大豆盐胁迫表达谱分析及盐响应转录因子bZIP110、WRKY49和WRKY111的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国约有3000万公顷盐碱化和次生盐碱化土地,土地盐渍化已成为我国农业生产发展的主要限制因素之一。研究植物的耐盐机理,筛选和培育适应盐土环境的耐盐植物,对于盐碱土地生态系统的改善及土地资源的可持续发展与利用具有深远的意义。
     大豆是重要油料作物和经济作物,研究大豆耐盐机理对培育耐盐大豆品种具有重要意义。本研究以栽培大豆和滨海野生大豆为研究对象,分析盐胁迫差异表达基因,并研究了其中3个表达差异显著的基因bZIP110、WRKY49和WRKY111的表达特征、调控机制与生理功能,试图为大豆耐盐性的遗传改良提供参考依据。
     利用数字表达谱(DGEP)对耐盐的野生大豆品系“野大豆2号”和盐敏感的栽培大豆品种“东农690”进行盐胁迫差异表达基因分析,发现野生大豆中共有1327个基因发生差异表达,826个上调表达,501个下调表达;栽培大豆中共有3627个基因表达发生差异表达,上调表达1709个,下调表达1918个。对几个差异表达基因进行qRT-PCR验证,结果显示与DGEP数据中的表达趋势一致。经过筛选分析,选择转录因子bZIP110、WRKY49和WRKY111作为与大豆耐盐性相关的候选基因。利用大豆转基因复合植株、转基因拟南芥以及转基因烟草鉴定候选基因耐盐性,结果显示bZIP110、WRKY49以及WRKY111基因均具有提高转基因植株耐盐能力的作用。
     大豆转录因子bZIP110基因全长1542bp,没有内含子,编码区(CDS)长507bp,编码168个氨基酸。亚细胞定位将该基因定位于细胞核中,聚类分析其属于S组群。bZIP110受NaCl诱导,NaCl处理12h后,在栽培大豆和野生大豆中都出现显著响应。组织表达分析发现,bZIP110在根、茎、叶中都有较高表达,只有在R4(盛荚期)叶中的表达量较低。过表达bZIP110能提高转基因拟南芥植株的抗盐胁迫能力,减少叶片内Na+的积累,上调胁迫应答基因MYB2、PADS、UGT71B6、LCL1、DREB2、 NHX1、SOS1和RCI3。其中RCI3比野生型上调达30倍,RCI3编码一个过氧化物酶(POD),可催化过氧化氢(H202)、酚类和胺类化合物分解,具有消除过氧化氢和酚类、胺类毒性的作用,推测这可能是bZIPHO能提高转基因拟南芥耐盐性的主要原因。转基因拟南芥中胁迫应答基因CCA1.LTP3和P5CS没有显著差异,LHY有显著降低。酵母双杂交试验发现bZIP110具有自激活作用,并且能与C组群的bZIP105互作。酵母单杂交试验发现bZIP110与DNA基序ACGT有一定的结合作用,但没有bZIP105与之的结合作用强。综合酵母单杂交和双杂交结果,可以推断bZIP110与bZIP105相互作用形成异源复合二聚体后,bZIP105绑定DNA序列,而bZIP110行使激活下游基因的作用。
     大豆转录因子WRKY49基因全长3519bp,有4个内含子, CDS长1728bp,编码575个氨基酸,亚细胞定位结果显示其定位于细胞核中,具有两个WRKY结构域和一个“锌指基序”,聚类分析显示属于Ⅰ组群。VRKY49被盐胁迫强烈诱导。200mMNaCl处理后,WRKY49在栽培大豆中响应速度快,但是在野生大豆中表达更稳定。这可能与野生大豆更耐盐有一定关系。组织表达分析发现,WRKY49在所有组织中都有表达,在根和叶中表达量高,在豆荚中的表达量低。拟南芥突变体证明其功能缺失后,盐胁迫条件下种子发芽率比野生型低;幼苗根长也显著比野生型短。过表达WRKY49能提高转基因拟南芥和烟草植株的耐盐性,上调表达LHY、UGT71B6、 DREB2、PAD3、RCI3、LTP3、NHX1和SOS1等8个基因,其中RCI3上调表达60倍以上。CCA1、MYB2、LCL1和P5CS等4个基因的表达水平没有明显变化。但转基因拟南芥叶片中Na+含量与野生型无显著差异,WRKY49可能提高了转基因拟南芥Na+区隔化的能力。
     大豆转录因子WRKY111基因全长3618bp,3个内含子,CDS长1197bp,编码398个氨基酸,具有1个WRKY结构域,属于IIc组群。WRKY111受盐胁迫强烈诱导。盐胁迫后WRKY111在栽培大豆中响应速度快,而在野生大豆中表达逐步上调,相对栽培大豆中更稳定,这可能跟野生大豆更耐盐有一定的关系。主要在根中表达,在茎、叶和花中表达量低,而在荚中基本不表达。过表达WRKY111能提高转基因拟南芥和烟草植株的耐盐性,上调表达DREB2、MYB2、PAD3、RCI3、LTP3、NHX1和SOS1等7个基因,其中编码POD基因RCI3比野生型高100倍,CCA1、LCL1、UGT71B6和P5CS等4个基因没有明显变化,LHY比对照低。转WRKY111基因拟南芥植株Na+含量显著低于野生型。上调表达过氧化物酶基因RCI3和降低叶片内Na+含量可能是WRKY111提高转基因植株耐盐性的主要原因。
There are about30million hectares of salinization land in China. Therefore soil salinization becomes one of the main limiting factors in agricultural production. Considerably, researches on the mechanism of salt tolerance, selection and development of salt tolerant varieties have profound significances for the improvement ecosystem in salinization area and the sustainable application of land resources.
     In this regard, soybean is an important industrial crop in the world. To research the mechanism of salt tolerance in soybean can be helpful for the genetic improvement for salt tolerance in soybean. In this study, we analyzed differentially expressed genes under salt stress in coastal wild soybean (Glycine soja) and cultivated soybean (Glycine max) by using DGEP (digital gene expression profiling) technology. Three differential expressed genes, bZIP110, WRKY49and WRKY111were selected as the candidates of salt response genes for further study on their physiological function and molecular mechanism.
     In DGEP data, there were1327genes which responded salt stress in Glycine soja line "Yedade2",826up-regulated,501down-regulated. Our results demonstrated there were3627genes responded salt stress in Glycine max cultivar "Dongnong690",1709up-regulated,1918down-regulated. We got the same result with DGEP data about some respond genes'expression tendency using qRT-PCR. In addition, we chose significant salt respond genes as candidates including bZIP110, WRKY49and WRKY111, to research their function on salt stress using composite plants and transgenic plants. In the result we found that all the candidate genes could improve salt tolerance of composite and transgenic plants.
     Transcription factor gene bZIP110is1542bp in soybean genome, with no intron, coding168amino acids. Its subcellular localization is in the nucleus and belongs to S group. bZIP110was induced by200mM NaCl stress, responded salt stress distinctly in Glycine soja and Glycine max under200mM NaCl for12h. In the analysis of expression in different tissues, we found it had a high expression level in the root, stem and leaf in Glycine max, while had a low expression level in leaf only in R4(full pod stage). Moreover our results indicated that, bZIP110enhanced salt tolerance in transgenic Arabidopsis plants, the content of Na+was less than in transgenic plants'leaves, and the expression level of stress respond genes MYB2, PAD3, UGT71B, LCL1, DREB2, NHX1, SOS1and a POD (peroxidase) gene RCI3was higher than wild type. POD can remove H2O2(hydrogen peroxide) and the toxic of phonel, keep oxidative balance in plant under abiotic stress, and this may related to the major reason of more salt tolerance of transgenic plant than wild tpye. The expression levels of genes CCA1、LTP3and P5CS were no difference in transgenic plant compared to wild type, but the expression level of LHY was down regulated. Considerably we realized that, bZIP110had an activation function and interactive role with bZIP105belonging to C group in Y2H (yeast two hybrid), and could bind ACGT motif in Y1H (yeast one hybrid). But we must mention that, the capacity of binding ACGT motif was recorded weaker than bZIP105. We also infer that bZIP105binds promoter of a gene and bZIPl10activates it under salt stress in plant.
     Transcription factor gene WRKY49is3519bp in soybean genome, with4introns, coding575amino acids. Its subcellular localization is in the nucleus. It has two WRKY domains and one zinc-finger motif, belongs to group Ⅰ. WRKY49was induced by200mM NaCl stress, it responded salt stress more swift and violent in Glycine max under200mM NaCl, but the respond was more stable in Glycine soja, this maybe has relations with the reason of Glycine soja more salt tolerant. WRKY49expressed in all tissues,it had a high expression level in root and leaf, low expression level in pod. Over-expression WRKY49could enhance the salt tolerance in transgenic tobacco and Arabidopsis plants. Germination rate of seeds was lower and length of root was shorter in Arabidopsis mutants than wild type under salt stress. The POD gene RCI3was significant up regulated in transgenic Arabidopsis, stress respond genes LHY, UGT71B6, DREB2, PAD3, LTP3, HNX1and SOS1were up regulated too, but the content of Na+in transgenic leaves was no distinct difference compared to wild type. So we conclude that WRKY49have the ability to enhance the compartmentation of Na+in transgenic plant.
     Transcription factor gene WRKY111is3618bp in soybean genome, with3introns, coding398amino acids. It has one WRKY domains and one zinc-finger motif, belongs to group Ⅱc. WRKY111was induced by200mM NaCl stress, it responded salt stress more swift and violent in Glycine max under200mM NaCl, but the respond was more stable in Glycine soja, this maybe has relations with the reason of Glycine soja more salt tolerant. WRKYlll mainly expressed in root, low expression level in leaf and flower, no expression in pod. Over-expression WRKY111could enhance the salt tolerance in transgenic tobacco and Arabidopsis plants. The expression level of POD gene RCI3was100folds higher in transgenic Arabidopsis than wild type, and also up-regulated other six stress-respond genes DREB2, MYB2, PADS, LTP3, NHX1and SOS1. Four genes CCA1, LCL1, UGT71B6and P5CS expression levels in transgenic plants were no differences with wild type, but the expression level of LHY was down regulated. The content of Na+was less in transgenic plants'leaves than in wild type. Moreover, we confer that the major reason of WRKYlll enhancing salt tolerance in transgenic plants is up-regulating RCI3and limiting the accumulation of Na+in leaves.
引文
1. 李丽芳,罗晓芳,王华芳.植物抗旱基因工程研究进展,西北林学院学报,2004,19(3):53-54
    2. 刘光宇关荣霞常汝镇等.大豆不同器官Na+含量与苗期耐盐性的相关分析.作物学报,2011,37(7):1266-1273
    3. 刘欣,王炳胜,刘秀芳.放射性肺损伤大鼠的数字化基因表达谱分析.解放军医药杂志,2013,01:14-17
    4. 刘祖祺,张石城主编.植物抗性生理学[M].北京,中国农业出版社,1993
    5. 罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    6. 马淑时,王伟.大豆品种资源的抗盐碱性研究.吉林农业科学.1994,4:69-71
    7. 任艳芳,何俊瑜,何师加.盐胁迫对莴苣种子萌发和幼苗生长的影响.北方园艺,2008,(8):35-36
    8. 邵桂花.大豆种质资源耐盐性田间鉴定方法.作物杂志.1987,3:36-37
    9. 翁跃进.作物耐盐品种及其栽培技术[M].北京:中国农业出版社,2002
    10.周国安,关荣霞,李英慧等.异源表达一个大豆Na+/H+逆向转运蛋白基因GmNHX2提高拟南芥的耐盐性.科学通报,2009,54(17):2508-2516
    11. Abe H, Urao T, Ito T et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,2003,15:63-78
    12. Ahmad P. Growth and antioxidant responses in mustard(Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci,2010,56(5):575-588
    13. Ahmed M, Qamar I. Productive rehabilitation and use of salt-affected land through afforestation (a review). Q Sci Vis,2004,19:1-14
    14. Allan A C, Hellens R P, Laing W A. MYB transcription factors that colour our fruit. Cell,2008,13: 99-102
    15. Andrea E, Fridtjof W, Xuan W et al. Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts:establishment of a heterodimerization map of group C and group S bZIP transcription factors. The Plant Journal,2006,46:890-900
    16. Anna C, Ramon M, Adela G et al. Plant responses t o droughout, from ABA sigal transduct ionevent s t o the action of the induced prot eins. Plant Physiol Biochem,1999,37:327-340
    17. Ansorge W J. Next generation DNA sequeneing techniques. Nature Biotechnology,2009,25(4): 195-20
    18. Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiporter in Arabidopsis. Science,1999,285:1256-1258
    19. Armstrong G A et al. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell,1992,4:525-537
    20. Aronde V V, Vergnolle C, Cantrel C. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci,2000,157:1-12
    21. Ayala F and O'Leary J W. Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. Int. J. Plant. Sci,1995,156:197-205
    22. Bahramnejad B, Erickson L R, Chuthamat A et al. Differential expression of eight defense in genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothia diazole treatment. Plant cell report,2009,28:703-717
    23. Ballesteros E, Blumwalt E, Donaire J P et al. Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Plant Physiol,1997,99:328-334
    24. Bassam B J, Caetano-Anolles G and Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem,1991,196:80-83
    25. Benjamini Y, and Yekutieli D. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics,2001,29:1165-1188
    26. Berg, J M. and Shi, Y. The galvanization of biology:a growing appreciation for the roles of zinc. Science,1996,271:1081-1085
    27. Botstein D, White R L, Skolnick M, et a.l. Construction of genetic linkage map in m an using restrict ion-fragment length polymorphisms. Amer J Human Genet,1980,32:314-331.
    28. Boxall S F, Foster J M, Bohnert H J et al. Conservation and divergence of circadian clock operation in a stress-inducible Crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol,2005,137:969-982
    29. Bray E A. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany,2004,55:2331-2341
    30. Bray T C, Sousa V C, Parreira B et al.2BAD:an application to estimate the parental contributions during two independent admixture events. Mol Ecol Resour,2010,10(3):538-41
    31. Breckle. How do halophytes overcome salinity. Biology of Salt Tolerant Plants,1995:199-213
    32. Cai D, Zheng Y, Lan Y. Expression of Em gene (LEA1) from soybean immature seeds confers salt tolerance to Escherichia coli and tobacco plants. J. Shenzhen Univ (Sci. Eng.),2006,23:230-236
    33. Calvo E S, Wurtle E S, Shoemaker RC. Cloning, mapping, and analyses of expression of the Em-like gene family in soybean. Theor. Appl. Genet,1997,94:957-967
    34. Campbell S A, Close T J. Dehydrins:genes, proteins, and associations with phenotypic traits. New Phytol,1997,137:61-74
    35. Cao W H, Liu Jun, He X J et al. Modulation of Ethylene Responses Affects Plant Salt-Stress Responses. Plant Physiology,2007,43:707-719
    36. Capman Y J,1976, Coast al Vegetation, P.292.Oxford, London, New York, Part s, Pergamon,2nd ed
    37. Chang R Z, Chen Y W, Shao G H, Wan C W. Effect of salt stress on agronomic characters and chemical quality of seeds in soybean. Soybean Sci.,1994,13,101-105
    38. Chattopadhyay S et al. Arabidopsis bZIP protein HY5 directly interacts with light responsive promoters in mediating light control of gene expression. Plant Cell,1998,10:673-684
    39. Chen C and Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol,2002,129:706-716
    40. Chen M, Wang Q.Y, Cheng X G et al. GmDREB2 a soybean DRE binding transcription factor, conferred drought and high-salt tolrerance in transgenic, Biochemical and Biophysical Research Communications,2007,353(2):299-305
    41. Chen Y, Yang X, He K et al. The MYB transcription factor superfamily of Arabidopsis:Expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol,2006,60: 107-124
    42. Choi H. et al. ABFs, a family of ABAresponsive element binding factors. J. Biol. Chem,2000,275: 1723-1730
    43. Christiansen R. Sea asparagus can be oilseed feedstock for biodiesel. Biomass Magazine, August, 2008. Available at. Accessed May 26,2010
    44. Ciceri P et al. Phosphorylation of Opaque2 changes diurnally and impacts its DNA-inding activity. Plant Cell,1997,9:97-108
    45. Cominelli E, Tonelli C:A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res,2009,19:1231-1232
    46. Csonka L N. Physiological and genetic responses of bacterial to osmotic stress. Microbiol Rev. 1989,53:121-147
    47. Dai X, Xu Y, Ma Q et al. Over expression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis, Plant Physiol,2007,143(4): 1739-1751
    48. Dana M, Pintor-Toro J A, Cubero B. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology,2006,142: 722-730
    49. De Pater et al. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res,1996,24:4624-4631
    50. Delauney A Y and Verma D P. Proline biosynthesis and osmoregulation in plants. Plant J,1993,4: 215-223
    51. Dietrich K, Weltmeier F, Ehlert A et al. Heterodimers of the Arabidopsis transcription factors bZIPl and bZIP53 reprogram amino acid metabolism during low energy stress. Plant Cell,2011,23(1): 381-395
    52. Ding Z, Li S, An X et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Cell Res,2008,18:1047-1060
    53. Dong J, Chen C and Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol,2003,51:21-37
    54. Doyle J J and Doyle J L. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull,1997,19:11-15.
    55. Drmanac R, Labat I, Brukner I. Sequencing of megabase plus DNA by hybridization:theory of the method. Genomics,1989,4(2):114-128
    56. Droge-Laser W et al. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J,1997,16:726-738
    57. Duval M, Hsieh TF, Kim SY, Thomas TL. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol,2002,50(2):237-248
    58. Eelauney A J, Verma D P. A soybean gene encoding Δ1-pyrroline-s- carboxylate reductase wasisolated by functional complementation in E. coli and is found to be osmore gulated. Mol GenGendt,1990,221:299-305
    59. Eisen M B et al. Cluster analysis and display of genome-wide expression patterns. Genetics,1998, 95(25):1486-1488
    60. Ellis R H., M. Black, A. J. Murdoch et al. Raffinose Series Oligosaccharides and Desiccation Tolerance of Developing Viviparous Maize Embryos. Basic and Applied Aspects of Seed Biology, 1997,1:95-101
    61. Endo A, Sawada Y, Takahashi H, Okamoto M et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol,2008, 147(4):1984-1993
    62. Eulgem T et al. Early nuclear events in plant defense:rapid gene activation by WRKY transcription factors. EMBO J.1999,18,4689-4699
    63. Eun S S, Jia G Myeong-Hyeon Wang. The Chilli Pepper (Capsicum annuum) MYB Transcription Factor (CaMYB) is Induced by Abiotic Stresses. J. Plant Biochemistry & Biotechnology,2008, 17(2):193-196
    64. Finkelstein R R and Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell,2000,12:599-610
    65. Finkelstein R R. and Lynch, T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell,2000,12,599-610
    66. Fisher A D, Stewart M, Tacon J, Matthews LR. The effects of stock crate design and stocking density on environmental conditions for lambs on road transport vehicles. N Z Vet J,2002,50(4): 148-53
    67. Foolad M R. Recent advances in genetics of salt tolerance in tomato. Plant Cell, Tissue and Organ Culture,2004,76:101-119
    68. Forlani G, Scainelli D, Nielsen E. 1-Pyrroline-5-Carboxylate Dehydrogenase from Cultured Cells of Potato (Purification and Properties). Plant Physiol,1997,113(4):1413-1418
    69. Fridtjof Weltmeier, Andrea Ehlert, Caroline S Mayer et al Combinatorial control of Arabidopsis praline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. The EMBO Journal,2006,25:3133-3143
    70. Gao S Q, Chen M, Xu Z S et al. The soybean GmbZIPl transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol,2011,75(6):537-53
    71. Gaxiola R A, Rao R, Sherman A, et al. The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast. Proc Natl Acad Sci USA,1999,96:1480-1485
    72. Gong P, Zhang J, Li H, Yang C, Zhang C et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany,2010,61:3563-3575
    73. Greenway H, Munns R, Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol, 1980,31:149-190
    74. Hamwieh A, Xu DH. Conserved salt toleranace quantitative trait locus (QTL) in wild and cultivated soybeans. Breeding Science,2008,58:355-359.
    75. Hao Y J, Wei W, Song Q X et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J,2011,68(2):302-13
    76. Hara K et al. (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol. Gen. Genet.263,30-37
    77. Haro R, Baneulos M A, Quintero F J et al. Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol Plant,1993,89:868-874
    78. He K, Gou X, Yuan T, et al. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Current Biology,2007,17:1109-1115
    79. Hong S W, Jon J H, Kwak J M, Nam H G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiology,1997,113:1203-1212
    80. Hu C D, Grinberg A V, Kerppola T K. Visualization of protein interactions in living cells using bimolecular fluorescence complementation analysis. Curr Protoc Cell Biol.2006 Jan;Chapter 21:Unit 21.3
    81. Hu Y R, Chen L G, Wang H P et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. The Plant Journal,2013,74:730-745
    82. Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J,2013,74(5):730-45
    83. Huang X S, Liu J H, Chen X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biology,2010,10:230-239
    84. Hurst, H.C. Transcription factors bZIP proteins. Protein Profile,1995,2:101-168
    85. Ishiguro, S. and Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 59 upstream regions of genes coding for sporamin and b-amylase from sweet potato. Mol. Gen. Genet,1994,244:563-571
    86. Izawa T et al. Plant bZIP protein DNA binding specificity. J. Mol. Biol,1993,230:1131-1144
    87. Jakoby M, Weisshaar B, Droge-laser W et al. bZIP transcription factors in Arabidopsis, Trends in Plant Science,2002,7:106-110
    88. Jiang X et al. A protein kinase interacting with two calcineurin B-like proteins, regulates K transporter AKT1 in Arabidopsis. Cell,2006,125(7):1221-1223
    89. Jiang Y and Deyholos M. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol,2009,69:91-105
    90. Jin H X, Fang H, Hao C et al. Overexpression of the GmNAC2 Gene, an NAC Transcription Factor, Reduces Abiotic Stress Tolerance in Tobacco. Plant Mol Biol Rep,2013,31:435-442
    91. Johasson I, Karisson M, Shukla V K et al. Water transport activity of theplasma membrance acquaporin RM28A is regulated byphosphorylation, The Plant Cell,1998,10:451-459
    92. Johnson S C, Kolevski B and Smyth D R. Transparent testaglabra2, a trichome and seed coat development gene of Arabidopsis encodes a WRKY transcription factor. Plant Cell,2002,14: 1359-1375
    93. Kadereit G, Ball P, Beer S, Mucina L et al. A taxonomic nightmare comes true:phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon,2007,56:1143-1170.
    94. Kaliff M, Staal J, Myrenas M. ABA Is Required for Leptosphaeria maculans Resistance via ABI1-and ABI4-Dependent Signaling. Mol Plant Microbe Interact,2007,20:335-345
    95. Kanei-Ishii C, Sarai A, Sawazaki T, Nakagoshi H, He DN, Ogata K, Nishimura Y, Ishii S:The tryptophan cluster:a hypothetical structure of the DNA-binding domain of the myb protooncogene product. J Biol Chem 1990,265:19990-19995
    96. Karam B S, Rhonda C F and Luis O S. Transcription factors in plant defense and stress response. Curr. Opin. Plant Biol,2002,5:430-436
    97. Katz A, Pick U, Avron M. Modulation of Na+/H+ antiport activity by extreme pH and salt in the halotolerant alga Dunaliella salina. Plant Physiol,1992,100:1224-1229
    98. Kim K Y et al. Transcriptional profile by cold water stress at the booting stage of japonica Rice. Molecular Breeding,2007,5(2):184-185
    99. Kishor P B, Hong Z, Miao G H et al.Overexpression of pyrroline-5-carbo xylase synthaseincrease proline production and confers osmotolerance intransgenic plants, Plant Physiolgy,1995,108(4): 1387-1394
    100. Klempnauer K H, Gonda T J, Bishop J M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-MYB:the architecture of a transduced oncogene. Cell,1982, 31:453-463.
    101. Kusano T, Sugawara K, Harada M, Berberich T. Molecular cloning and partial characterization of a tobacco cDNA encoding a small bZIP protein. Biochim Biophys Acta,1998,1395(2):171-176
    102. Lai Z B, Vinod K M, Zheng Z Y et al. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens. BMC Plant Biology,2008,8:68-81
    103. Lai Z B, Ying Li, Wang F et al. Arabidopsis Sigma Factor Binding Proteins Are Activators of
    104. Lee E H and Bennett J H. Superoxide Dismutase, a possible protective enzyme against ozone injury in snap beans(Phaseolus bulgaris L.). Plant Physiol,1982,69:1444-1449
    105. Lee G J, Boerma H R, Villagarcia M R et al. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor. Appl. Genet,2004,109,1610-1619.
    106. Lee P, Chow T, Chen Z, Hsing Y C. Genomic nucleotide sequence of a soybean seed maturation protein GmPM9 gene. Plant Physiol,1992,100,2121-2122.
    107. Lee P, Hsing Y, Chow T. Promoter activity of a soybean gene encoding a seed maturation protein, GmPM9. Bot. Bull. Acad. Sin,2000,41,175-182.
    108. Lee S H, Kim J C, Lee M S et al. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin dependent enzymes. J. Biol. Chem, 1995,270,21806-21812.
    109. Li Hua, Yong Gao, Hu Xu et al. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul,2013,70:207-216
    110. Li J, Brader G, Kariola T and Tapio Palva E. WRKY70 modulate the selection of signaling pathways in plant defense. Plant J,2006,46:477-491
    111. Li S et al. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep,2009,28:683-693
    112. Li S J, Fu Q T, Chen L G et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta,2011,233:1237-1252
    113. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Scinece,1992,257:967-971
    114. Liao H, Wong F L, Phang T H et al. GmPAP3 a novel purple acidphosphatase like gene in soybean induced by NaCl stress but not phosphorusdeficiency. Gene.2003,318:103-111
    115. Liao Y, Zhang J S, Chen S Y, Zhang W K. Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol,2008,50(2):221-30
    116. Liao Y, Zou H F, Wang H W et al. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res,2008,18(10):1047-60
    117. Lin H X, M Z Zhu, M Yano et al. QTLs for Na+and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet,2004,108:253-260
    118. Liu J, Zhu J K. Proline accumulation and salt-stress induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Pbysinl,1997,114(2):591-596
    119. Liu Q, Kasuga M, Sakuma Y et al. Two transcription factors DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression respectively in Arabidopsis. Plant Cell,1998,10: 1391-1406
    120. Liu Z J, Shao F X, and Tang G Y. The research progress of structure, funct-ion and regulation of plant NAC transcription factors, Xibei Zhiwu Xuebao (Acta Botanica Boreali-occidentalia Sinica), 2007,27(9):1915-1920
    121. Llorente F, Lopez-Cobollo R M, Catala R et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J,2002,32: 13-24
    122. Lopez-Molina L et al. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A,2001, 98:4782-4787
    123. Lozovaya V V, Lygin A V, Zernova O et al. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem,2004,42(7-8):71-79
    124. Luo X, Bai X, Sun X et al. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot.2013,64(8):2155-2169
    125. Marc J, Wolfgang D, Jesus V, Jens T, Thomas K. bZIP transcription factors in Arabidopsis. Trends in plant science,2002,7(3):106-111
    126. Mare C, Mazzucotelli E, Crosatti C et al. Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley. Plant Mol. Biol,2004,55:399-416
    127. Martinez-Garcia J F et al. Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new subfamily of bZIP transcription factors. Plant J,1998, 13:498-505
    128. Mie K, Qiang Liu, Set suko Miura et al. Improving plant drought, salt, an d freezing t ol erance by gene t ransf er of a single stress-in ducible t ranscript ion fact or. Nature biotechnology,1999,17: 287-291
    129. Mittler R. xidative tress, ntioxidants and stress tolerance. Trends in Plant Science,2002,7:405-411
    130. Momma M, Haraguchi K, Saito M et al. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci. Biotech. Biochem,1997,61,1286-1291.
    131.Morrissy A S, Morin R D, Delaney A et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res,2009,19(10):1825-1835
    132. Muhammad Jamil, Shafiq ur Rehman, Kui Jae Lee et al. salinity reduced growth ps2 photochemistry and chlorophyll content in radish. Scientia Agricola,2007,64(2):111-118.
    133. Munns R, Lange O L et al. Encyclopedia of Plant Physiology. Springer Verlag. Berlin,1983
    134. Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J. Exp. Bot,2003,54,2231-2237
    135. Nakashima K and Yamaguchi Shinozaki K. Molecular studies on stress responsive gene expression in Arabidopsis and improvement of stress tolerance in crop plants by regulon biotechnology. Japan Agricultural Research Quarterly,2005,39(4):221-229
    136. Nakashima K, Shinwari Z K, Sakuma Y et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high salinity responsive gene expression. Plant Molecular Biology,2000,42:657-665
    137. Nakashima K, Tran L S, Van Nguyen D et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007,51(4):617-630
    138. Nei M. Genetic distance and molecular phylogeny N. Ryman F. Utter population genetics and fishery management university of Washington press, Seattle, Washington,1987:193-223.
    139. Niu X, Renshaw Gegg L, Miller L. Bi partite determinants of DNA-binding specificity of plant basic leucine zipper protein. Plant Molecular Biology,1999,41:1-13
    140. Oh M H, Wang X, Kota U, Goshe M B, Clouse SD. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proceedings of the National Academy of Sciences,2009,106:658-663
    141. Oh S K, Yi S Y, Yu S H et al. CaWRKY2 a chili pepper transcription factor is rapidly induced by incompatible plant pathogens. Mol Cells,2006,22:58-64
    142. Oleg M A, Richard T R, Oleg A and Michael G O. Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP. Reprod Biol Endocrinol, 2009,7:45-52
    143. Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus induced development of root andhypocotyls. Genes Devel,1997,11:2983-2995
    144. Paetkau D, Calvert W, Stirling I et al. Micro satellite analysis of population structure in Canadian polar bears. Mole Eco,1995,4:347-354.
    145. Parida, A K. and A.B. Das, Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental safety,2005,60(3):324-349
    146. Parvaiz A, Satyawati S. Salt stress and phyto-biochemical responses of plants. Plant Soil Environ,2008,54:89-99
    147. Paul J R, Imre E S, Patricia R et al. WRKY transcription factors. Trends in Plant Science,2010, 15(5):247-258
    148. Paz A J, Ghosal D, Wienand U et al. The regulatory cl locus of Zea mays encodes a protein with homology to MYB oncogene products and with structural similarities to transcriptional activators. EMBO J,1987,6:3553-3558
    149. Petrusa L M, Winicol L. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem,1997,35:303-310
    150. Phang T H, Guihua Shao and Hon-Ming Lam. Salt Tolerance in Soybean. Journal of Integrative Plant Biology 2008,50(10):1196-1212
    151. Priest D M, Ambrose S J, Vaistij F E et al. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J,2006,46:492-502
    152. Pritchard J K, Stephens M and Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959.
    153. Qin Yuxiang, Wang Mengcheng, Yanchen Tian, He Wenxing, Han Lu, Xia Guangmin. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep,2012,39:7183-7192
    154. Qiu J L et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J,2008,27:2214-2221
    155. Rajeev K, Thomas T, Nils S, Peter L and Andreas G. In Silico analysis on frenquency and distribution of microsatellies in ESTs of some cereal species. Cellular and Mollecular Biology Letters,2002,7:537-546
    156. Rhodes D, Handa S, Brenssan RA. Metabolic changes associfated with adaption of plant cells to water stress. Plant Physiol,1986,82:890-903
    157. Robatzek S. and Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. Plant J,2001, 28:123-133
    158. Rushton P J et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J,1996,15:5690-5700
    159. Rushton P J. et al. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes. Plant Mol. Biol,1995,29:691-702
    160. Schindler U. et al. Heterodimerization between light regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J,1992,11:1261-1273
    161. Schmidt R J, Burr F A, Aukerman M J et al. Maize regulatory gene opaque encodes a protein with a leucine zipper motif that binds to zein DNA. Proc Natl Acad Sci USA,1990,87:46-50
    162. Schuster S C. Next-generation sequencing transforms today's biology. Nat Methods,2008,5(1): 16-18
    163. Seki M, Narusaka M, Abe H et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full length cDNA microarray. Plant Cell,2001,13:61-72
    164. Seki M, Narusaka M, Ishida J et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought cold and high-salinity stresses using a full-length cDNA microarray. Plant J,2002,31: 279-292
    165. Seng Y G, Chen S Y. Molecular mechanism of plant responses to salt stress. Hereditas,2001,23(4): 365-369
    166. Seo P J, Xiang F, Qiao M et al:The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol,2009,151:275-289.
    167. Sheen J. Ca2+-dependent protein kinasea and stress signal transduction in plants, science,1996, 274(5294):1900-1902
    168. Shen Q H, Saijo Y, Mauch S, Biskup C et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science,2007,315:1098-1103
    169. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26(10):1135-1145
    170. Sheng Ying, Deng-Feng Zhang, Jing Fu et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta, 2012,235(2):253-266
    171. Shi H, Ishitani M, Kim C, et al. The Arobidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA,2000,97:6896-6901
    172. Soulages J L, Kim K, Arrese E L et al. Conformation of a Group 2 late embryogenesis abundant protein from soybean:evidence of poly (L-Proline)-type II structure. Plant Physiol,2003,131: 963-975.
    173. Soulages J L, Kim K, Walters C, Cushman J C. Temperatureinduced extended helix random coil transitions in a Group 1 late embryogenesis-abundant protein from soybean. Plant Physiol,2002, 128:822-832
    174. Stolf M R, Medri M E, Neumaier N et al. Cloning and quantitative expression analysis of drought-induced genes in soybean. Genetics and Molecular Research,2010,9:858-867
    175. Strathmann A. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J,2001,28:1-15
    176. Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during saltstress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J,1997,12:557-569
    177. Strizhov N, Keller M, Konez-Kalman Z et al. Mapping of the entomocidal fragment of Spodoptera specific Bacillus thuringiensis toxin CrylC. Mol Gen Genet,1996,25:11-19
    178. Sun C et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugarresponsive elements of the isol promoter. Plant Cell,2003,15:2076-2092
    179. Sun C, Palmqvist S and Olsson H. A novel WRKY transcription factor SUSIBA2 participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso 1 promoter. Plant Cell,2003,15:2076-2092
    180. Takada S, Hibara K, Ishida T, Tasaka M The CUP-SHAPED COTYLEDON gene of Arabidopsis regulates shoot apical meristem formation. Development,2001,128(7):1127-1135
    181. Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T. Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana Chitinase inhibitora Allosamidin enhances stress tolerance. Bioscience Biotechnology and Biochemistry,2009,73:1066-1071
    182. Tanaka k, Kondo K, Sugahara k. Accumulation of hydrogen peroxide in chloroplasts of SO2-fumigated spinach leaves. Plant Cell Physi,1982,23(6):999-1007
    183. Tester M, Davenport R, Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lond),2003,91 (5):503-527
    184. the WRKY33 Transcription Factor in Plant Defense. The Plant Cell,2011,23:3824-3841
    185. Thomas Eulgem, Paul J. Rushton, Silke Robatzek and Imre E. Somssich. The WRKY superfamily of plant transcription factors. Trends in Plant Science,2000,5 (5):199-206
    186. Turck F, Zhou A and Somssich I E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPRl-1 in parsley. Plant Cell, 2004,16:2573-2585
    187. Ulker B, Shahid Mukhtar M and Somssich I E. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta,2007,226:125-137
    188. Uno Y et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U. S. A,2000,97:11632-11637
    189. Walia, H et al. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol,2007,63:609-623
    190. Walsh J, Waters C A, Freeling M. The maize gene liguleless encodes abasic leucine zipper protein involved in the establishment of the leaf blade sheath boundary. Genes Devel,1998,12:208-218
    191. Wang B S, Luttge U, Ratajczak R. Specific regulation of SOD iso-forms by NaCl and osmotic stressing leaves of the C3 halophyte Suaeda Salsa L. J Plant Physiol,2004, (6):285-293
    192. Wang Z et al. An oligo selection procedure for identification of sequence specific DNA binding activities associated with plant defense. Plant J,1998,16:515-522
    193. Ward J M, Hirschli K D, Sze H. Plants pass the salt.Trends Plant Sci,2003,8 (5):200-201
    194. Weisshaar B et al. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J,1991,10: 1777-1786
    195. Weston K. Myb proteins in life, death and differentiation. Curr Opin Genet Dev,1998,8:76-81
    196. Whatmore A M, Chudek J A, Reed R H. The effects of osmotic up shock on the extra cellular solute pools of Bacillus subtilis. J Gen Micmbiol,1990,136:2527-2535
    197. Whitsitt MS, Collins RG, Mullet J E. Modulation of dehydration tolerance in soybean seedlings. Dehydrin Matl is induced by dehydration but not by abscisic acid. Plant Physiol,1997,114, 917-925
    198. Wim G, Ive D S, Daniel R. L et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. PNAS,2011, 10:1073-1079
    199. Wim G, Mansour K, Krzysztof W et al. A Role for AtWRKY23 in Feeding Site Establishment of Plant-Parasitic Nematodes. Plant Physiology,2008,148:358-368
    200. Wu Z J, Meyer C A, Choudhury S et al. Gene expression profiling of human breast tissue samples using SAGE-Seq. Genome Res,2010,20 (12):1730-1739
    201. Xiang T H, Wang L L, Pang J L et al. Hairy root induced by wild-type agrobacterium rhizogenes K599 in soybean, cucumber and garden balsam in vivo. Yi Chuan.2005 Sep;27(5):783-6
    202. Xiao Y, Hu P, Ho D, Vaidya V, Seebode S, Cardarelli M. A computing platform to support communication and sense-making in intensive care. AMIA Annu Symp Proc,2007,11:1160-1171
    203. Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev,2000,14 (23):3024-3036
    204. Xie Z et al. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J,2006,46:231-242
    205. Xu X, Chen C, Fan B and Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell,2006,18: 1310-1326
    206. Yang P et al. A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of tobacco class I chitinase gene promoter. Plant J,1999,18:141-149
    207. Yeo A. Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot, 1998,49:915-929.
    208. Yong L, Zou H F, Wei W et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 2008,228:225-240
    209. Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Protoc,2007,2(7):1565-1572
    210. Yu D, Chen C and Chen Z Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell,2001,13:1527-1539
    211. Zhai Y, Wang Y, Li Y, Lei T et al. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene.2013,513(1):174-83
    212. Zhang G, Chen M, Li L et al. Over-expression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot,2009,60(13):3781-96
    213. Zhang Z, Zhang Q, Wu J et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One,2013,8(2):e57472
    214. Zhang, Z L. et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol,2004,134:1500-1513
    215. Zhou Q Y, Tian A G, Zou H F et al. Soybean WRKY type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J,2008,6(5):486-503
    216. Zhu J, Lee B H, Dellinger M et al. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J,2010,63(1):128-140
    217. Zou X et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J. Biol. Chem,2004,279:55770-55779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700