我国西南典型喀斯特峰丛洼地土壤理化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上喀斯特面积最大、分布最广的国家,并以我国西南地区喀斯特地貌类型最典型且集中连片分布。作为世界性难题的喀斯特脆弱环境的恢复与治理一直是国内外相关学者关注的焦点。果化喀斯特生态示范区建立于2000年,位于广西百色市平果县果化镇,面积约1000公顷,属于典型的喀斯特峰丛洼地,是我国乃至世界热带、亚热带典型的喀斯特地貌。经过十多年的生态恢复和石漠化治理,果化示范区的生态环境和经济状况得到了很大程度的改善,当地群众的生活水平有了明显提高。在精确农业已成为一种产业的今天,了解和掌握示范区土壤理化性状特征对加快区域内土壤质量的提升、生态环境的恢复、当地群众’生活水平的提高等有着重要的意义。
     以果化示范区内龙何屯、布尧屯和陇尧屯为研究区域,运用“3S”技术,结合岩溶环境在GIS中进行土壤监测样点的布设;开展了不同深度土壤理化指标的实地监测调查,获取了各监测点的空间位置和属性数据:利用地统计学方法探讨了示范区土壤理化指标的变异特征,获取了土壤理化指标的空间分布状况;利用经典统计学从高程、坡度、土壤厚度、植被、地块大小、石漠化和土壤侵蚀等岩溶环境对土壤理化性状的影响进行了分析,探讨了不同岩溶环境对土壤理化指标的主要影响因子,研究结果如下
     ①研究区不同深度土壤理化指标均存在不同程度的空间正相关,且相关性随距离的增大而减小,5cm、10cm、20cm和30cm的土壤pH空间自相关尺度分别为2200m、1600m、1600m和2000m:5cm、10cm、20cm和30cm的土壤电导率空间自相关尺度为2200m、2200m、1400m和800m;5cm、10cm、20cm和30cm的土壤温度空间自相关尺度分别为1800m、1400m、600m和2000m;5cm、10cm、20cm和30cm的土壤体积含水量空间自相关尺度分别为2400m、2400m、2200m和2000m;土壤颜色和厚度的空间自相关尺度均为2200m。不同深度的土壤理化指标多数存在明显的集聚特征,并在局部地区呈现孤立分布。
     ②不同深度土壤理化指标的垂直相关性较强,指数模型、球状模型和高斯模型能较好地反映研究区域不同深度土壤理化指标的空间分布与变异特征。研究区内不同深度土壤pH、土壤电导率、土壤温度、土壤体积含水量、土壤厚度和土壤颜色的最小空间变程分别约为650m、750m、1300m、2400m、500m和850m,各最小空间变程可作为区内土壤样点间隔的布设依据。
     ③土壤pH主要受植被覆盖度、石漠化程度、地质背景和地块大小的影响;土壤电导率主要受植被覆盖度、地质背景、石漠化程度和高程的影响;土壤温度主要受土壤厚度、土壤侵蚀、坡度和植被覆盖度的影响;土壤体积含水量主要受石漠化程度、植被覆盖度、土壤厚度和高程的影响。总体上看,土壤理化指标受岩溶环境的影响较为显著,不同岩溶环境下的土壤理化特征存在一定的规律性和特殊性。
China is the world's largest and most widely distributed area of karst. The karst landform of southwest China is one of the most typical concentrated distributions. The recovery and restoration of fragile karst environment have been focused by domestic and abroad scholars. Guohua karst ecological demonstration zone of about1000hectares was established in2000, located in Guohua town, Pingguo county, Baise city, Guangxi. Belonging to typical karst cluster-peak depression areas, Guohua demonstration area is China's and even the world's tropical and subtropical typical karst landforms. After more than ten years of ecological restoration and rocky desertification control, the ecological environment, economic conditions and living standard of Guohua demonstration zone have been greatly improved. While the precision agriculture has become an industry today, recognizing the soil physical and chemical properties is meaningful for accelerating resional soil quality, recovery ecological environment, improve local people's living standard, and so on.
     Taking Longhe village, Burao village and Longrao village as Guohua study area, by using G1S, RS, and GPS, according to karst environment, the paper located the soil sampling point by GIS, surveyed soil physical and chemical indice of different soil depth, and obtained their spational positions and attribution data. Using geostatistics, the paper obtained the spatial variability characteristics and spatial distribution of soil physical and chemical indice. By using classical statistics from the elevation, slope, theckness of soil, vegetation, land size, rocky desertification, soil erosion and other karst environment factors, the paper analyzed the main influence factors of soil physical and chemical characteristics. The main results are as follows:
     ①Soil physical and chemical indice in different depth showed different spatial correlation which decreased in longer distance. Spatial autocorrelation scales of5cm、10cm、20cm and30cm of soil pH were respectively2200m、1600m、1600m and2000m; Spatial autocorrelation scales of5cm、10cm、20cm and30cm of soil electric conductivity were respectively2200m、2200m、1400m and800m; Spatial autocorrelation scales of5cm、10cm、20cm and30cm of soil Temperature was respectively1800m、1400m、600m and2000m; Spatial autocorrelation scales of5cm、10cn、 20cm and30cm of soil volumetric water content were respectively2400m2400m、2200m and2000m; Spatial autocorrelation scales of soil color and thickness were both2200m. The soil physical and chemical indice in different depth presented obvious cluster characteristics as well as isolated distribution in somewhere.
     ②The vertical correlation of soil physical and chemical indice in different depth was high. Semi variogram theory models of each soil indice were mainly index models, globular models, and gauss models which could better reflect the spatial distribution and variation characteristics of soil physical and chemical indice in different depth. The minimum space variable ranges of soil pH soil electric conductivity, soil temperature, soil volumetric water content in different depth were respectively650m、750m、1300m、2400m、500m and850m which could be used to define the soil sampling interval.
     ③Soil pH was mainly affected by vegetation, rock desertification degree, geological background and plot size; Soil electric conductivity was mainly affected by vegetation, geological background, rocky desertification degree and elevation; soil temperature was mainly affected by soil thickness, soil erosion, slope and vegetation; soil water content was mainly affected by rocky desertification, vegetation, soil thickness and height. On the whole, different karst environment had a significant effect in soil physical and chemical indice which showed a certain regularity and particularity in different karst environments.
引文
[1]Legrand HE. Hydrological and ecological problems of karst regions[J]. Science,1973, (179): 859-864.
    [2]蔡运龙.中国西南岩溶石山贫困地区的生态重建[J].地球科学进展,1996,11(6):602-606.
    [3]张惠远,蔡运龙.喀斯特贫困山地的生态重建:区域范型[J].资源科学,2000,22(5):21-26.
    [4]李阳兵,侯建筠,谢德体.中国西南岩溶生态研究进展[J].地理科学,2002,22(3):365-370.
    [5]张殿发,欧阳自远,王世杰.中国西南喀斯特地区人口、资源、环境与可持续发展中国人口[J].资源与环境,2001,11(1):77-81.
    [6]袁道先.岩溶地区的地质环境和水文生态问题[J].南方国土资源,2003,(1):22-25.
    [7]蒋忠诚,曹建华,杨德生.西南岩溶石漠化区水土流失现状与综合防治对策[J].中国水土保持科学,2008,6(1):37-42.
    [8]陈洪松,王克林.岩溶干旱特征及其治理对策[J].农业现代化研究,2004,25(专刊):70-73.
    [9]劳文科,祁晓凡,刘慧敏,等.广西果化龙何地区表层带岩溶水系统及其水资源特征[J].中国岩溶,2008,27(2):122-128.
    [10]罗为群,蒋忠诚,覃小群.岩溶石山区石灰土改良方法及对比试验研究——以广西平果县龙何屯为例[J].地球与环境,2008,36(1):87-92.
    [11]覃小群,邓艳,蓝芙宁,等.基于GIS技术的典型岩溶石山区土壤侵蚀危险性评价[J].安全与环境工程,2005,12(4):69-72.
    [12]蒋忠诚,李先琨,覃小群,等.论岩溶峰丛洼地石漠化的综合治理技术——以广西平果果化示范区为例[J].中国岩溶,2008,27(1):50-55.
    [13]吴孔运,蒋忠诚,罗为群.喀斯特石漠化地区生态恢复重建技术及其成果的价值评估——以广西平果县果化示范区为例[J].地球与环境,2007,35(2):159-165.
    [14]吴孔运,蒋忠诚,罗为群,等.喀斯特峰丛山地立体生态农业模式实施效果研究[J].中国生态农业学报,2008,16(5):1197-1200.
    [15]黄玉清,何成新,王晓英,等.西南喀斯特山区农果草系统耦合及生产效益分析——以广西平果县果化镇龙何屯为例[J].中国生态农业学报,2007,15(6):156-160.
    [16]任美锷,刘振中.岩溶学概论[M].北京:商务印书馆,1983.
    [17]蒋忠诚.论中国岩溶峰丛洼地的形成[J].中国岩溶,1996,15(2):83-90.
    [18]邓新辉,吴孔运,蒋忠诚,等.西南喀斯特峰丛洼地生态环境效应及其危害[J].广西农业科学,2009,40(7):857-863.
    [19]杨明德,梁虹.峰丛洼地形成动力过程与水资源开发利用[J].中国岩溶,2000,19(1):44-51.
    [20]Isphording W C. Mineralogical and physical properties of Gulf coast limestone soils[J]. Transactions-Gulf Coast Association of Geological Societies,1978, (18):201-214.
    [21]Danin A, Gerson E, Marton K, et al. Patterns of limestone and dolomite weathering by lichen sand blue green algae and their palaeoclimatic significance[J]. Palaeogeogr, Palaeoclimatol, Palaeoecol,1982, (37):221-233.
    [22]王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,(29):441-449.
    [23]周国富.贵州喀斯特峰丛洼地农业自然灾害及对策初步研究[J].贵州师范大学学报(自然科学版),1997,15(4):25-30.
    [24]曾馥平,彭晚霞,宋同清,等.桂西北喀斯特人为干扰区植被自然恢复22年后群落特征的变化[J].生态学报,2007,27(12):5110-5119.
    [25]张伟,陈洪松,王克林.典型喀斯特峰丛洼地坡面土壤养分空间变异性研究[J].农业工程学报,2008,24(1):68-73.
    [26]彭晚霞,王克林,宋同清,等.喀斯特脆弱生态系统复合退化控制与重建模式[J].生态学报,2008,28(2):811-820.
    [27]兰安军,张百平,熊康宁,等.黔西南脆弱喀斯特生态环境空间格局分析[J].地理研究,2003,22(6):733-741.
    [28]中国科学院学部.关于推进西南岩溶地区石漠化综合治理的若干建议[J].地球科学进展,2003,18(4):489-492.
    [29]廖赤眉,刘燕华,胡宝清,等.喀斯特土地石漠化的图谱分析与生态重建[J].农业工程学报,2004,20(6):266-271.
    [30]胡业翠,刘彦随,吴佩林,等.广西喀斯特山区土地石漠化:态势、成因与治理[J].农业工程学报,2008,24(8):98-101.
    [31]李丽,童立强,李小慧.基于植被覆盖度的石漠化遥感信息提取方法研究[J].国土资源遥感,2010,(2):59-62.
    [32]陈起伟,兰安军,熊康宁,等.基于遥感光谱特征的喀斯特石漠化信息提取[J].贵州师 范大学学报(自然科学版),2003,21(4):82-87.
    [33]凌成星,林辉,薛晓坡,等.基于植被指数特征和空间分析的石漠化信息提取[J].水土保持研究,2009,16(1):167-172.
    [34]胡顺光,张增祥,夏奎菊.遥感石漠化信息的提取[J].地球信息科学学报,2010,12(6):870-879.
    [35]童立强.西南岩溶石山地区石漠化信息自动提取技术研究[J].国土资源遥感,2003,(4):35-38.
    [36]张明阳,王克林,陈洪松,等.基于RS和GIS的喀斯特区域水土流失动态监测与分析——以广西环江县为例[J].资源科学,2007,29(3):124-131.
    [37]杨成英,吴虹.桂林毛村岩溶地下河流域水土流失遥感动态监测研究[J].中国岩溶,2009,28(2):206-211.
    [38]杨琴,周忠发,刘梦琦.世界自然遗产地水土流失遥感监测与遗产地保护——以贵州省荔波遗产地为例[J].六盘水师范高等专科学校学报,2009,21(3):1-3.
    [39]张宏群,安裕伦.贵州省喀斯特山区水土流失遥感信息模型的建立[J].水土保持通报,2003,23(5):9-12.
    [40]周斌,杨柏林,洪业汤,等.基于GIS的岩溶地区水土流失遥感定量监测研究[J].矿物学报,2000,20(1):13-21
    [41]杨胜天,王冰,王玉娟.喀斯特地区水土流失遥感监测现状与发展趋势[J].水土保持通报,2007,27(1):62-66.
    [42]Martin D. An assessment of surface and zonal models of population [J]. International Journal of Geographic Information Systems,1996,10(8):973-989.
    [43]Waser MN, Mitchell RJ. Nectar standing crops in delphinium nelsonii flowers:spatial autocorrelation among plants[J]. Ecology,1990,71(1):116-123.
    [44]Peter A., Jumars. Spatial autocorrelation with RUM(Remote Underwater Manipulator): vertical and horizontal structure of a bathyal benthic community[J]. Deep Sea Research.1978, 25(7):589-604.
    [45]Kvamme K.L.. Spatial autocorrelation and the Classic Maya collapse revisited[J]. Journal of Archaeological Science.1990, (17):197-207.
    [46]Premo L.S.. Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data:an example from the Maya Lowlands[J]. Journal of Archaeological Science,2004, (31):855-866.
    [47]Diane M. Pearson. The application of local measures of spatial autocorrelation for describing pattern in north Australian landscapes[J]. Journal of Environmental Management,2002,64(1): 85-95.
    [48]金友渔.自相关—判别分析与矿床统计预测[J].地质与勘探,1991,27(3):32-36.
    [49]梁艳平,钟耳顺,朱建军.我国省级人均GDP增量变化的空间特征分析[J].中南大学学报(社会科学版),2003,9(3):355-359.
    [50]胡克林,李保国,林启美,等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33-38.
    [51]郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析[J].地理学报,2000,55(5):555-566.
    [52]黄智刚,李保国,胡克林.丘陵红壤蔗区土壤有机质的时空变异研究[J].农业工程学报,2006.22(11):58-63
    [53]梁二,王小彬,蔡典雄,等.河南省土壤有机碳分布空间自相关分析[J].应用生态学报,2007,18(6):1305-1310.
    [54]霍霄妮,李红,孙丹峰,等.北京耕作土壤重金属含量的空间自相关分析[J].环境科学学报,2009,29(6):1339-1344.
    [55]Bloschl G, Sivapalan M. Scale issues in hydrological modelling-a review[J]. Hydrology Processes,1995, (9):251-290.
    [56]赵军,刘焕军,隋跃宇.农田黑土有机质和速效氮磷不同尺度空间异质性分析[J].水土保持学报,2006,20(1):41-45.
    [57]谢花林,刘黎明,李波,等.土地利用变化的多尺度空间自相关分析——以内蒙古翁牛特旗为例[J].地理学报,2006,61(4):389-400.
    [58]Martin Yemefack, David G. Rossiter, Rosaline Njomgang. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon[J]. Geoderma,2005, (125):117-143.
    [59]王淑英,路苹,王建立.不同研究尺度下土壤有机质和全氮的空间变异特征——以北京市平谷区为例[J].生态学报,2008,28(10):4957-4964.
    [60]姜勇,庄秋丽.空间变异在土壤性质长期定位观测及取样中的应用[J].土壤通报,2005,36(4):531-535.
    [61]Kirwan N., M. A. Oliver, Moffat A.J. et al. Sampling the Soil in Long-Term Forest Plots:The Implications of Spatial Variation[J]. Environmental Monitoring and Assessment,2005, (111): 149-172.
    [62]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178-182.
    [63]Fitzjohn C, Ternan J L, Williams A G. Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control[J]. Catena,1998, (32):55-70.
    [64]Western A W, B1 schl G, Grayson R B, et al. Geostatistical characterization of soil moisture patterns in the tarrawarra catchment[J]. Journal of Hydrology,1998, (205):20-37.
    [65]Western A W, Zhou S L, Grayson R B, et al. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes[J]. Journal of Hydrology,2004, (286):113-134.
    [66]侯景儒.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1993.
    [67]华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1992.
    [68]程先富,史学正,于东升,等.江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J].应用与环境生物学报,2004,10(1):64-67.
    [69]Fisher R A. Statistical methods and scientific inference[M]. Edinburgh:Oliver & Boyd.1965.
    [70]Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties: The semi-variogram and punctual Kriging[J]. Soil Science,1980, (31):315-331.
    [71]Burgess T M. Optimal interpolation and isarithmic mapping of soil propertiesⅢ:Changing drift and universal kriging[J]. Soil Science,1980,31(2):505-524.
    [72]Vauclin M, Vieira S R, Vachaud G, et al. The use of cokriging with limited field soil observations[J]. Soil Science,1983,47(2):175-184.
    [73]Me Bratney A B, Webster R. Optimal in terpolation and isarithmic mapping of soil properties, V. Co-regionalization and multiple sampling strategy[J]. Soil Science,1983,34(1):137-162.
    [74]Husson. O., Verburg. P. H., Spatial variability of scid sulphate soils in the Plain of Reeds, Mekong delta, Vietnam [J]. Geoderma,2000, (97):1-19.
    [75]Gimeno Garcia E., Andreu V., Rubio J.L. Spatial patterns of soil temperatures during experimental fires[J]. Geoderma,2004, (118):17-38.
    [76]Castrignano A, Buttafuoco G. Geostatistical stochastic simulation of soil water content in a forested area of south Italy[J]. Biosystem Engineering.2004,87(2):257-266.
    [77]雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报,1985,(9):10-20.
    [78]徐吉炎,R.韦甫斯特.土壤调查数据地域统计的最佳估值研究——彰武县表层土全氮量的半方差图和块状克里格估值[J].土壤学报,1983,20(4):419-430.
    [79]吕军,俞劲炎.水稻土物理性质空间变异性研究[J].土壤学报,1990,27(1):8-15.
    [80]梁春祥,姚贤良.华中丘陵红壤物理性质空间变异性的研究[J].土壤学.1993,30(1):69-77.
    [81]龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15.
    [82]王军,傅伯杰,邱扬,等.黄土丘陵小流域土壤水分的时空变异特征——半变异函数[J].地理学报,2000,55(4):428-438.
    [83]陈亚新,史海滨,田圃德.水盐空间变异性监测的条件模拟[J].水利学报.2000,(6):67-73.
    [84]马风云,李新荣,张景光,等.沙坡头固沙植被若干土壤物理因子的空间异质性研究[J].中国沙漠,2005,25(2):207-215.
    [85]李毅,门旗,罗英.土壤水分空间变异性对灌溉决策的影响研究[J].干旱地区农业研究,2000,8(2):80-85.
    [86]Kai Wei Juanga, Yue-Shin Chenb, Dar-Yuan Leeb. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils[J]. Environmental pollution,2004, (127):229-238.
    [87]刘付程,史学正,王洪杰,等.苏南典型地区土壤锌的空间分布特征及其与土壤颗粒组成的关系[J].土壤.2003,35(4):330-333.
    [88]杨秀虹,李适宇.地统计学方法在环境污染研究中的应用[J].中山大学学报(自然然科学版),2005,44(3):97-101.
    [89]张庆利,史学正,黄标,等.南京城郊蔬菜基地土壤有效态铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤,2005,37(1):41-47.
    [90]Gaston L A, Locke M A, Zablotowicz R M et al. Spatial variability of soil properties and weed populations in the Mississippi Delta[J]. Soil Science,2001,65(2):449-459.
    [91]Davis J G, Hossner L R, Wilding L P, et al. Variability of soil chemical-properties in two sandy, dunal soils of Niger[J]. Soil Science,1995,159(5):321-330.
    [92]Chaosheng Zhang, David McGrath. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma, 2004, (119):261-275.
    [93]Goovaerts P. Study of spatial relationships between two sets of variables using multivariate geostatistics[J]. Geoderma,1994, (62):93-107.
    [94]Zhang C S, McGrath D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma, 2004, (119):261-275.
    [95]王其兵,李凌浩,刘先华,等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报,1998,22(5):409-414.
    [96]Hanson P. J., Wullschleger S.D., Bohlman S.A. and Todd D.E. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest[J]. Tree Physiology,1993,13: 1-15.
    [97]OLGA Shibistova, Jon LLOYD, Svetlana Evgrafova, et al. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest[J]. Tellus,2002, (54): 552-567.
    [98]Maestre, F. T., Cortina, J.. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe[J]. Soil Ecology,2003, (23):199-209.
    [99]Jianwu Tang, Dennis D. Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components[J]. Biogeochemistry,2005, (73):183-207.
    [100]Vanessa Tedeschi, Anareyw, Giovanni Manca, et al. Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing[J]. Global Change Biology,2006, (12):110-121.
    [101]甘海华,彭凌云.八门市新会区耕地土壤养分空间变异特征[J].应用生态学报,2005,6(8):1437-1442.
    [102]Mr M P, Singer M J, Nielsen D R. Spatial variability of wheat yield and soil properties on complex hills[J]. Soil Science,1998,52(4):1133-1141.
    [103]Finke P A, Gocnse D. Differences in barley-grain yields as a result of soil variability[J]. Agricultural Science.1993, (120):171-180.
    [104]杨俐苹,姜城,金继云,等.棉田土壤养分的精确管理初探[J].中国农业科学,2000,33(6):67-72.
    [105]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究-—以河北省遵化市为例[J].应用生态学报,2000,11(4):557-563.
    [106]Di H J, Trangmar B B, Kemp R A. Use of geostatistics in designing sampling strategies for soil survey[J]. Soil Science Society of America Journal,1989, (53):1163-1167
    [107]Ferreyra R A, Apezteguy H P, Sereno R, et al. Reduction of soil water spatial sampling density using scaled semivariograms and simulated annealing[J]. Geoderma,2002, (110): 265-289.
    [108]李菊梅,李生秀.几种营养元素在土壤中的空间变异[J].干旱地区农业研究,1998,16(2):58-63.
    [109]姜城,杨俐苹.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262-270.
    [110]Kolasa J, Pickett STA. Geostatistical analysis of soil salinity in a large field[J], Precision Agriculture,1991,1(2):153-165.
    [111]于政权.地统计学及在生态学中的应用[J].科学出版社,北京,1999.
    [112]Moore. I.D., Gessler, P.E., Nielsen, G.A., et al. Soil attribute prediction using terrain analysis[J]. Soil Science,1993, (57):443-452.
    [113]Thompson, J.A., Bell, J.C., Butler, C.A., Quantitative soil-landscape modeling of estimating the areal extent of hydromorphic soils[J]. Soil Science,1997, (61):971-980.
    [114]Boehm. M.M., Anderson, D W., A landscape-scale study of soil quality in three prairie farming systems[J]. Soil Science,1997, (61):1147-1159.
    '[115] Herbst M, Diekkruger B. Modelling the spatial variability of soil moisture in a micro-scale catchment and comparison with field data using geostatistics[J]. Physics and Chemistry of the Earth,2003, (28):239-245.
    [116]Rossi R E, Mulla D J, Joumel A G, et al. Geostatical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs,1991, (62):227-314.
    [117]Webster R, Cuanalo H.E. Soil transect correlograms of north Oxford shire and their interpretation[J]. Journal Soil Science,1975, (26):176-194.
    [118]Helge Brueleide, Pit Udelhoven. Correspondence of the fine-scale spatial variation in soil chemistry and the herb layer vegetation in beech forests[J]. Forest Ecology and Management, 2005, (210):205-223.
    [119]Bringmark, Kandeler E., Spatial variation in soil pH of beech forests in relation to buffering properties and soil depths[J]. Oikos,1989, (54):165-177.
    [120]Lechowicz M. J., Bell, G. The ecology and genetics of fitness in forest plants. Ⅱ.. Microspatial heterogeneity of the edaphic environment[J]. Journal of Ecology,1991, (79): 687-696.
    [121]Jackson RB, Caldwell MM. The scale of mutrient heterogeneity around individual plants & its quantification with geostatistics[J]. Ecology,1993, (74):612-614.
    [122]Gross, K. L., Pregitzer, K. S., Burton, A. J. Spatial variation in nitrogen availability in three successional plant communities[J]. Journal of Ecology,1995, (83),357-367.
    [123]Farley R A & Fiter A H. Temporal and spatial variation in soil resources in a deciduous woodland[J]. Journal of Ecology,1999, (87):688-696.
    [124]苏永中,赵哈林,文海燕,等.退化沙质草地开垦和封育对长壤理化性状的影响[J].水土保持学报,2002,16(4):5-8(126).
    [125]范亚宁,李生秀.宁夏云雾山白然保护区草地土壤有机质空间变异性及采样数确定[J].草业科学,2007,24(4):4-8.
    [126]Yost, R.S., Uehara G., Fox R.L. Geostatistical analysis of soil chemical properties of large land areas. Ⅱ. Kriging[J]. Soil Science,1982, (46):1033-1037.
    [127]陈伏生,曾德慧.科尔沁沙地退化草场土壤养分的空间结构分析[J].草业科学,2004,13(1):39-44.
    [128]张继光,陈洪松,苏以荣,等.喀斯特峰丛洼地坡面土壤水分空间变异研究[J].农业工程学报,2006,22(8):54-58.
    [129]张伟,陈洪松,王克林,等.喀斯特峰丛洼地土壤养分空间分异特征及影响因子分析[J].中国农业科学,2006,39(9):1828-1835.
    [130]Kirwan N., M. A. Oliver, Moffat A.J. et al. Sampling the Soil in Long-Term Forest Plots: The Implications of Spatial Variation[J]. Environmental Monitoring and Assessment,2005, (111):149-172.
    [131]Cohrna W G. Sampling techniques[M]. John Wiley Inc, New York,1977.
    [132]吴秀芹,蔡运龙.我国亚热带喀斯特生态环境演变研究进展[J].自然科学进展,2006,16(3):267-272.
    [133]鲁学军,周成虎,张洪岩,等.地理空间的尺度——结构分析模式探讨[J].地理科学进展,2004,23(2):107-114.
    [134]岳大祥,刘纪远.生态地理建模中的多尺度问题[J].第四纪研究.2003,23(3):256-261.
    [135]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178-182.
    [136]王珂,沈掌泉,John S. Bailey.等.精确农业田间土壤空间变异与采样方式研究[J].农业工程学报,2001,17(2):33-36.
    [137]师庆东,吕光辉,韦如意.利用FVC和DEM对中国新疆南部植被的分类研究[J].新疆大学学报(自然科学版),2003,20(3):280-284.
    [138]Fraster R S, Ferrare R A. Kaufman Y J, et al. Algorithm for atmospheric correction of aircraft and satellite imagery[J]. International Journal of Remote Sensing,1992, (13): 541-557.
    [139]杨奇勇,蒋忠诚,马祖陆,等.基于地统计学和遥感的岩溶区石漠化空间变异特征[J].农业工程学报,2012,28(4):243-247.
    [140]周欣,吴虹,党宇宁.基于EOS-MODIS的广西全境石漠化信息提取方法研究[J].化工矿产地质,2008,30(4):219-223.
    [141]张盼盼,胡远满,李秀珍,等.基于GIS的喀斯特高原山区石漠化景观格局变化分析[J].农业工程学报,2009,25(12):306-311.
    [142]龙晓闽,周忠发,张会,等.基于NDVI像元二分模型植被覆盖度反演喀斯特石漠化研究[J].安徽农业科学,2010,38(8):4184-4186.
    [143]邱炳文,王钦敏,陈崇成,等.福建省土地利用多尺度空间自相关分析[J].自然资源学报,2007,22(2):311-321.
    [144]杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007,27(3):348-353.
    [145]Anselin, L. GeoDa 0.9 User's Guide[M]. Spatial Analysis Laboratory, University of Illinois and Centre for Spatially Integrated Social Science, Urbana-Champaign, IL,2003.
    [146]Odeh O A, MeBratney A B, Chittleborough D J. Fuzzy-c-means and Kriging for mapping soil as a continuous system[J]. Soil Science Society of America Journal,1992, (56): 1848-1854.
    [147]Mohanty B P, Kanwar R S. Spatial variability of residual nitrate-nitrogen under two tillage systems in central Iowa:A composite three-dimensional resistant and exploratory approach[J]. Water Resource Research,1994, (30):237-251.
    [148]Cahn M D, Hummel J W, Brouer B H. Spatial analysis of soil fertility for site-specific crop management[J]. Soil Science Society of America Journal,1994, (58):1240-1248.
    [149]Cambardella C A, Moorman T B, Novak Jhi, et al. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal,1994, (58):1501-1511.
    [150]杨勇,李卫东,贺立源.土壤属性空间预测中变异函数套合模型的表达与参数估计[J].农业工程学报,2011,27(6):85-89.
    [151]赵鹏大.定量地学方法及应用[M].北京:高等教育出版社,2004.
    [152]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    [153]朱小琴,孙维侠,黄标,等.长江三角洲城乡交错区农业土壤pH特征及影响因素探讨[J].土壤学报,2009,46(4):594-602.
    [154]熊毅,李庆逵.中国土壤(第二版)[M].北京:科学出版社,1990.
    [155]司江英,汪晓丽,陈冬梅,等.不同pH和氮素形态对作物幼苗生长的影响[J].扬州大学学报(农业与生命科学版),2007,28(3):68-71.
    [156]孙小茗,汪晓丽,司江英,等.低钾条件下pH值和NH4+对作物幼苗K+吸收的影响[J].扬州大学学报(农业与生命科学版),2006,27(4):74-77.
    [157]尹建道,生愿喜久雄,龚洪柱,等.山东滨海地区盐碱地土壤分析研究[J].林业科技通讯,1998,(6):13-16.
    [158]梁飞,田长彦,尹传华,等.盐角草改良新疆盐渍化棉田效果初报[J].中国棉花,2011,(10):30-32.
    [159]梁飞,田长彦.土壤盐渍化对尿素与磷酸脲氨挥发的影响[J].生态学报,2011,31(4):3999-4006.
    [160]于天仁.土壤的电化学性质及其研究法(修订本)[M].科学出版社,1976.
    [161]毛久庚,李成保.土壤直流电导率与含水量和容重的关系[J].土壤,1990,22(5):241-244.
    [162]李成保,季国亮,孔晓玲.红壤耕层电导率动态变化的初步研究[J].土壤,1997,(3):156-158.
    [163]刘晓英,林而达.东北地区农作物生长期内温度变化的时空特征[J].中国农业气象,2003,24(1):11-15.
    [164]齐尚红,王冰洁,武作书.农业生产与温度的关系[J].河南科技学院学报(自然科学版),2007,35(4):20-23.
    [165]裴风.农业的界线温度与农作物生长[J].吉林农业,2003,(11):12.
    [166]房世波,沈斌,谭凯炎,等.大气CO2和温度升高对农作物生理及生产的影响[J].中国生态农业学报,2010,18(5):1116-1124.
    [167]赵翠薇.岩溶峰丛洼地的农业生态效应研究[J].中国岩溶,1998,17(2):133-140.
    .[168]李阳兵,高明,魏朝富,等.岩溶山地不同土地利用土壤的水分特性差异[J].水土保持学报,2003,17(5):63-66.
    [169]蔡运龙.中国西南岩溶石山贫困地区的生态重建[J].地球科学进展,1996,11(6):602-606.
    [170]李阳兵,王世杰,熊康宁.浅议西南岩溶山地的水文生态效应研究[J].中国岩溶,2003,22(1):24-27.
    [171]苏以荣,黄宇,王克林,等.桂西北环境移民安置区新垦蔗地土壤水分动态研究[J].水土保持通报,2001,21(1):49-52.
    [172]张建辉,何蓉,唐时嘉.四川丘陵区土壤湿度的空间变异分析[J].土壤通报,1996,27(2):61-62.
    [173]刘海隆,蒋太明,刘洪斌,等.不同土地利用方式对岩溶山区旱坡地土壤水分时空分异的影响[J].土壤学报,2005,42(3):428-433.
    [174]陈洪松,傅伟,王克林,等.桂西北岩溶山区峰丛洼地土壤水分动态变化初探[J].水土保持学报,2006,20(4):136-139.
    [175]范亚宁,党蕊娟,李世清,等.云雾山草地土壤氮素及有机碳空间变异特征[J].水土保持研究,2007,14(4):82-86.
    [176]贾恒义,陈国良.黄土丘陵天然草地生态系统功能的初步研究[J].草业科学,1992,9(3):19-22.
    [177]戎郁萍,韩建国.放牧强度对草地土壤理化形状的影响[J].中国草地,2001,23(4):41-47.
    [178]Campbell J B. Spatial variation of sand content and pH within a single contiguous delineation of two Soil mapping units[J]. Soil Science Society of America Joumal,1978, (42): 460-464.
    [179]Martin Yemefack, David G. Rossiter, Rosaline Njomgang. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon[J]. Geoderma,2005,12(5):117-143.
    [180]魏孝荣,邵明安.黄土沟壑区小流域土壤pH值的空间分布及条件模拟[J].农业工程学报,2009,25(5):61-67.
    [181]李艳,史舟,王人潮,等.海涂土壤剖面电导率的协同克立格法估值及不同取样数目的比较研究[J].土壤学报,2004,41(3):434-443.
    [182]李洪义,史舟,程街亮,等.基于EM38的土壤剖面电导率预测研究[J].中国农业科学,2008,41(1):295-302.
    [183]李洪义,史舟,唐惠丽.基于三维普通克立格方法的滨海盐土电导率三维空间变异研究[J].土壤学报,2010,47(2):359-373.
    [184]李毅,门旗,罗英.土壤水分空间变异性对灌溉决策的影响研究[J].干旱地区农业研究,2000,8(2):80-85.
    [185]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究——空间自相关与分形方法[J].地理学报,1998,53(1):87-96.
    [186]Legendre P, Legendre L. Numerical Ecology:Developments in Environmental Modelling 20[M]. Amsterdam:Elsevier,1998.
    [187]Anselin L. Under the hood:Issues in the specification and interpretation of spatial regression models[J]. Agricultural Economics,2002, (27):247-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700