城市地表蒸散发遥感反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化的背景下,由于城市地表覆盖的急剧变化以及人类活动热排放的增强,城市热环境急剧恶化。城市热岛效应已经成为广泛关注的城市环境问题,地理学、生态学和环境学等众多学科领域就有关城市热岛的空间特征、形成机制进行了广泛深入的研究,但这些研究甚少涉及到蒸散发。由于蒸散发是城市表面水循环和能量循环中重要且难以估算的分量,也是城市热环境研究的重要参数之一,对城市地表蒸散发的模拟和动态监测研究具有重大的科学意义和实用价值,有助于更深入地理解城市热环境问题的形成机理,为城市热环境问题缓解对策的制定提供参考。
     本文以长沙市核心城区为研究区,基于城市地表能量平衡特征,提出了城市蒸散发遥感反演的多源平行模型,对模型的参数化方案进行了研究,并基于多源遥感数据进行了模型的实验研究,通过与气象站点数据的对比分析以及与P-M模型和SEBAL模型反演结果的对比分析,论证了算法的有效性,最后,分析了土地覆盖空间结构及变化对城市地表能量平衡影响和蒸散发变化对城市热环境的影响。研究结果表明:
     (1)由于城市多源平行遥感蒸散发反演模型发展了传统的二源平行模型,考虑了城市地表能量平衡特征,在多源遥感数据的支持下,城市多源平行遥感蒸散发反演算法能够获得较好的结果。与气象站实测数据相比,结果偏差最大值为1.0mm,最小值为0.1mm,与彭曼模型计算结果相比,不同的土地覆盖类型均存在一定程度的低估,裸地低估程度最大,但不超过20%,反演结果与基于SEBAL模型估算结果具有很好的相关性,植被区相关性最大。
     (2)从蒸散发的角度分析了土地覆盖变化对城市热环境的影响,研究表明:不同土地覆盖类型上蒸散发差异明显,土地覆盖的变化导致了显著地蒸散发变化;城市热岛效应的强度与地表蒸散发之间存在明显的负相关关系,城市扩展过程中,蒸散发空间分布特征发生了显著变化,并导致了城市热岛效应加剧。1993-2005年林地向建设用地的转化导致了蒸散发显著减少;林地向农田转化也在一定程度上导致了蒸散发的减少,以轻微减少为主;农田向建设用地转化的区域分布广泛,农田向建设用地转化的区域的蒸散发明显减少,农田向林地转化的区域的蒸散发明显增加,但主要表现为轻微增加。无城市热岛效应和表现不明显的区域蒸散发较大,热岛效应表现强和极强的区域蒸散发也相对最低,城市热岛效应的强度与地表蒸散发之间存在明显的负相关关系。通过对城市热岛效应对蒸散发变化响应的分析发现:1993年的热岛效应指数分级图显示热岛效应主要发生于中心城区,空间聚集特征明显,1993-2005年研究区热岛效应表现较强的区域大幅扩展;在蒸散发急剧减少的条件下,城市热岛效应表现出明显的增强趋势,但主要以轻微增强为主。
In the context of global climate change, because of drastic changes in urban land cover and enhancement of anthropogenic heat release, the urban heat environment deteriorated sharply. The urban heat island effect is becoming one of major urban environmental problems and has been widely concerned. Some subjects such as geography, ecology and environmental science, carried out extensive and in-depth research, the study includes the spatial characteristics and formation mechanism of the urban heat island. However, these studies rarely related to the evapotranspiration. Evapotranspiration is one of the important parameters which are used urban surface water cycle and energy cycle research, and is one of the important parameters in urban thermal environment study. It is of great scientific significance and practical value to study the evapotranspiration simulation and dynamic monitoring of the urban land surface and it contribute to a deeper understanding of the environmental problems of urban heat formation mechanism.
     In this paper, the core urban area of Changsha City was selected as study area. Firstly, a new algorithm called multi-source parallel model based on the urban surface energy balance characteristics has been proposed. Secondly, some parameterization methods for the model have been studied, and the inversion result of this algorithm is validated by comparison with the data of meteorological stations and estimation results of P-M model and SEBAL algorithm. Finally, the influence of land covers spatial structure and change on evapotranspiration of urban land surface, and the influence of evapotranspiration changes on the urban thermal environment have been analyzed.
     The results show that:
     (1) In support of multi-source remote sensing data, the inversion result of multi-source parallel model is satisfactory. Compared with the weather station measured data, the maximum bias is1.0mm, and the minimum bias is0.1mm. Compared with result of P-M model, different land cover types are present to a certain degree of underestimation, and the relative deviation does not exceed20%, compared with result of SEBAL algorithm, two results share good relations and the relation in vegetation area get maximum value.
     (2) Land cover changes resulted in a significant change in evapotranspiration. Conversions of forest land to building land from1993to2005resulted in significant reductions in evapotranspiration, and conversions of forest land to farmland in the same period resulted reductions in evapotranspiration, but the reduction degrade is mainly slight. Conversions of farmland to building land are widely distributed, and resulted in significant reductions in evapotranspiration. Conversions of farmland to forest land resulted in significant evapotranspiration increase.
     (3) Correlation between the intensity of urban heat island and surface evapotranspiration shows obvious negative correlation. From1993to2005, the area of urban region is significantly expanded, and the spatial distribution characteristics of evapotranspiration changed significantly, and resulted in the urban heat island effect exacerbated. The evapotranspiration in the region where urban heat island effect is not obvious is relatively high, and the evapotranspiration in the region where urban heat island effect is strong is relatively low, a significant negative correlation between the intensity of urban heat island and evapotranspiration can be found. From the classification map of heat island intensity in1993, it can be found that heat island effect mainly occurred in the central urban area, and the characteristic of spatial aggregation is obvious. The region of high heat island intensity expanded significantly from1993to2005, in the conditions of significant reduction of evapotranspiration, the heat island intensity obvious enhanced, but area slightly enhanced accounted for the main part.
引文
[1]Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Monthly Weather Review,1972, 100:81-92.
    [2]史作民,陈涛.城市化及其对城市生态环境影响研究进展[J].生态学杂志,1996,15(1):35-41.
    [3]United Nations Population Fund. State of world population 2007:unleashing the potential of urban growth[EB/OL]. [2010-12-07], http://www.unfpa.org/public/publications/pid/408.
    [4]刘文元,刘怡君.中国新型城市化报告2009[M].北京:科学出版社,2009.
    [5]保罗·诺克斯,琳达·迈克卡西.城市化[M].北京:科学出系版社,2009.
    [6]张理茜,蔡建明,王妍.城市化与生态环境响应研究综述[J].生态环境学报2010,19(1):244-252.
    [7]Landsberg H E. The urban climate[M]. New York Academic Press,1981:21-22
    [8]柳孝图.城市物理环境与可持续发展[M].南京:东南大学出版社,1999:65-67.
    [9]王翠云,王太春,元炳成,等.城市热环境研究进展[J].甘肃科技,25(23),91-93.
    [10]李书严,陈洪滨,李伟.城市化对北京地区气候的影响[J].高原气象,2008,27(5):1102-1109.
    [11]Roden G I. A modern statistical analysis and documentation of historical temperature records in California, Oregon, and Washington,1821-1962. Journal of Applied Meteorology,1966,5(1):3-24.
    [12]Comrie A C. Mapping a wind-modified urban heat island in Tucson, Arizona (with comments on integrating research and undergraduate learning). Bulletin of the American Meteorological Society,2000,81(10):2417-2431.
    [13]Ernesto J. Heat island development in Mexico City. Atmospheric Environment [J]. 1997,31(22):3821-3831.
    [14]Kim Y H, Baik J J. Maximum urban heat island intensity in Seoul[J]. Journal of Applied Meteorology,2002,41(6):651-659.
    [15]吴息,王少文,吕丹苗.城市化增温效应的分析[J].气象,1994,20(3):7-9.
    [16]朱家其,汤绪,江灏.上海市城区气温变化及城市热岛[J].高原气象,2006,25(6):1154-1160.
    [17]季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球 物理学报,2006,49(1):69-77.
    [18]初子莹,任国玉.北京地区城市热岛强度变化对区域温度序列的影响[J].气象学报,2005,63(4):534-540.
    [19]林学椿,于淑秋,唐国利.北京城市化进展与热岛强度关系的研究[J].自然科学进展,2005,15(7):882-886.
    [20]周雅清,任国玉.华北地区地表气温观测中城镇化影响的检测和订正[J].气候与环境研究,2005,10(4):743-753.
    [21]程胜龙.城市化对兰州气温变化影响的定量分析[J].气象,2005,31(6):29-34.
    [22]江学顶,夏北成.珠江三角洲城市群热环境空间格局动态[J].生态学报,2007,27(4):1461-1470.
    [23]陈志,俞炳丰,胡海洋,等.城市热岛效应的灰色评价与预测[J].西安交通大学学报,2004,38(9):985-988.
    [24]Li Q, Zhang A, Liu X, et al. Urban heat island effect on annual mean temperature during the last 50 years in China[J]. Theoretical and Applied Climatology,2004, 79(3-4):165-174.
    [25]杨玉华,徐祥德,翁永辉.北京城市边界层热岛的日变化周期模拟[J].应用气象学报,2003,14(1):61-68.
    [26]Bohm, R. Urban bias in temperature time series-A case study for the city of Vienna, Austria[J]. Climatic Change,1998.38:113-128.
    [27]Hajat S, Kovats RS, Atkinson RW et al (2002) Impact of hot temperatures on death in London:a time series approach[J]. Epidemiology Community Health 56:367-372
    [28]Koehler, M., M. Schmidt, F.W. Grimme, M. Laar, V.L.Paiva, S. Tavares (2002): Green roofs in temperate climates and in the hot humid tropics-far beyond the aesthetics[J]. Environmental and Health.13,4, pp 382-391.
    [29]Myrup L D. A numerical model of the urban heat island[J]. Journal of Applied Meteorology,1969,16:11-20.
    [30]Tapper N J, Tyson P D, Owens I F, et al. Modeling the winter urban heat island over Christchurch, NewZealand[J]. Journal of Applied Meteorology,1981,20: 385-396.
    [31]边海,铁学熙.津市夜间城市热岛的数值模拟[J].地理学报,1999,43(2):150-158.
    [32]孙旭东,孙孟伦,李兆元等.西安市城市边界层热岛的数值模拟[J].地理研究, 1994,13(2):49-54.
    [33]Oke T R. The distinction between canopy and boundary-layer urban heat islands[J].Atmosphere,1976,14:268-277.
    [34]Oke T R. The energetic basis of the urban heat island[J]. Quarterly Journal of the Royal Meteorological Society,1982,108(455):1-24.
    [35]Peterson T C, Owen T W. Urban heat island assessment:metadata are important. Journal of Climate[J],2005,18 (14):2637-2646.
    [36]Jones P D, Kelly P M, Goodess C M, et al. The effect of urban warming on the northern hemisphere temperature average[J]. Journal of Climate,1989,2(3): 285-290.
    [37]Easterling D R, Horton B, Jones P D. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367.
    [38]Vukovich F M. A study of the atmospheric response due to a diurnal heating function haracteristic of an urban complex[J]. Monthly Weather Review,1973, 101:467-470.
    [39]Bomstein R D. The 2-D URBMET urban boundary layer model[J]. Journal of Applied Meteorology,1975,14:1459-1467.
    [40]李兴生、朱翠娟.坡地对城市热岛影响的数值研究[J].气象学报,1990,48(3):293-296.
    [41]Yoshikado H. Numerical study of the daytime urban effect and its interaction with the sea breeze [J]. Journal of Applied Meteorology,1992,31:1146-1153.
    [42]桑建国,张治坤,张伯寅.热岛环流的动力学分析[J].气象学报,2000,58(3):321-326.
    [43]陈燕,蒋维楣,吴涧.利用区域边界层模式对杭州市热岛的模拟研究[J].高原气象,2004,23(4):519-524.
    [44]Shobhakar Dhaka, Keisuke Hanak. Improvement of urban thermal environment by managing heat discharge sources and surface modification in Tokyo [J]. Energy and buildings,2002(34):13-23.
    [45]Balling R C, Brazel S W. High-resolution surface-temperature patterns in a complex urban terrain[J].Photographic Engineering Remote Sensing,1988,54: 1289-1298.
    [46]陈云浩,宫阿都,李京,基于地表辐射亮温标准化的城市热环境遥感研究——以上海为例[J],中国矿业大学学报,2006,35(4):462—467.
    [47]陈云浩,史培军,李晓兵,等.城市空间热环境的遥感研究-热场结构演变的分形 测量[J].测绘学报,2002,31(4):322-326.
    [48]Y. Chen, D. Z. Sui, T. Fung, etc. Fractal analysis of the structure and dynamics of a satellite-detected urban heat island[J]. International Journal of Remote Sensing,2007,28(10):2341-2355.
    [49]Vu Thanh ca, Takashi Asaeda. Eusuf mohamad abu reduction in air conditioning energy caused by nearby park. Energy and buildings[J],1998,29:913-921.
    [50]Kohichi Asano, Akira Hoyano. Application of a new spherical thermography technique to monitoring outdoor long wave radiation fields[J], Proceeding of SPIE,1998,34(36):317-324,1998.
    [51]Rao P k. Remote sensing of urban heat islands from an environmental satellite [J]. Bulletin of the American Meteorological Society,1972,53:647-648.
    [52]Balling R C, Brazel S W. High-resolution surface-temperature patterns in a complex urban terrain[J]. Photographic Engineering Remote Sensing,1988,54: 1289-1298.
    [53]Carnahan W H, Larson R C. An analysis of an urban heat sink[J]. Remote Sensing of Environment,1990,33:65-79.
    [54]Dousset B. Surface temperature statistics over Losangeles:The influence of land use[C] Proceedings of IGARSS-91. New York:IEEE,1991:367-371.
    [55]NicholJ E. High-resolution surface temperature patterns related to urban morphology in a tropical city:a satellite-based study [J]. Journal of Applied Meteorology,1996,35:135-150.
    [56]Aniello C, Morgan K, Busbey A. Mapping micro urban heat islands using Landsat TM and a GIS[J]. Comparative Geoscience,1995:21,965-969.
    [57]Dousset B. AVHRR-derived cloudiness and surface temperature patterns over the Los Angeles area and their relationship to land use[J]. Proceedings of IGARSS-89,1989,2132-2137.
    [58]Lougeay R, Brazel A, Hubble M. Monitoring intra-urban temperature patterns and associated land cover in Phoenix[J], Arizona using Landsat thermal data. Geocarto International,1996,11,79-89.
    [59]Eliasson I. Infrared thermography and urban temperature patterns[J]. International Journal of Remote Sensing,1992,13,869-879.
    [60]Voogt J A, Soux C A. Methods for the assessment of representative urban surface temperatures[C]. Third Symposium on the urban environment. American Meteorological Society,2000,8,14-18.
    [61]Voogt J A, Grimmond C S. Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area[J]. Journal of Applied Meteorology,2000,39,1679-1699.
    [62]Penman H L. Natural Evaporation from Open Water,Bare Soil and Grass[A].Proceedings of the Royal Society of Loudon[C].1948,A Series 193:120-145.
    [63]Monteith J L. The State and Movement of Water in Living Organisms.Symposium of the Society for Experimental Biology 19[C]. England:Cambridge University Press,1965,19:205-234.
    [64]Yunusa I A M, Walker R R, Lu P. Evapotranspiration Components from Energy Balance, Saptlow and Microlysimetry Techniques for an irrigated vineyard culture and Forest meteorology in Inland Australia[J]. Agriculture and forest meteorology,2004,127(1):93-107.
    [65]Brotzge J A, Kenneth C C. Examination of the surface energy budget:a comparison of eddy correlation and Bowen ratio measurement system[J]. Journal of hydrometeorology,2003,4(2):160-178.
    [66]Baldocchi D, Falge E, Gu L, et al. Fluxnet:a new tool to study the temporal and spatial varability of ecosystem-scale carbon carbon dioxide, water vapor and energy flux densities[J]. Bulletin of the American meterological society, 2001,81:2415-2434.
    [67]高彦春,龙笛.遥感蒸散发模型研究进展[J].遥感学报,2008,12(3):515-528.
    [68]Jackson R D, Reginato R J. Idso S B. Wheat canopy temperature:a practical tool for evaluating water requirements [J]. Water resources research,1977, 13(3):651-656.
    [69]Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data[J]. International journal of remote sensing,1983,4:371-383.
    [70]Lagouarde J P. Use of NOAA-AVHRR data combined with an agrometerological model for evaporation mapping[J]. International journal of remote sensing, 1991,12(9):1853-1864.
    [71]Vidal A, Perrier A. Analysis of a Simplified Relation for Estimating Daily Evapotranspiration from Satellite Thermal IR Data.Technical Note[J].International Journal of Remote Sensing,1989,10(8):1327-1337.
    [72]Lagouarde J P,MacAneney,K J.Daily Sensible Heat Flux Estimation from a Single Measurement of Surface Temperature and Maximum Air Temperature[J].Bound-Layer Meteorology,1992,59(4):341-362.
    [73]Carlson T N,Buffum M J.Estimating Total Daily Evapotranspiration from Remote Surface Temperature Measurements [J]. Remote Sensing of Environment,1989,29(2):197-207.
    [74]Carlson T N, Gillies R R, Perry E M.A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover[J].Remote Sensing Reviews,1994,(9):161-173.
    [75]Price J C.Using Spatial Context in Satellite Data to Infer Regional Scale Evaporanspiration[J].IEEE Transactions on Geoscience and Remote Sensing, 1990,28:940-948.
    [76]Lambin E F,Ehrlich D.The Surface Temperature-Vegetation Index Space for Land Cover and Land-Cover Change Analysis[J].International Journal of Remote Sensing,1996,17(3):463-487.
    [77]Carlson T N,Gillies R R,Schmugge T J. An Interpretation of Methodologies for Indirect Measurements of Soil Water Content [J]. Agricultural and Forest Meteorology,1995,77(3-4):191-205.
    [78]Friedl M A.Forward and Inverse Modeling of Land Surface Energy Balance Using Surface Temperature Measurements [J]. Remote Sensing of Environment, 2002,79(2):344-354.
    [79]Gillies R R, Carlson T N, Cui J,et al. A verification of the \'Triangle\' Method for Obtaining Surface Soil Water Content and Energy Fluxes from Remote Measurements of the Normalized Difference Vegetation Index (NDVI) and Surface Radiant Temperature [J].International Journal of Remote Sensing,1997,18(15):3145-3166.
    [80]Goward S N,Xue Y, Czajkowski K P. Evaluating Land Surface Moisture Conditions from the Remotely Sensed Temperature/Vegetation Index Measurements:An Exploration with the Simplified Simple Biosphere Model[J]. Remote Sensing of Environment,2002,79(2):225-242.
    [81]Jiang L,Islam S.Estimation of Surface Evaporation Map over Southern Great Plains Using Remote Sensing Data[J].Water Resources Research,2001,37(2):329-340.
    [82]Moran M S,Clarke T R,Inoue Y,et al.Estimating Crop Water Deficit Using the Relation Between Surface-Air Temperature and Spectral Vegetation Index[J].Remote Sensing of Environment,1994,49(3):246-263.
    [83]Roerink G J,Su Z,Menenti M.S-SEBI:A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance[A].Physics and Chemistry of the Earth.Part B:Hydrology,Oceans and Atmosphere[C].2000,25:147-157.
    [84]张仁华,孙晓敏,朱治林等.以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证[J].中国科学D辑,2002,32(12):1041-1050.
    [85]赵英时.遥感应用分析原理与方法[M].科学出版社,2003.
    [86]Moran M S, Kustas W P,Vidal A, et al. Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland[J].Water resour ces,1994,30:1339-1349.
    [87]Stewart J B, Kustas W P, Humes K S, Nichols W D, et al. Sensible heat flux radiometric surface temperature relationship for eight semi-arid areas [J]. Journal of application meterol,1994,33:1110-1117.
    [89]Sugita M, Brutsaert W. Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements [J]. Water Resources, 1990,26:2937-2944.
    [90]Kohsiek W, De Bruin H A R, Hurk B, et al. Estimation of the sensible heat flux of semiarid area using surface radioactive temperature measurements[J]. Boundary-layer meteorol,1993,63:213-230.
    [91]Chehbouni A, LoSeen D, Njoku E, et al. Estimation of sensible heat flux over sparsely vegetated surfaces [J]. Journal of hydrology,1997,188-189:855-868.
    [92]Chehbouni A, Lo Seen D, Njoku E G, et al. Examination of the difference between radiative and aerodynamic surface temperature over sparsely vegetated surface [J]. Remote sensing environment,1996,58:177-186.
    [93]Vining R, Blad B. Estimation of sensible heat flux from remotely sensed canopy temperatures[J]. Journal of Geophysical Research,1992,97 (17):951-954.
    [94]Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quart J Roy meteorol society,1985,111:839-855.
    [95]Shuttleworth W J, Gurney R J. The theoretical relationship between foliage temperature and canopy resistance in sparse crop[J]. Quart J Roy Meteorol Soc,1990,116:497-519.
    [96]辛晓洲.用定量遥感方法计算地表蒸散[D].中科院遥感应用研究所博士学位论文,2003.
    [97]刘雅妮,武建军,夏虹,等.地表蒸散遥感反演双层模型的研究方法综述[J]. 干旱区地理,2005,28(1):65-72.
    [98]Norman J M, Kustas W P,Humes K S. Sources approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J].Agric For Meteor,1995,77:263-293.
    [99]Kustas W P, Moran M S,Humes K S, Stannard D I, et al. Surface energy balance estimates at local and regional scales using optical remote sensing from an aircraft platform and atmospheric data collected over semiarid rangelands[J]. Water resources,1994,30(5):1241-1259.
    [100]Zhan X, Kustas W P, Humes K S. An intercomparison study on models of sensible heat flux over partial canopy with remotely sensed surface temperature [J]. Remote sensing environment,1996,58:242-256.
    [101]辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报,2003,5(3):233-240.
    [102]Manabe S. Climate and the ocean circulation I:the atmosphere circulation and the hydrology of the earth's surface [J]. Monthly weather review,1969,97: 939-955.
    [103]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [104]曾永年,张璎璎,张鸿辉,等.城市扩展强度及其地表热特性遥感定量分析[J].测绘学报,2010,39(1):65-71.
    [105]梁顺林.定量遥感[M].北京:科学出版社,2009:144-168.
    [106]Simon Richard Proud. Improving the SMAC atmospheric correction code by analysis of Meteosat Second Generation NDVI and surface reflectance data [J]. Remote Sensing of Environment,2010:(114):1687-1698.
    [107]郝建亭,杨武年,李玉霞,等.基于FLAASH的多光谱影像大气校正应用研究[J].遥感信息,2008(1):7-81.
    [108]赵春江,宋晓宇,王纪华,等.基于6S模型的遥感影像逐像元大气纠正算法[J].光学技术,2007,33(1):11-15.
    [109]李玮,康晓光,陈雷.一种MODIS遥感图像大气校正的快速算法[J].信号处理,2007,23(5):751-754.
    [110]李俊生,张兵,陈正超,等MODIS数据辅助中巴资源卫星图像大气校正研究[J].中国科学(E辑),2006,36(s1):141-150.
    [111]彭妮娜,易维宁,麻金继,等.利用MODIS数据进行QuickBird-2卫星海岸带图像大气校正研究[J].光学学报,2008(5):817-821.
    [112]徐永明,覃志豪,陈爱军,等.基于查找表的MODIS逐像元大气校正方法研究[J].武汉大学学报(信息科学版),959-963.
    [113]Vermote E F, Tanre D, Deuze J L, et al. Second Simulation of the Satellite Signal in the Solar Spectrum,6S:an Overview[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.
    [114]唐洪钊,晏磊,李成才,等.基于MODIS高分辨率气溶胶反演的ETM+影像大气校正[J].地理与地理信息科学,2010,26(4):12-17.
    [115]毛节泰,李成才.气溶胶辐射特性的观测研究[J].气象学报,2005,63(5):622-635.
    [116]KAUFMAN Y J, WALD A E,REMER L A,et al. The MODIS2.1μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geosciences and Remote Sensing,1997,35:1286-1298.
    [117]Ujjwal Maulik, Debasis Chakraborty. A self-trained ensemble with semisupervised SVM:Anapplication to pixel classification of remote sensing imagery[J]. pattern recognition,2010,44:615-623.
    [118]G. M. Foody, A. Mathur. A relative evaluation of multiclass image classification by support vector machine. IEEE Transactions on Geoscience and Remote Sensing,2004,42:1335-1343.
    [119]Kramer J H. Observation of the Earth and its Environment, Survey of Missions and Sensors[M], Berlin:Springer,2002.
    [120]Li T S, Chen C Y, Su C T. Comparison of neural and statistical algorithms for supervised classification of multi dimensional data[J]. International Journal of Industrial Engineering Theory, Application and Practice,2003,10:73-81.
    [121]Florian R, Ittycheriah A, Jing H. Named entity recognition through classifier combination[C]. CONLL-2003, San Francisco:Morgan Kaufmann Publisher, 2003:168-171.
    [122]Schapire R E, Singer Y. Boost exter:A boosting based system for text categorization[J]. Machine Learning,2000,39(2-3):135-168.
    [123]孙亮,韩崇昭.特征一决策层多分类器融合的知识发现方法[J].东南大学学报,2006,22(2):222-225.
    [124]刘正军,王长耀,张继贤.基于小波与遗传算法的特征提取与特征选择[J].遥感学报,2005,9(2):176-185.
    [125]Kumar Shailesh, Ghosh Joydeep, Crawford Melba M. Hierarchical fusion of multiple classifiers for hyper-spectral data analysis [J]. Pattern analysis & application,2002,5(2):210-220.
    [126]张健沛,程丽丽,杨静,等.基于全信息相关度的动态多分类器融合[J].计算机科学,2008,35(3):188-190.
    [127]唐春生,金以慧.基于全信息矩阵的多分类器集成方法[J].软件学报,2003,14(6):1103-1109.
    [128]Changshan W. Normalized spectral mixture analysis for monitoring urban composition using ETM+imagery [J]. Remote Sensing of Environment,2004, (93):480-492.
    [129]Ridd, M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:comparative anatomy for cities[J]. International journal of remote sensing,1995, (16):2165-2185.
    [130]Choudhury B J,Monteith J L.A Four-Layer Model for the Heat Budget of Homogeneous Land Surfaces[J].Quarterly Journal of the Royal Meteorological Society,1988,114:373-398.
    [131]Huband, N D S, Monteith J L. Radiative surface temperature and energy balance of a wheat canopy:I. Comparison of radiative and aerodynamic canopy temperature. Boundary layer meteorology,1986,36:2321-2342.
    [132]Troufleau D, Lhomme J P, Monteny B, et al. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation:I. an experimental analysis of the kB-1 parameter[J]. Journal of hydrology,1997,188:815-838.
    [133]Dash P, Gottsche F M, Olesen F S, et al. Land surface temperature and emissivity estimation from passive sensor data:Theory and practice-current trends[J]. International Journal of Remote Sensing,2002,23,2563-2594.
    [134]Martha K Raynolds, Josefino C Comiso, Donald A Walker, etc. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI [J]. Remote Sensing of Environment,2008,112,19:1884-1894.
    [135]R.C. Pipunic, J.P. Walker, A. Western. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction:A comparative synthetic study[J]. Remote Sensing of Environment.2008,112:1295-1305.
    [136]Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing,2001, 22:3719-3746.
    [137]Jimenez-Munoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J], Journal of Geophysics Research,2003,108:4688-4697.
    [138]Becker F, Li Z L. Towards a local split window over and surface [J]. International Journal of Remote Sensing,1990,11(3):369-393.
    [139]Li ZL, Becker F. Feasibility of Land Surface Temperature and Emissivity Determination from AVHRR Data[J]. Remote Sensing of Environment,1993, 43:67-85.
    [140]庄家礼,陈良富,徐希孺.用遗传算法反演连续植被的组分温度[J].遥感学报,2001,5(1):1-6.
    [141]郑文武,曾永年,田亚平.基于混合像元分解模型的TM6/ETM+热红外波段地表比辐射率估算[J].地理与地理信息科学,2010,26(3):25-28.
    [142]Kaufman Y J, Gao B C. Remote Sensing of Water Vapor in the Near IR from EOS/MODIS[J]. IEEE Transaction on Geosciences and Remote Sensing,1992,30(5):871-884.
    [143]赵强,杨世植,乔延利,等.利用MODIS红外资料反演大气参数以及表层温度的研究[J].武汉大学学报·信息科学版,2009,34(4):400-403.
    [144]庄家礼,陈良富,徐希孺.用遗传算法反演连续植被的组分温度[J].遥感学报,2001,5(1):1-6.
    [145]范闻捷,徐希孺.路面组分温度的综合反演研究[J].中国科学(D辑).2005,35(10):989-996.
    [146]王奋勤,范闻捷,秦其明,等.矩阵表达与对象统计特性相结合的组分温度反演方法[J].遥感学报.2004,8(2):102-106.
    [147]梁文广,赵英时,周霞.基于MODIS数据的地表组分温度反演研究[J].长江流域资源与环境,2008,17(6):948-954.
    [148]宋小宁,赵英时.基于MODIS数据的组分温度反演研究[J].中国矿业大学学报,2004,33(44):406-411.
    [149]刘振华.基于遥感的区域土壤水反演方法研究[D].中国科学院遥感应用研究所博士学位论文,2004.
    [150]李小文,王锦地,胡宝新,等.先验知识在遥感反演中的作用[J],中国科学D辑,1998,67-72.
    [151]覃志豪,Li W J, Zhang M H,等.单窗算法的基本大气参数估计方法[J].国土资源遥感,2003,56(2):37-73.
    [152]Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SIB) for use within general circulation models [J]. Journal of atmospheric science,1986, 43(6):505-531.
    [153]Liang S. Validation and spatial scaling in J. Kong (Ed.). Quantitative remote sensing of land surfaces, New Jersey:Wiley & Sons,2004,431-471.
    [154]Guo L J, Moore J M, M C M. Pixel block intensity modulation:adding spatial detail to TM band 6 thermal imagery. International journal of remote sensing, 19,2477-2491.
    [155]Stathopoulou M, Cartalis C, Petrakis M. Integrating CORINE land cover data and landsat TM for surface emissivity determination:an application for the urban area of Athens, Greece [J]. International journal of remote sensing, 2007,28:3291-3304.
    [156]Kebiao Mao, Jiancheng Shi, Huajun Tang, Zhao-Liang Li, Xiufeng Wang, Kunshan Chen, A Neural Network Technique for Separating Land Surface Emissivity and Temperature from ASTER Imagery, IEEE Trans. Geosci. Remote Sensing,2008,46(1):200-208.
    [157]Brutsaert W, Sugita M. Test of a sensible heat transfer parameterization for surfaces with anisothermal dense vegetation [J]. Journal of atmospheric science, 1996,53:209-216.
    [158]Hansen S V. Surface roughness lenghs. ARL technical report US army, White sands missile range, NM 88002-5501.
    [159]Kondo J. Atmospheric science near the ground surface[M]. Tokyo:University of Tokyo press,2000.
    [160]Bastiaanssen, W G M, Menenti, et al. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation[J]. Journal of hydrology,1998, 212:198-212.
    [161]Huete A R. A soil-adjusted vegetation index (SAVI) [J]. Remote sensing of environment,1988,25:295-309.
    [162]Macdonald R W, Griffiths R F, Hall D J. An improved method for the estimation of surface roughness of obstacle arrays [J]. Atmospheric environment,1988,32: 1857-1864.
    [163]王介民,高峰,刘绍民.流域尺度ET的遥感研究[J],遥感技术与应用,2003,18(5):332-338.
    [164]潘志强,刘高焕.黄河三角洲蒸散的遥感研究[J].地球信息科学,2003,(3):91-95.
    [165]刘志武,雷志栋,党安荣,等.遥感技术和SEBAL模型在干旱区腾发量估算中的应用[J].清华大学学报(自然科学版),2004,44(3):421-424.
    [166]孙敏章,刘作新,吕谋超,等.基于陆面能量平衡方程的遥感模型[J].灌溉排水学报,2004,24(3):74-75.
    [167]陈云浩,李晓兵,史培军,等.上海城市热环境的空间格局分析[J].地理科学,2002,,2(3):317-323.
    [168]马勇刚,塔西甫拉提·特依拜,黄粤,等.城市景观格局变化对城市热岛效应的影响——以乌鲁木齐市为例[J].干旱区研究,2006,23(1):172-176.
    [169]江学顶,夏北成.珠江三角洲城市群热环境空间格局动态[J].生态学报,2007,27(4):1461-1470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700