利用野生番茄Solanum pennellii LA716渐渗系群体进行番茄耐盐相关QTLs定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Solanum Lycopersicum)原产中南美洲,属茄科番茄属,广泛栽培于世界各地,可鲜食,也可加工成不同类型的番茄制品。盐渍化是造成土壤退化、作物减产的重要因素。培育耐盐的品种是提高盐碱地上番茄产量的有效方法。本文利用对盐敏感的栽培种番茄M82与耐盐的野生潘那利番茄S. pennellii LA716构建的渐渗系群体(introgression lines, ILs),分别对番茄芽期以及苗期的耐盐QTLs进行定位,分析了QTLs的遗传效应和互作效应;并对苗期耐盐主效QTLStq7b进行了精细定位;结合田间试验进行耐盐性鉴定筛选。研究结果对于探讨番茄耐盐机理和利用分子标记辅助选育耐盐番茄品种具有重要的理论指导意义。主要研究结果如下:
     1.番茄芽期耐盐QTLs的定位及其效应分析
     通过芽期耐盐性鉴定,定位了分布在1、2、4、5、6、8、12共7条染色体上的10个QTLs (Stq1、Stq2a、 Stq2b、Stq2c、Stq4、 Stq5、Stq6、Stq8a、Stq8b和Stq12)影响番茄芽期的耐盐性,这些QTLs均来自S. pennellii LA716。在盐胁迫条件下,这些包含QTLs的渐渗系较M82的发芽指数减少21.52~36.22%。
     这10个QTLs与来自类番茄S. lycopersicoides LA2951的3个芽期耐盐QTLs进行同位比较,只有第2条染色体上的Stq2c与来自S. lycopersicoides的St2b同位,其它QTLs均不同位。
     QTLs遗传效应分析表明,有4个QTLs (Stq1、 Stq2c、Stq5和Stq8b)表现明显的显性效应,其余6个QTLs (Stq2a、 Stq2b、Stq4、Stq6、Stq8a和Stq12)均表现隐性效应。QTLs互作分析表明呈现典型的小于加性的效应。
     2.番茄苗期耐盐QTLs的定位及其效应分析
     通过苗期耐盐性鉴定,定位了分布在2、6、7、8、10共5条染色体上的7个QTLs (Stq2a、Stq2b、Stq6a、Stq7a、Stq7b、Stq8和Stq10)影响番茄的耐盐性,这些QTLs均来自S. pennellii LA716,在盐胁迫条件下,这些包含QTLs的渐渗系可较M82的成活率提高18.9~83.8%,而包含在IL6-4与IL6-3的1个QTL (Stq6b)有待于进一步确定。
     这7个QTLs与来自类番茄S.lycopersicoides LA2951的7个苗期耐盐QTLs进行同位比较,在第2条染色体上Stq2a和St2同位,在第6条染色体上Stq6a和St6同位,其它QTLs均不同位。
     QTLs遗传效应分析表明,除Stq6b外,其余QTLs均表现明显的显性效应。QTLs互作分析表明呈现典型的小于加性的效应,但来自第7条染色体上的2个QTLs互作却表现消减效应。
     3.番茄苗期耐盐主效QTLStq7b的精细定位
     根据已定位的耐盐主效QTL所在的亚渐渗系片段IL7-5-5与M82的耐盐性差异,利用CAPS、SSR和AFLP等分子标记进行亲本间的多态性标记筛选与创制,共得到6个分子标记(3个CAPS、1个SSR和2个AFLP)与苗期耐盐主效QTL紧密连锁、可用于精细定位。
     利用M82与含苗期耐盐QTLStq7b的渐渗系IL7-5为亲本,建立1338株F2群体,进行苗期耐盐性鉴定;以IL7-5-5上的特异标记SSR285筛选1338株F2群体建立了一个255株的重组群体,再利用已获得的IL7-5-5上的另5个特异性标记,对255个重组单株进行基因型分析,建立IL7-5-5片段上更饱和的标记连锁图谱,这6个标记覆盖了整个IL7-5-5上0.9cM的染色体片段,标记间平均遗传距离0.15cM。并将苗期耐盐QTLStq7b定位在CAPS标记U231219和TG418之间,分别相距0.36和0.16cM,且与C2_At4g30580共分离,其贡献率为7.34%,加性效应5.45,LOD值2.24。
     根据Stq7b精细定位的结果,利用生物信息学的方法,以已测序的S. lycopersicum H1706全基因组序列为参考,对该区域的候选基因进行预测分析。候选基因(Solyc07g005440)和(Solyc07g005520)的分别具有典型的NAF和BTB结构域,初步推断前者在应答非生物胁迫时起着正面效应,后者在应答植物的盐胁迫,维持细胞膨压,保护细胞免受非生物胁迫中起着关键的作用。
     4.耐盐渐渗系及品系的田间筛选
     筛选出耐盐性良好,产量、单果重等性状良好的渐渗系材料1个(IL7-5);耐盐性良好,产量、单果重等性状较差的渐渗系材料3个(IL6-2、IL6-4和IL7-1);耐盐性较好,产量、单果重等性状良好的渐渗系材料2个(IL2-1-1与IL2-6-5)。从26个杂交组合中筛选出4个组合,其耐盐性好,移栽成活率和产量均高于对照。
Tomato (Solanum lycopersicum) originated from middle-south America, it was grown around the world, and can be used as fresh and processing products marketing. Soil salinization is a key factor of land degradation, leading to falling crop yields. Breeding for salt-tolerance (ST) cultivars have been recognized as an effective way to improve tomato productivity in salt-affected soil. In this paper, the introgression line population (ILs), which was developed from a salt-sensitive parent S. lycopersicum M82and a ST wild species S. pennellii LA716, was employed to identify QTLs conferring ST during seed germination and vegetative stage respectively. Meanwhile the genetic effect and interaction of some QTLs were also analyzed. The fine mapping of one major ST QTL during vegetative stage and the trial of the ST germplasm and hybrids were conducted. The main results obtained in this thesis were concluded as follows:
     1. Identification and Effect Analysis of QTLs Conferring ST during Seed Germination Through salt tolerance identification in seed germination, ten unambiguous QTLs (Stq1, Stq2a, Stq2b, Stq2c, Stq4, Stq5, Stq6, Stq8a, Stq8b and Stq12) located on Chrom.l,2,4,5,6,8and12were identified, which were responsible for controlling ST during seed germination and derived from wild relative S. pennellii LA716. The germination index decreased about21.52~36.22%as compared to the control M82under salt stress.
     Comparing these10QTLs with other3QTLs derived from S. lycopersicoides LA2951ILs, the results showed that only QTL Stq2c and QTL St2b (from S. lycopersicoides) sitting at the same position on Chrom.2.
     Genetic analysis of4QTLs (Stql, Stq2c, Stq5and Stq8b) showed a significant dominant effect, and6QTLs (Stq2a, Stq2b, Stq4, Stq6, Stq8a. and Stq12) showed a recessive effect. The interaction of QTLs presented a typically less-than-additive effect.
     2. Identification and Effect Analysis of QTLs Conferring ST during Vegetative Stage
     Through salt tolerance identification in vegetative stage, seven unambiguous QTLs (Stq2a, Stq2b, Stq6a, Stq1a, Stq7b, Stq8and Stq10) located respectively on Chrom.2,6,7,8and10were identified, which were responsible for controlling ST during vegetative stage and derived from wild relative S. pennellii LA716. The survival percentage increased by18.9-83.8%as compared to the control M82under salt stress. One QTL possibly involved in IL6-4and IL6-3needed to be confirmed in the further experiments.
     Comparing these7QTLs with other7QTLs derived from S. lycopersicoides LA2951ILs, QTL Stq2a and QTL St2, as well as QTL Stq6a and QTL St6, sat at the same position on Chrom.2and Chrom.6respectively.
     Genetic analysis of some QTLs showed a significant dominant effect with the exception of Stq6b. The interaction of QTLs presented a typically less-than-additive but two QTLs located on Chrom.7gave a reduced effect.
     3. Fine Mapping of Major ST QTLStq7b during Vegetative Stage
     Screening with PCR polymorphism molecular markers based on the ST differences between M82and IL7-5-5,6molecular markers (3CAPS,1SSR and2AFLP markers) were confirmed, which were closely linked with major ST QTLStq7b and can be used for fine mapping.
     1338F2individuals were derived from a cross of M82×IL7-5. The recombinant population of255individuals was selected via screening the1338F2individuals by SSR285, then screening the recombinant population of255individuals by others5markers. Finally, the fine mapping of QTLStq7b on IL7-5-5segment was constructed. The length of the introgressed segment was measured at0.9cM which is approximately the same as the length of IL7-5-5, and with an average genetic distance of0.15cM. ST QTLStq1b was identified in the fine mapping, its genetic distance to the maker U231219and TG418was0.36and0.16cM respectively, and co-segregating with the maker C2_At4g30580. The contribution of individual QTL to phenotypic variation was7.34%, the additive effect was5.45, and the LOD was2.24.
     Prediction of candidate genes involved in the genome sequence of Stq7b was carried out by bioinformatics based on the fine mapping and the published complete genome sequence of S. lycopersicum H1706. The candidate gene (Solyc07g005440) and (Solyc07g005520) contained a typical NAF domain and BTB domain in terminal region respectively, the former may have a positive effect on responds to abiotic signals, and the latter may have a positive effect on responds to salt stress, which play an important role in protecting cell against abiotic stress by maintaining cell turgor.
     4. Trial of the ST ILs and Hybrids in Salt-affected Soil
     Comprehensive evaluation the salt-tolerance of ILs, six ILs were selected, IL7-5showed good ST, high yield and fruit weight. IL6-2, IL6-4and IL7-1presented good ST but lower yield and fruit weight. IL2-2-2and IL2-6-5presented not best ST but high yield and fruit weight. Comparing to the M82and others3controls,4combinations performed good ST with high survival percentage and high yield were selected from26hybrids.
引文
[1]Abed S, Peter MN. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid ex-oxidation[J]. Journal of Experimental Botany,2001,52 (364):2207-2211.
    [2]Albrecht V, Ritz O, Linder S, et al. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases[J]. EMBO Journal,2001,20:1051-1063.
    [3]Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artifical chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America,,1996,93: 15503-15507.
    [4]Amor FM del, Martinez V, Cerda A. Salt tolerance of tomato plants as affected by stage of plant development[J]. HortScience,2001,36 (7):1260-1263.
    [5]Amshchenkova T, Ganal MW. Long tomato micro-satellite are predominantly associated with centromeric regions[J]. Genome,1999,42:536-544.
    [6]Archak S, Karihaloo JL, Jain A. RAPD markers reveal narrowing genetic base of Indian tomato cultivars[J]. Current Science,2002,82 (9):1139-1143.
    [7]Arens P, Odinot P, Van Heusden AW, et al. GATA and GACA repeats are not evenly distributed throughout the tomato genome[J]. Genome,1995,38 (1):84-90.
    [8]Arrillaga I, GiluMascarell R, Gisbert C, et al. Expression of the yeast HAI 2 gene in tomato increases the in vitro salt tolerance of transgenic progenies[J]. Plant Science,1998,136 (2): 219-226.
    [9]Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany,2007,59:206-216.
    [10]Asins MJ, Breto MP, Cambra M, et al. Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression[J]. Theoretical and Applied Genetics,1993,86: 737-743.
    [11]Bai Y, Feng XH, van der Hulst R, et al. A set of simple PCR markers converted from sequence specific RFLP markers on tomato chromosomers 9 to 12[J]. Molecular Breeding,2004,13 (3): 281-287.
    [12]Bai Y, Huang CC, van der Hulst R, et al. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G 1.1601 co-localize with two qualitative powdery mild resistance genes[J]. Molecular Plant-Microbe Interactions,2003,16:169-176.
    [13]Balibrea E, Parra M, Bolarin, MC, et al. PEG osmotic treatment in tomato seedlings induces salt-adaptation in adult plants[J]. Australian Journal of Plant Physiology,1999,26:781-786.
    [14]Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network[J]. Planta,2004,219:915-924.
    [15]Bematzky R, Tanksley SD. Toward a saturated linkage map in tomato based on isozymes and random eDNA sequences[J]. Genetics,1986,112:887-898.
    [16]Bennetzen JL, Freeing M. Grassesasa single genetic system:genome composition, colinearity and compatibility[J]. Trends in Genetics,1993,9:259-261.
    [17]Bernacchi D, Beck Bunn T, Eshed Y, et al. Advanced backcross QTL analysis of tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon horsutum[J]. Theoretical and Applied Genetics,1998a,97:381-397.
    [18]Bernacchi D, Beck Bunn T, Eshed Y, et al. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor ontrogressions for desirable wild QTL-alleles derived from Lycopersicon horsutum and L. pimpinellifolium[J].Theoretical and Applied Genetics,1998b,97:170-180.
    [19]Bernacchi D, Tanksly SD. An interspecific backcross of L.esculentum×L. hirsutum:Linkage analysis and a QTL study of sexual compatibility factors and floral traits[J]. Genetics,1997,147: 861-877.
    [20]Bolarin MC, Fernandez FG, Cruz V, et al. Salinity tolerance in four wild tomato species using vegetative yield salinity response curves[J]. Journal of the American Society for Horticultural Science,1991,116:286-290.
    [21]Bolarin MC, Perez-Alfocea F, Cano EA, et al. Growth, fruit yield, and ion concentration in tomato genotypes after pre-emergence and post-emergence salt treatments[J]. Journal of the American Society for Horticultural Science,1993,118:655-660.
    [22]Botstein D, White RL, Skolnick M, et al. Constrution of a genetic map in man using restiction fragment polymorphisms[J]. American Journal of Human Genetics,1980,32:314-401.
    [23]Breto MP, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species:III. detection of quantitative trait loci by means of molecular markers[J]. Theoretical and Applied Genetics,1994, 88:395-401.
    [24]Broun P, Tanksley SD. Characterization and genetic mapping of simple repeat sequences in the tomato genome[J]. Molecular and General Genetics,1996,250 (1):39-49.
    [25]Brouwer DJ, Clair DASt. Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs[J]. Theoretical and Applied Genetics, 2004,108:628-638.
    [26]Caines A, Shennan C. Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes in Ca2+use efficient[J]. Plant Physiology and Biochemistry,1999,37 (7/8):569-576.
    [27]Canady MA, Meglic V, Chetelat RT. A library of Solanum lycopersicoides introgression lines in cultivated tomato[J]. Genome,2005,48:685-697.
    [28]Cano EA, Bolarin MC, Perez-Alfocea F, et al. Effect of NaCl priming on increased salt tolerance in tomato[J]. Journal of Horticultural Science,1991,66:621-628.
    [29]Carelli BP, Gerald LTS, Grazziotin FG, et al. Genetic diversity among Brazilian cultivars landraces of tomato lycopersicon esculentum Mill, revealed by RAPD marker[J]. Genetic Resources and Corp Evolution,2006,53 (2):395-400.
    [30]Caro M, Cruz V, Cuartero J, et al. Salinity tolerance of normal-fruited and cherry tomato cultivars[J]. Plant Soil,1991,136:249-255.
    [31]Causse M, Saliba Colombani V, Lesschaeve I, et al. Genetic analysis of organoleptic quality in fresh market tomato.2. Mapping QTLs for sensory attributes[J].Theoretical and Applied Genetics,2001,102:273-283.
    [32]Cayuela E, Perez-Alfocea F, Caro M, et al Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress[J]. Physiologia Plantarum,1996,96:231-236.
    [33]Chen KY, Tanksley SD. High-resolution mapping and functional analysis of se 2.1:A major stigma exertion quantitative trait locus associated with the evolution form allogamy to autogamy in the genus Lycopersicon[J]. Genetics,2004,1563-1573.
    [34]Chunwongse J, Chunwongse C, Black L, et al. Molecular mapping of the Ph-3 gene for late blight resistance in tomato[J]. Journal of Horticultural Science & Biotechnology,2002,77: 281-286.
    [35]Collard BCY, Jahufer MZZ, Brouwer JB, et al. An introduction to markers, quantitative trait loci (QTL)mapping and marker-assisted selection for crop improvement:The basic concepts[J]. Euphytica,2005,142:169-196.
    [36]Cortina C, Culianez-Macia FA. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis [J]. Plant Science,2005,169:75-82.
    [37]Costa J, Nuez F, Anastasio G, et al. The use of Lycopersicon cheesmannii in breeding for salt tolerance tomatoes[J]. Tomato Genetics and Cooperative,1990,40:8.
    [38]Cruz V, Cuartero J, Bolarin M.C, et al. Evaluation of characters for ascertaining salt stress responses in Lycopersicon species[J] Journal of the American Society for Horticultural Science, 1990,115:1000-1003.
    [39]Cuartero J, Bolanin MC, Asins MJ, et al. Increasing salt tolerance in the tomato[J]. Journal of Experimental Botany,2006,57 (5):1045-1058.
    [40]Cuartero J, Fernandez-Munoz R. Tomato and salinity [J]. Scientia Horticulturae,1999,78: 83-125.
    [41]Cuartero J, Yeo AR, Flowers TJ. Selecion of donors for salt-tolerance in tomato using physiological traits[J]. New Phytologist,1992,121:63-69.
    [42]Dasgan HY, Aktas H, Abak K, et al. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses[J]. Plant Science,2002,163 (4):695-703.
    [43]Denhan K, Tal M. Salt tolerance in the wild relatives of the cultivated tomato:responses of Lycopercion pennellii to high salinity[J]. Irrigation Science,1978,1:71-76.
    [44]Dessalegne L, Wetten AC, Caligari PDS. Production of transgenic tomato s expressing oxalate oxidase[J]. Acta Horticulture,1997,447:457-458.
    [45]Diwan N, Fluhr R, Eshed Y, et al. Mapping of Ve in tomato:a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1[J]. Theoretical and Applied Genetics, 1999,98:315-319.
    [46]Eshed Y, Abied M, Saranga Y, et al. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii[J]. Theoretical and Applied Genetics,1992,83: 1027-1034.
    [47]Eshed Y, Zanir D. A genomic library of Lycopersicon pennellii in L. esculentum:a tool for the fine mapping of genes[J]. Euphytica,1994,79:175-179.
    [48]Eshed Y, Zanir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics,1995, 141:1147-1162.
    [49]Eshed Y, Zanir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato[J]. Genetics,1996,143:1807-1817.
    [50]Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot[J]. Journal of Experimental Botany,2005,56:703-712.
    [51]Finkers R. The genetics of Botrytis cinerea resistance in tomato[D]. Netherlands:Wageningen University,2007.
    [52]Flores P, Botella MA, Cerda A, et al. Influence of nitrate level on nitrate assimilation in tomato (.Lycopersicon esculentum) plants under saline stress[J]. Canadian Journal of Botany.2004; 82 (2):207-213.
    [53]Flores P, Carvajal M, Cerda A, et al. Salinity and ammonium/nitrate interactions on tomato plant development nutrition and metabolites[J]. Journal of Plant Nutrition,2001,24 (10):1561-1573.
    [54]Flowers TJ. Improving crop salt tolerance[J]. Journal of Experimental Botany,2004,55: 307-319.
    [55]Foolad MR. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping[J]. Genome.1999,42:727-734.
    [56]Foolad MR. Genetic analysis of salt tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill[J]. Plant Breeding,1996,116:53-58.
    [57]Foolad MR. Genetic basis of physiological traits related to salt tolerance in tornato Lycopersicon esculentum Mill[J]. Plant Breeding,1997,116:53-58.
    [58]Foolad MR. Recent advances in genetics of salt tolerance in tomato[J]. Plant Cell, Tissue and Organ Culture,2004,76:101-119.
    [59]Foolad MR, Chen FQ. RAPD markers associated with salt tolerance in an interspecific cross of tomato (Lypersicon esculentum×L. pennellii) [J]. Plant Cell Reports,1998,17:306-312.
    [60]Foolad MR, Chen FQ. RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato[J]. Theoretical and Applied Genetics,1999,99:235-243.
    [61]Foolad MR, Chen FQ, Lin GY. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato[J]. Theoretical and Applied Genetics,1998b,97: 1133-1144.
    [62]Foolad MR, Jones RA. Genetic analysis of salt tolerance during germination in Lycopersicon[J]. Theoretical and Applied Genetics,1991,81:321-326.
    [63]Foolad MR, Jones RA. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis[J]. Theoretical and Applied Genetics,1993,87:184-192.
    [64]Foolad MR, Jones RA. Parent-offspring regression estimates of heritability for salt tolerance during germination in tomato[J]. Crop Science,1992,32:439-442.
    [65]Foolad MR, Lin GY. Genetic potential for salt tolerance during germination in Lycopersicon species[J]. HortScience,1997a,32:296-300.
    [66]Foolad MR, Lin GY. Absence of a relationship between salt tolerance during germination and vegetative growth in tomato[J]. Plant Breeding,1997b 116:363-367.
    [67]Foolad MR, Zhang LP, Lin GY. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping[J]. Genome,2001,44:444-454.
    [68]Foolad MR, Zhang LP, Khan AA, et al. Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum×L. horsutum cross[J]. Theoretical and Applied Genetics,2002,104:945-958.
    [69]Foolad MR, Zhang LP, Subbiah P. Genetics of drought tolerance during seed germination in tomato:inheritance and QTL mapping[J]. Genome,2003,46:536-545.
    [70]Francis DM, Kabelka E, Bell J, et al. Resistance to bacterial canker in tomato (Lycopersicon horsutum LA407)and its progeny derived from crosses to L. esculentum[J]. Plant Disease,2001, 85:1171-1176.
    [71]Frary A, Doganlar D, Frampton A, et al. Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chrom 1[J], Genome,2003,46:235-243.
    [72]Frary A, Fulton TM, Zamir D, et al. Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae[J]. Theoretical and Applied Genetics,2004,108:485-496.
    [73]Frary A, Nesbitt TC, Grandillo S, et al. Fw2.2:a quantitative trait locus key to the evolution of tomato fruit size[J]. Science.2000,289:85-88.
    [74]Frary A, Xu Y, Liu J, et al. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments[J]. Theoretical and Applied Genetics,2005,111 (2):291-312.
    [75]Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97:4718-4723.
    [76]Fulton TM, Grandillo S, Beck Bunn T, et al. Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross[J]. Theoretical and Applied Genetics,2000,100:1025-1042.
    [77]Fulton TM, Beck Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species[J]. Theoretical and Applied Genetics,1997a,95:881-894.
    [78]Fulton TM, Nelson JC, Tanksley SD. Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, in Lycopersicon esculentum, followed through three successive backcross generations[J]. Theoretical and Applied Genetics,1997b, 95:895-902.
    [79]Fulton TM, van der Hoeven R, Eannetta NT, et al. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plant[J]. Plant cell,2002, 14:1457-1467.
    [80]Gao ZF, Sagi M, Lips SH. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (.Lycopersicon esculentum) as affected by salinity[J]. Plant Science,1998,135: 149-159.
    [81]Ghars M A, Parre E, Debez A, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ Selectivity and praline accumulation[J]. Plant Physiology,2008,165 (6):588-599.
    [82]Gisbert C, Rus AM, Bolarin MC, et al. The yeast HAL1 gene improves salt tolerance of transgenic tomato [J]. Plant Physiology,2000,123 (1):393-402.
    [83]Goldman IL, Paran I, Zamir D. Quantitative trait locus analysis of a recombinant inbred line population derived from Lycopersicon esculentum ×Lycopersicon cheesmanii cross[J]. Theoretical and Applied Genetics,1995,90:925-932.
    [84]Gorguet B, Eggink P, Ocana J, et al. Mapping and characterization of novel parthenocarpy QTLs in tomato[J]. Theoretical and Applied Genetics,2008,116:755-767.
    [85]Grandillo S, Tanksley SD. Genetic analysis of RFIPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium[J]. Theoretical and Applied Genetics,1996, 92 (8):957-965.
    [86]Greenway H, Munns R. Mechanism of salt tolerance in non-halophytes[J]. Annul Review of Plant Physiology,1980,31:149-190.
    [87]Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. Plant Cell,2001,13:1383-1400.
    [88]Gur A, Semel Y, Cahaner A, et al. Real Time QTL of complex phenotypes in tomato interspecific introgression lines[J]. Trends in Plant Science,2004,9 (3):107-109.
    [89]Haanstra JPW, Wye C, Verbakel H, et al. An integrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L. pennellii F2 populations[J]. Theoretical and Applied Genetics,1999,99 (1-2):254-271.
    [90]Halford NG, Bouly JP, Thomas M. SNF1-related protein kinases (SnRKs):regulators at the heart of the control of carbon metabolism and partitioning[J]. Advances in Botanical Research, 2000,32:405-434.
    [91]Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97:3735-3740.
    [92]Hamwieh A, Xu D. Conserved salt tolerance quantitative trait locus(QTL)in wild and cultivated soybeans[J]. Breeding Science,2008,58 (4):355-359.
    [93]Harris D, Joshi A, Khan PA, et al. On-farm seed priming in semi-arid agriculture:development and evaluation in maize, rice and chickpea in India using participatory methods[J]. Experimental Agriculture,1999,35:15-29.
    [94]Hassan AA, Al-Afifi M A, Matsuda K, et al. Screening for salinity tolerance in the genus Lycopersicon[J]. TGC,1990,40:14-15.
    [95]He C, Poysa V, Yu K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars[J]. Theoretical and Applied Genetics,2003,106:363-373.
    [96]Hilda P, Graciela R, Sergio A, et al. Salt tolerant tomato plants show increased levels of jasmonic acid[J]. Plant Growth Regulation,2003,41:149-158.
    [97]Hrabak EM, Chan CW, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology,2003,132:666-680.
    [98]Hsieh TH, Lee JT, Chang YY, et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiology,2002,130 (2):618-626.
    [99]Huang SB, Spielmeyer W, Lagudah ES, et al. A sodium transporter (HKT7) is a candidate for Naxl, a gene for salt tolerance in durum wheat[J]. Plant Physiology,2006,142 (4):1718-1727.
    [100]Jones CM, Rick CM, Adams D, et al. Genealogy and fine mapping of obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae) [J]. America Journal of Botany,2007,94: 935-947.
    [101]Jones RA. High salt-tolerance potential in Lycopersicon species during germination[J]. Euphytica,1986a,35:576-582.
    [102]Jones RA. The development of salt-tolerant tomatoes:breeding strategies[J]. Acta Hort,1986b, 190:101-114.
    [103]Johnson DW, Smith SE, Dobrenz AK. Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa[J]. Theoretical and Applied Genetics,1992,83: 833-838.
    [104]Katerji N, van Hoorn JW, Hamdy A, et al. Salt tolerance of crops according to three classification methods and examination of some hypothesis about salt tolerance[J]. Agricultural Water Manage,2001,47:1-8.
    [105]Khavarinejad RA, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars[J]. Photosynthetica,1998,35:151-154.
    [106]Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling betworks[J].Plant Physiology,2004,134:43-58.
    [107]Konieczyn A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific RCR-based markers[J]. Plant,1993,4:404-410.
    [108]Kranthi K, Mandadi, Anjali M, et al. BT2, a BTB protein, Mediates multiple responses to nutrients, stress, and hormones in Arabidopsis[J]. Plant Physiology,2009,150:1930-1939.
    [109]Ku HM, Vision T, Liu J, et al. Comparing sequenced segments of the tomato and Arabidopsis genomes:large-scale duplication followed by selective gene loss creates a network of synteny[J]. Proceedings of the National Academy of Sciences,2000,97:9121-9126.
    [110]Kwang CO, Kristine H, Maria GI, et al. Fine mapping in tomato using microsynteny with the Arabidopsis genome:the Diageotropica (Dgt) locus [J]. Genome Biology,2002,3 (9):1-11.
    [111]Labate J, Baldo AM. Tomato SNP discovery by EST mining and resequencing[J]. Molecular Breeding,2005,16 (1):343-349.
    [112]Lecomte L, Saliba-Colombani, Gautier A, et al. Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato[J]. Molecular Breeding,2004,13: 1-14.
    [113]Lee JM. Cultivation of grafted vegetables. I. Current status, grafting methods and benefits[J]. HortScience,1994,29:235-239.
    [114]Lee JT, Prasad V, Yang PT, et al. Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield[J]. Plant Cell and Environment,2003,26 (7):1181-1190.
    [115]Li YL, Marcelis LFM, Stanghellini C. Plant water relations as affected by osmotic potential of the nutrient solution and potential transpiration in tomato (Lycopersicon esculentum L.) [J]. Journal of Horticultural Science and Biotechnology,2004,79:211-218.
    [116]Lippman ZB, Semel Y, Zamir D, et al. An integrated view of quantitative trait variation using tomato interspecific introgression lines[C]//Wessler S, Dawe K, Leebens-Mack J. Current Opinion in Genetics & Development. Elsevier Ltd., Full text provided by www.sciencedirect.com,2007,17:545-552.
    [117]Liu JP, Van Eck J, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99:13302-13306.
    [118]Liu YS, Zamir D. Second generation L.pennellii introgression lines and the concept of fin mapping[J]. Tomato Genetics and Cooperative,1999,49:26-30.
    [119]Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell,2002,14(suppl.): S389-S400.
    [120]Luan S, Sopory SK, Tuteja N. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum) [J]. Febs Journal,2006,273:907-925.
    [121]Maas EV. Salt tolerance of plants[J]. Appl. Agric. Res,1986,1:12-26.
    [122]Maria TE, Maria M, Martinez-Rodriguez, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot[J]. Journal of Experimental Botany,2005,56 (412):703-712.
    [123]Martinez-Atienza J, Jiang X, Garciadeblas B, et al. Conservation of the SOS Salt Tolerance Pathway in Rice[J]. Plant Physiology,2007,143 (2):1001-1012.
    [124]Mathieu S, Cin VD, Fei Z, et al. Flavor compounds in tomato fruits:identification of loci and potential pathways affecting volatile composition[J]. Journal of Experimental Botany,2009,60 (1):325-337.
    [125]Matsui K, Ishii M, Sasaki M, et al. Identification of an allele attributable to formation of cucumber-like flavor in wild tomato species (Solanum pennellii) that was inactivated during domestication[J]. Journal of Agricultural and Food Chemistry,2007,55:4080-4086.
    [126]Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon[J]. Theoretical and Applied Genetics,1990,80 (4):437-448.
    [127]Mittova V, Guy M, Tal M, et al. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii [J]. Journal of Experimental Botany,2004,55 (399):1105-1113.
    [128]Mittova V, Tal M, Volokita M, et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii[J]. Plant Cell and Environment,2003,26:845-856.
    [129]Moghaieb REA, Tanaka N, Saneoka H, et al. Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress[J]. Soil Scince Plant Nutriention,2000,46 (4):873-883.
    [130]Mohan M, Nair S, Bhagwat A, et al. Genome mapping, molecular markers and marker-assisted selection in crop plants[J]. Molecular Breeding,1997,3:87-103.
    [131]Monforte AJ, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement[J]. Theoretical and Applied Genetics, 1996,95:284-293.
    [132]Monforte AJ, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis?[J]. Theoretical and Applied Genetics, 1997,95:284-293.
    [133]Monforte AJ, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon spp. VII. Pleiotropic action of genes controlling earliness on fruit yield[J]. Theoretical and Applied Genetics,1999, 98:593-601.
    [134]Monforte AJ, Friedman E, Zamir D, et al. Comparison of a set of allelic QTL-NILs for Chromosome 4 of tomato:deductions about natural variation and implications for germplasm utilization[J]. Theoretical and Applied Genetics,2001,102:572-590.
    [135]Monfort AJ, Tanksley SD. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon horsutum genome in a L. esculentum genetic background:a tool for gene mapping and gene discovery[J]. Genome,2000a,43:803-813.
    [136]Monforte AJ, Tanksley SD. Fine mapping of quantitative trait locus (QTL) from Lycopersicon hirsutum Chromosome 1 affecting fruit characteristics and agronomic traits:breeding linkage among QTLs affecting different traits and dissection of heterosis for yield[J]. Theoretical and Applied Genetics,2000b,471-479.
    [137]Moore G, Devos K M, Wang Z, et al. Cereal genome evolution. Grasses, line up and form a circle[J]. Current Biology,1995,5:737-739.
    [138]Moreau P, Thoquet P, Olivier J, et al. Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato[J]. Molecular Plant-Microbe Interactions,1998, 11:259-269.
    [139]Mulholland BJ, Taylor IB, Jackson AC, et al. Can ABA mediate responses of salinity stressed tomato[J]. Environmental and Experimental Botany,2003,50 (1):17-28.
    [140]Munns R, Husain S, Rivelli AR, et al. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits[J]. Plant Soil,2002,247:93-105.
    [141]Mysore KS, Tuori RP, Martin GB. Arabidopsis genome sequence as a tool for functional genomics in tomato[J]. Genome Biology,2001,2 (1003):1-4.
    [142]Nesbitt TC, Tanksley SD. fw2.2 Directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution[J]. Plant Physiology,2001, 127:575-583.
    [143]Nesbitt TC, Tanksley SD. Comparative sequencing in the genus lycopersicon:implication for the evolution of fruit size in the domestication of cultivated tomatoes[J]. Genetics,2002,162: 365-379.
    [144]Noble CL, Rogers ME. Arguments for the use of physiological criteria for improving the salt tolerance in crops[J]. Plant Soil.1992,146:99-107.
    [145]Norlyn, JD. Variability in salt tolerance of four Triticale lines at germination and emergence[J]. Crop Science,1984,24:1090-1092.
    [146]Obata T, Kitamoto HK, Nakamura A, et al. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells[J]. Plant Physiology,2007,144 (4): 1978-1985.
    [147]Pan QL, Liu YS, Budai-Hadrian O, et al. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons:tomato and Arabidopsis[J]. Genetics,2000,155:309-322.
    [148]Paran I, Goldman I, Tanksley SD, et al. Recombinant inbred lines for genetic mapping in tomato[J]. Theoretical and Applied Genetics,1995,90:542-548.
    [149]Park YH, West MAL, St Clair DA. Evaluation of AFLPs for germplasm fingerprinting and assessment (lycopersicon esculentum L) [J]. Genome,2004,47:510-518.
    [150]Paterson AH, Deverna JW, Lanini B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato[J]. Genetics,1990, 124:735-742.
    [151]Paterson AH, Lander ES, Hewi tt JD, et al. Resolution of quantitative traits into Mendehan factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335:721-726.
    [152]Pearen JR, Pahl MD, Wolynetz MS, et al. Association of salt tolerance at seedling emergence with adult plant performance in slender wheatgrass[J]. Canadian Journal of Plant Science,1997, 77:81-89.
    [153]Peralta IE, Spooner DM. Classification of wild tomatoes:a review[J]. Torno,2000,28 (Ⅰ) 45-54.
    [154]Perez-Alfocea F, Estan MT, Caro Perez-Alfocea F, et al. Comparative salt responses at cell and whole-plant levels of cultivated and wild tomato and their hybrid[J]. Scientia Horticulturae, 1994,69:639-644.
    [155]Phills BR, Peck NH, McDonald GE, et al. Differential responses of Lycopersicon and Solanum species to salinity[J]. Journal of the American Society for Horticultural Science,1979,104: 349-352.
    [156]Richards RA. Defining selection criteria to improve yield under drought[J]. Plant Growth Regulation,1996,20:157-166.
    [157]Rios G, Ferrando A, Serrano R, et al. Mechanism of Salt tolerance conferred by over-expression of the HAL1 gene in Saceharomyces cerevisiae[J]. Yeast,1997,13 (2):515-528.
    [158]Ronen G, Carmel-Goren L, Zamir D, et al. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:11102-11107.
    [159]Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta[J]. Plant Journal,1999,17:341-351.
    [160]Rossberg M, Theres K, Acarkana A, et al. Comparative sequence analysis reveals extensive microcolinearity in the Lateral suppressor regions of the tomato, Arabidopsis and Capsella genomes[J]. Plant Cell,2001,13:979-988.
    [161]Rousseaux MC, Jones CM, Adams D, et al. QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines[J]. Theoretical and Applied Genetics,2005,111: 1396-1408.
    [162]Rus AM, Estan MT, Gisbert C, et al. Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+selectivity under salt stress[J]. Plant Cell and Environment,2001,24 (8):875-880.
    [163]Rush DW, Epstein E. Breeding and selection for salt tolerance by the wild germplasm into a domestic tomato[J]. Journal of the American Society for Horticultural Science,1981,106: 699-704.
    [164]Rush DW, Epstein E. Genotypic responses to salinity:differences between salt-sensitive and salt-tolerant genotypes of the tomato[J]. Plant Physiology,1976,57:162-166.
    [165]Sacher RF, Staples RC, Robinson RW. Ion regulation and response of tomato to sodium chloride:a homeostatic system[J]. Journal of the American Society for Horticultural Science, 1983,108:566-569.
    [166]Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants[J]. Current Science,2004,86 (3):407-421.
    [167]Saliba Colombani V, Causse M, Langlois D, et al. Genetic analysis of organoleptic quality in fresh market tomato.1. Mapping QTLs for physical and chemical traits[J]. Theoretical and Applied Genetics,2001,102:259-272.
    [168]Saliba-Colombani V, Causse M, Gervais L, et al. Efficiency of RFLP, RAPD and AFLP markers for the construction of an intraspecific map of the tomato genome[J]. Genome,2000,43:29-40.
    [169]Santa-Cruz A, Acosta M, Rus A, Bolarin MC. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species[J]. Plant Physiology and Biochemistry,1999,37 (1): 65-71.
    [170]Santa-Cruz A, Martinez-Rodriguez MM, Perez-Alfocea F, et al. The rootstock effect on the tomato salinity response depends on the shoot genotype[J]. Plant Science,2002,162:825-831.
    [171]Santa-Cruz A, Perez-Alfocea F, Caro M, et al. Polyamines as short-term salt tolerance traits in tomato[J]. Plant Science,1998,138:9-16.
    [172]Saranga Y, Cahaner A, Zamir D, et al. Breeding tomatoes for salt tolerance:inheritance of tolerance and related traits in interspecific populations[J]. Theoretical and Applied Genetics, 1992,84:309-396.
    [173]Saranga Y, Zamir D, Marani A, et al. Breeding tomatoes for salt tolerance:variation in ion concentration associated with response to salinity[J]. Journal of the American Society for Horticultural Science,1993,118:405-408.
    [174]Schmidt R. Synteny:recent advances and future prospects[J]. Current Opinion in Plant Biology, 2000,3:97-102.
    [175]Sela-Buurlage MB, Budai Hadrian O, Pan Q, et al. Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci[J]. Molecular Genetics and Genomics,2001, 265:1104-1111.
    [176]Semel Y, Nissenbaum J, Menda N, et al. Overdominant quantitative trait loci for yield and fitness in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (35):12981-12986.
    [177]Shi J, Kim KN, Ritz O, et al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis[J]. Plant Cell,1999,11:2393-2405.
    [178]Smith KP, Handelsman J, Goodman RM. Genetic basis in plants for interactions with disease-suppressive bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96:4786-4790.
    [179]Smulders MJM, Bredemeijer G, Rus-Kortekaas W, et al. Use of short microsatelite from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species[J]. Theoretical and Applied Genetics,1997,94 (2): 264-272.
    [180]Stevens R, Buret M, Duffe P,et al. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations[J]. Plant Physiology,2007,143:1943-1953.
    [181]Suliman-Pollatschek S, Kashkush K, Shats H, et al. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum[J]. Cellular & Molecular Biology Letters,2002,7: 583-597.
    [182]Tal M. Genetics of salt tolerance in higher plants:Theoretical and practical considerations[J]. Plant Soil,1985,89:199-226.
    [183]Tal M. Salt tolerance in the wild relatives of the cultivated tomato:Responses of Lycopersicon esculentum, L. peruvianum, and L. esculentum minor to sodium chloride solution[J]. Australian Journal of Agricultural Research,1971,22:631-638.
    [184]Tal M, Shannon MC. Salt tolerance in the wild relatives of the cultivated tomato:Responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianurn, Solarium pennellii and F1 hybrids to high salinity[J]. Australian Journal of Plant Physiology,1983,10:109-117.
    [185]Tam SM, Mhiri C, Vogelaar A, et al. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet,2005,110 (5):819-831.
    [186]Tanksley SD. Mapping polygenes[J]. Annu Rev Genet,1993,27:205-233.
    [187]Tanksley SD, Ganal MW, Prince JP, et al. High density molecular linkage maps of the tomato and potato genomes[J]. Genetics,1992,132:1141-1160.
    [188]Tanksley SD, Grandillo S, Fulton TM, et al. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium[J]. Theoretical and Applied Genetics,1996b,92:213-224.
    [189]Tanksley SD, Nelson JC. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theoretical and Applied Genetics,1996a,92:191-203.
    [190]Thomas CM, Vos P, Zabeau M, et al. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum[J]. The Plant Journal,1995,8 (5):785-794.
    [191]Tikunov YM, Khrustaleva LI, Karlov GI. Application of ISSR markers in the genus lycopersicon[J\. Euphytica,2003,131 (1):71-80.
    [192]Tsumura Y, Tomary N. Genetic diversity of Cryptomeria japonica using co-dominant DNA markers based on sequenced tagged sites[J]. Theoretical and Applied Genetics,1999,93: 396-404.
    [193]Valentina M, Micha G, Moshe Tal, et al. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii [J]. Journal of Experimental Botany,2004,55 (399):1105-1113.
    [194]van-Ieperen W. Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato[J]. Journal of the American Society for Horticultural Science,1996,71: 99-111.
    [195]van Ooijen JW. Accuracy of mapping quantitative trait loci in autogamous species[J]. Theoretical and Applied Genetics,1992,84:803-811.
    [196]Villalta I, Bernet GP, Carbonell EA, et al. Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines[J]. Theoretical and Applied Genetics,2007,114:1001-1017.
    [197]Voorrips RE, Verkerke W, Finkers R, et al. Inheritance of taste components in tomato[J]. Acta Physiologiae Plantarum,2000,22:259-261.
    [198]Williams CE, St Clair DA. Phenetic relationships and levels of variability and random amplified polymorphic DNA analysis of cultivated and wild accessions of lycopersicon esculentum[J]. Genome,1993,36 (3):619-630.
    [199]Wilson C, Shannon MC. Salt-induced Na+/H+antiport in root plasma membrane of a glycophytic and halophytic species of tomato[J]. Plant Science,1995,107:147-157.
    [200]Xu X, Martin B, Comstock J, et al. Fine mapping a QTL for carbon isotope composition in tomato[J]. Theoretical and Applied Genetics,2008,117:221-233.
    [201]Yamamoto N, Tsugane T, Watanabe M, et al. Expressed sequence tags from the laboratory-grown miniature tomato (lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars[J]. Gene,2005, 356:127-134.
    [202]Yang WC, Bai XD, Kabelka E, et al. Discovery of single nucleotide polymorphisms in lycopersicon esculentun by computer aided analysis of expressed sequence tags[J]. Molecular Breeding,2004,14 (1):21-34.
    [203]Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice[J]. Plant Molecular Biology,1997,35:145-153.
    [204]Yates HE, Frary A, Doganlar S, et al. Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species[J]. Euphytica,2004,135: 283-296.
    [205]Yeo AR, Flowers TJ. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance[J]. Theoretical and Applied Genetics,1990,79:377-384.
    [206]Zapata P, Serrano M, Pretel MT et al. Polyamines and ethylene changes during germination of different plant species under salinity[J]. Plant Science,2004,167:781-788.
    [207]Zamir D. Improving plant breeding with exotic genetic libraries[J]. Nature Reviews Genetics, 2001,2:983-989.
    [208]Zamir D, Tal M. Genetic analysis of sodium, potassium and chloride ion content in Lycopersicon[J]. Euphytica,1987,36:187-191.
    [209]Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology,2001,19 (8):765-768.
    [210]Zhang LP, Khan A, Nino-Liu D, et al. A Molecular linkage map of tomato displaying chromosomal locations resistance gene analogs based on a L. esculentum×L. hirsutum cross[J]. Genome,2002,45 (1):133-146.
    [211]Zhang Y, Stommel JR.2000. RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (Mo-B), two genes which influence beta-carotene accumulafiOn in fruit of tomato (Lycopersicon esculentum Mill.) [J]. Theoretical and Applied Genetics,2000,100 (3-4): 368-375.
    [212]边鸣镝,吴忠义,赵久然,.等.非生物胁迫诱导的玉米蛋白激酶基因ZmCIPKl的cDNA克隆和表达分析[J].农业生物技术学报,2008,16(6):965-970.
    [213]陈火英,刘杨.番茄分子标记研究进展[J].上海交通大学学报(农业科学版),2003,21(4):356-360.
    [214]陈火英,张才喜,庄天明等.NaCl胁迫对不同品种番茄种子发芽特性的影响[J].上海农学院学报,1998,16(3):209-212.
    [215]陈火英,张建华,张晓宁.栽培番茄耐盐突变体的离体筛选[J].上海交通大学学报(农业科学版),2002,20(1):1-6.
    [216]陈火英,张建华,钟建江.野生番茄耐盐性研究及其利用[J].华东理工大学学报,2001,27(1):51-55.
    [217]陈火英,张建华,庄天明,等.利用花粉管通道技术培育番茄耐盐新种质[J].西北植物学报,2004,24(1):12-16.
    [218]陈火英,庄天明,张晓宁,等.HVA1基因转化番茄及转基因番茄耐盐性的初步鉴定[J].上海交通大学学报(农业科学版),2006,24(1):1-5:12.
    [219]陈佳,沈火林,杨文才.番茄分子标记开发进展[J].分子植物育种,2007,5(6)S:130-138.
    [220]戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报,2002,18(1):58-62.
    [221]戴伟民,赵艳,蔡润,等.番茄耐盐愈伤组织的筛选及显微结构观察[J].上海交通大学学报(农业科学版),2001,19(2):112-116.
    [222]邓用川,陈菊培,林栖凤,等.导入红树DNA的番茄后代在NaCI胁迫下的某些生理变化[J].海南大学学报自然科学版,2003,21(3):254-258.
    [223]董志刚,程智慧.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指数评价[J].生态学报,2009,29(3):1348-1355.
    [224]方宣均,程大新,徐俊,等.中国转基因抗虫棉知识产权的商业化实施进展[J].农业生物技术学报,2001,9(2):103-106.
    [225]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2000,20.
    [226]方玉梅,宋明.种子活力研究进展[J].种子科技,2006(2):33-36.
    [227]费伟,陈火英,曹忠,等.盐胁迫对番茄幼苗生理特性的影响[J].上海变通大学学报(农业科学版),2005,23(1):5-9:30.
    [228]高元成,晏儒来.番茄野生种质资源及其利用[J].长江蔬菜,1994,7:3-5.
    [229]耿建峰.利用DH群体构建不结球白菜遗传连锁图谱及重要农艺性状QTL定位[D].南京:南京农业大学,2007.
    [230]郭龙彪,程式华,钱前.水稻基因设计育种的研究进展与展望[J].中国水稻科学(Chinese J Rice Sci),2008,22 (6):650-657.
    [231]郭文忠,刘声峰,李丁仁,等.硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响[J].中国农学通报,2003,19(5):28-31.
    [232]郭文忠,秦垦,王学梅,等Ca (NO3)和NaCl不同浓度对番茄生长、发育产量和品质的影响[J].宁夏农林科技,2003a,2:1-3.
    [233]赫买良,韩晓玲,权麻玉,等.脯氨酸累积与植物的耐盐性[J].甘肃农业科技,2006,12:22-24.
    [234]胡晋.种子引发及其效应[J].种子,1998,2:33-35.
    [235]黄三文,王晓武,张宝玺.蔬菜作物分子标记研究进展与我国的发展策略[J].中国蔬菜,1999(1):50-53.
    [236]贾彩红,张丽丽,金志强,等.香蕉BTB/POZ域基因的克隆及表达分析[J].中国生物工程杂志,2010,30(11):30-33.
    [237]姜静,杨传平.分子生物学实验原理与技术[M].哈尔滨:东北林业大学出版社,2003,28-29.
    [238]姜泠若,张振华,胡永红,等.不同浓度NaCl]协迫对番茄种子发芽特性的影响[J].江苏农业群学,2002,5:41-42.
    [239]李红,杜永臣,王孝宣,等.利用CAPS标记转育野生番茄的高产基因[J].中国农业科学,2007,40(8):1738-1745.
    [240]李君明,番茄抗灰霉病和晚疫病基因定位及分子标记多基因辅助选育技术研究[D].北京:中国农科院,2005.
    [241]李君明,宋燕,朱彤,等.番茄耐盐分子育种研究进展[J].分予植物育种,2006,4(1):111-116.
    [242]李宁,许向阳,姜景彬等.番茄生物学研究的相关网络资源[J].植物学报,2010,45(1):95-101.
    [243]梁慧玲,梁月荣.植物分子标记技术原理及其在茶树育种中的应用[J].茶叶,2003,29(4):191-194.
    [244]廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2089.
    [245]刘凤荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化[J].植物生理与分子生物学学报,2004,30(1):99-10.
    [246]刘翔,许明,李志文.番茄苗期耐盐性鉴定指标初探[J].北方园艺,2007,(3):4-7.
    [247]马文广,郑昀晔,索文龙,等.赤霉素引发处理提高烟草丸化种子活力和幼苗素质[J].浙江农业大学学报,2009,21(3):293-298.
    [248]钱森和,杨超英,薛正莲,等.PEG引发对芹菜种子活力影响的研究[J].生物学杂志,2009,26(1):76-79.
    [249]邵秋玲,刘玉新,于德花,等.耐盐番茄东科1号和东科2号的选育[J].中国蔬菜,2005,5:24-26.
    [250]史庆华,朱祝军,KhalidaAL-aghabary,等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响[J].植物营养与肥料学报,2004a,10(2):188-191.
    [251]史庆华,朱祝军,KhalidaAL-aghabary,等.等渗盐胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活动的影响[J].植物生理与分子生物学学报,2004b,30(3):311-316.
    [252]宋嵘嵘.氯化钠、硝酸钙对番茄生长和抗氧化酶活性的影响[J].宁波农业科技,1998,(4):5-7.
    [253]苏实,练薇薇,杨文杰,等.盐胁迫对番茄种子萌发和幼苗生长的效应[J].华北农这报, 2006,21(5):24-27.
    [254]邰翔,朱为民,吴雪霞,等.番茄耐盐性茄子砧木的筛选[J].上海农业学报,2008,24(4):75-78.
    [255]王淑芳,王峻岭,赵彦修,等.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J].植物生理学报,2001,27(3):248-252.
    [256]王孝宣.增强番茄果实颜色基因的精细定位及相关基因的差异表达(博士学位论文)[D].北京:中国农业科学院,2004.
    [257]王孝宣,杜永臣,朱德蔚,等.Multiplex-CAPS技术及其在番茄遗传鉴定中的应用[J].园艺学报,2003,30(6):673-677.
    [258]吴晓东,杨兴洪.植物种子的引发研究[J].植物学通报,1996,13(1):32-36.
    [259]吴运荣,易可可,祝金明,等.利用表型相关分析筛选番茄耐盐指标[J].浙江大学学报,1999,25(6):645-649.
    [260]辛艳.引发技术是提高种子活力的新手段[J].种子科技,2002(5):281-282.
    [261]徐明磊,王孝宣,宋明,等.利用分子标记筛选源于野生多毛番茄的高可溶性固形物的基因[J].农业生物技术学,2007,15(1):81-84.
    [262]
    [263]徐鲜钧,沈宝川,祁建民.植物耐盐性及其生理生化指标的研究进展[J].亚热带农业研究2007,3(4):275-280.
    [264]杨小环,杨文秀,史雨刚,等.NaC1和PEG引发对甘蓝种子发芽及其质膜透性的影响[J].山西农业大学学报(自然科学版),2008,28(4):413-416.
    [265]杨永杰,董树刚,付成秋,等.栽培番茄耐盐变异系的离体选择[J].青岛海洋大学学报,2001,31(1):75-80.
    [266]殷剑美.棉花胞质雄性不育恢复基因的精细定位和物理作图[D].南京:南京农业大学,2005,31.
    [267]尹贤贵,王小佳,张簧,等.DNA分子标记及其在番茄遗传育种中的应用[J].西南农业大学学报(自然科学版),2004,26(6):663-668.
    [268]余诞年.番茄基因的分子标记与遗传作图[J].园艺学报,1998,25(4):361-366.
    [269]余诞年,吴定华,陈竹君.番茄遗传学[M].长沙:湖南科学技术出版社,1999:42-48.
    [270]余守武,杨长登,李西明.QTL精细定位策略及水稻产量相关性状QTL分析[J].中国稻米,2008,3:13-16.
    [271]余文贵,赵统敏,沈新莲,等.野生番茄单片段渐渗系的创建及应用[J].园艺学报,2006,33(1):197-202.
    [272]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,40(9):1-3.
    [273]张海英,许勇,王永健,等.分子标记技术概述(下)[J].长江蔬菜,2001(3):15-16.
    [274]张丽霞,刘丕庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位[J].分子植物育种,2004,2(3):743-746.
    [275]张建华,陈火英,庄天明.番茄耐盐体细胞变异体的离体筛选[J].西北植物笋报,2002,22(2):257-262.
    [276]张建华,刘风荣,陈火英.野生番茄和栽培番茄的耐盐差异性比较研究[J].上海交通大学学报(农业科学版),2006,24(6):533-540.
    [277]张荃,王淑芳,赵彦修,等.HAL1基因转化番茄及耐盐转基因番茄的鉴定[J].生物工程学报,2001,17(6):658-662.
    [278]张匀,栾雨时.番茄耐盐育种研究进展[J].西北农业学报,2006,15(3):128-133.
    [279]赵福宽.番茄分子标记的辅助选择育种[J].世界农业,2001,5:40-41.
    [280]赵凌侠,李景富,唐克轩,等.番茄属基因组DNA遗传多样性RAPD分析[J].福建农林大学学报(自然科学版),2002,31(2):228-233.
    [281]周晓果,张正斌.作物数量性状基因座定位及分析研究进展[J].西北植物学报,2005,25(3):625-630.
    [282]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005,4-5.
    [283]邹喻苹,葛颂,王晓东,等.系统与进化植物学中的分子标记[M].北京:群笋出版社,2001.
    [284]朱文银,王才林.作物染色体片段置换系研究进展[J].江苏农业学报,2008,24(6):963-968.
    [285]赵可夫,冯立田.中国盐生植物资源[M].北京:科学出版社.2001,32-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700