-like growth factor-I and myostatin mRNA expression in muscle:comparison between 62-77 and 21-31yr old men[J].Experimental gerontology.2002;37:833-839.
    [142] Oldham J. M., Martyn J. A. K., Sharma M., et al. Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2001 ;280:1488-1493.
    [143] Shibata M., Matsumoto K., Aikawa K., et al. Gene expression of myostatin during development and regeneration of skeletal muscle in Japanese Black Cattle [J]. Journal of animal science. 2006;84:2983-2989.
    [144] Kocamis H., Kirkpatrick-Keller D. C., Richter J., et al. The ontogeny of myostatin, follistatin and activin-B mRNA expression during chicken embryonic developmen [J]t. Growth, development, and aging: GDA. 1999;63:143-150.
    [145] Scheuermann G. N., Bilgili S. F., Tuzun S., et al. Comparison of chicken genotypes: myofiber number in Pectoralis muscle and myostatin ontogeny [J]. Poultry science. 2004;83:1404-1412.
    [146] Mott I. W., Ivarie R. cDNA array analysis of Japanese quail lines divergently selected for four-week body weight [J]. Poultry science. 2004;83:1524-1529.
    [147] Yamanouchi K., Soeta C., Naito K., et al. Expression of myostatin gene in regenerating skeletal muscle of the rat and its localization [J]. Biochemical and Biophysical Research Communications. 2000;270:510-516.
    [148] Spiller M. P., Kambadur R., Jeanplong R, et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD [J]. Molecular and Cellular Biology. 2002;22:7066-7082.
    
    [149] Arcade A., Labourdette A., Chardon R, et al. BioMERCATOR version 2.0.
    [150] Cockett N. E., Jackson S. P., Shay T. L., et al. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers [J]. Proceedings of the National Academy of Sciences. 1994;91:3019-3023.
    [151] Nicoll G. B., Burkin H. R., Broad T. E., et al. Genetic linkage of microsatellite markers to the Carwell locus for rib-eye muscling in sheep [J]. 1998:529-532.
    [152] Walling G. A., Wilson A. D., McTeir B. L., et al. A candidate region approach allows efficient QTL detection in UK Suffolk and Texel populations [J]. 2002:19-23.
    [153] Walling G. A., Visscher P. M., Simm G., et al. Confirmed linkage for QTLs affecting muscling in Texel sheep on chromosome 2 and 18 [Z].2001.
    [154] Johnson P. L., McEwan J. C., Dodds K. G., et al. A directed search in the region of GDF8 for quantitative trait loci affecting carcass traits in Texel sheep[J]. Journal of animal science. 2005;83:1988-2000.
    [155] Broad T. E., Glass B. C., Greer G. J., et al Search for a locus near to myostatin that increases muscling in Texel sheep in New Zealand[J]. New Zealand Society of Animal Production; 1999; 2000:110-112.
    [156] Laville E., Bouix J., Sayd T., et al. Effects of a quantitative trait locus for muscle hypertrophy from Belgian Texel sheep on carcass conformation and muscularity[J]. Am Soc Animal Sci; 2004:3128-3137.
    [157] Walling G. A., Visscher P. M., Wilson A. D., et al. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations [J]. Journal of animal science. 2004;82:2234-2245.
    [158] Johnson P. L., McEwan J. C., Dodds K. G., et al. Meat quality traits were unaffected by a quantitative trait locus affecting leg composition traits in texel sheep [J]. Journal of animal science. 2005;83:2729-2735.
    [ 159] Clop A., Marcq R, Takeda H., et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep [J]. Nature genetics. 2006;38:813-818.
    [160] Karamichou E., Nute G. R., Richardson R. I., et al. Identifying QTL for meat quality and carcass composition traits in Blackface sheep [J]. British Society of Animal Science Penicuik, UK; 2005:45.
    [161] Karamichou E., Richardson R. I., Nute G. R., et al. A partial genome scan to map quantitative trait loci for carcass composition, as assessed by X-ray computer tomography, and meat quality traits in Scottish Blackface Sheep [J]. Animal Science. 2006;82:301-309.
    [162] McRae A. F., Bishop S. C., Walling G. A., et al. Mapping of multiple quantitative trait loci for growth and carcass traits in a complex commercial sheep pedigree [J]. Animal Science. 2007;80:135-141.
    [163] Beraldi D., McRae A. F., Gratten J., et al. Mapping quantitative trait loci underlying fitness-related traits in a free-living sheep population [J]. Evolution. 2007;61:1403-1416.
    [164] Shay T. L., Berghmans S., Segers K., et al. Fine-mapping and construction of a bovine contig spanning the ovine callipyge locus [J]. Mammalian genome. 2001;12:141-149.
    [165] Zhou M. L., Wu D. J., Zhang X. Y. Construction of genetic linkage map and QTL detection of chromosome 3 in sheep [J]. Yi chuan= Hereditas/Zhongguo yi chuan xue hui bian ji. 2007;29:1475-1482.
    [166] Khatib H., Leonard S. D., Schutzkus V., et al. Association of the OLR1 gene with milk composition in Holstein dairy cattle [J]. Journal of dairy science. 2006;89:1753-1760.
    [167] Vandesompele J., De Preter K., Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology. 2002;3.
    [168] Fukuhara R., Yamazaki T., Nishino T., et al. Studies on change in body composition and carcass characters of beef cattle during fattening period [R]. The Bulletin of the Chugoku National Agricultural Experiment Station B. 1970; 18:1 -10.
    [169] Mitsuhashi T., Mitsumoto M., Yamashita Y. Age-associated changes in tenderness and ether extract content of beef muscle from Japanese Black Steers [R]. Bulletin of the Chugoku National Agricultural Experiment Station (Japan). 1987.
    [170] Sharma M., Martin J. K., Jeanplong F., et al. Cloning and characterisation of the bovine myostatin promoter [J]. New Zealand Society of Animal Production; 1999; 2000:90-93.
    [171] Engelmann G. L., Boehm K. D., Birchenall-Roberts M. C, et al. Transforming growth factor-beta 1 in heart development [J]. Mechanisms of development. 1992;38:85-98.
    [172] Qian S. W., Kondaiah P., Casscells W., et al. A second messenger RNA species of transforming growth factor beta 1 in infarcted rat heart [J]. Cell Regulation. 1991;2:241.
    [173] Thompson N. L., Bazoberry F., Speir E. H., et al. Transforming growth factor beta-1 in acute myocardial infarction in rats [J]. Growth Factors. 1988;1:91-99.
    [174] Grounds M. D., Garrett K. L., Lai M. C, et al. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes [J]. Cell and tissue research. 1992;267:99-104.
    [175] Koishi K., Zhang M., McLennan I. S., et al. MYOD PROTEIN ACCUMULATES IN SATELLITE CELLS AND IS NEURALLY REGULATED IN REGENERATING MYOTUBES AND SKELETAL MUSCLE FIBERS [J]. Developmental Dynamics. 1995;202:244-254.
    [176] Beilharz M. W., Lareu R. R., Garrett K. L., et al. Quantitation of muscle precursor cell activity in skeletal muscle by northern analysis of MyoD and myogenin expression: application to dystrophic (mdx) mouse muscle [J]. Mol Cell Neurosci. 1992;3:326.
    [177] Eftimie R., Brenner H. R., Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity [J]. Proceedings of the National Academy of Sciences. 1991;88:1349-1353.
    
    [178] Siu P. M., Donley D. A., Bryner R. W., et al. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training [J]. Journal of Applied Physiology. 2004;97:277-285.
    [179] Hughes S. M., Taylor J. M., Tapscott S. J., et al. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones [J]. Development(Cambridge). 1993;118:1137-1147.
    [180] Walters E. H., Stickland N. C., Loughna P. T. MRF-4 exhibits fiber type- and muscle-specific pattern of expression in postnatal rat muscle [J]. American journal of physiology Regulatory, integrative and comparative physiology. 2000;47:1381-1384.
    [181] Voytik S. L., Przyborski M., Badylak S. F., et al. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles [J]. Developmental Dynamics. 1993;198:214-224.
    [182] Hinterberger T. J., Sassoon D. A., Rhodes S. J., et al. Expression of the muscle regulatory factor MRF 4 during somite and skeletal myofiber development. Developmental biology(Print) . 1991; 147:144-156.
    [183] Saitoh O., Fujisawa-Sehara A., Nabeshima Y. I., et al. Expression of myogenic factors in denervated chicken breast muscle: isolation of the chicken Myf 5 gene [J]. Nucleic acids research. 1993;21:2503-2509.
    [184] Musaro A., De Angelis M. G. C., Germani A., et al. Enhanced expression of myogenic regulatory genes in aging skeletal muscle [J]. Experimental cell research. 1995;221:241-248.
    [185] Montarras D., Chelly J., Bober E., et al. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis [J]. The New Biologist. 1991;3:592-600.
    [186] Mendez E. A., Ernst C. W., Rothschild M. F. Rapid communication: A novel DNA polymorphism of the porcine myogenin(MYOG) gene [J]. Journal of animal science. 1997;75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700