基于PLS模型的农业土壤成分高光谱遥感反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了高光谱遥感数据使用偏最小二乘法(Partial Least Squares Regression,PLS)定量评价农业土壤成分的可行性。本文共选择了三个研究区,分别位于美国印第安纳州中部西塞罗溪流域(Cicero Creek),加利福尼亚州勒莫尔(Lemoore)及西班牙托梅略索(Tomelloso)。在印第安纳研究区,本研究应用Hyperion图像和实验室光谱对土壤水分,有机质,总碳,总磷,总氮和粘土含量建立偏最小二乘法预测模型。对于每种成分,去除离群值的样本集分为校正集和验证集。验证结果显示Hyperion图像光谱和实验室光谱能够有效评价和预测水分,有机质,总碳和总氮,但有机质和总磷的预测精度较低。在美国加利福尼亚州和西班牙两个研究区,在土壤样品烘干后,测得粘土和碳酸盐成分含量,然后以5%的含量间隔向土壤样品中加水,在不同土壤湿度条件下测量实验室光谱。应用偏最小二乘法对不同土壤水分含量条件下的碳酸盐,粘土和土壤含水量进行评价。结果显示,土壤含水量和碳酸盐的偏最小二乘法模型具有较高精度,但是粘土成分的预测精度仍然偏低。
As a common boundary where atmosphere, hydrosphere, geosphere and biosphere interact, soil plays an important role in the transfer of materials and energy between these Earth’s spheres and quantitative information of soil properties are often required for environmental monitoring, modeling and precision agriculture practicing. For example, as the largest carbon stock of continental biosphere, soil organic matter (SOM) is related to the size and capacity of soil microbial population and controls soil structural stability. Effective management of soil carbon (C) reservoir can help to mitigate greenhouse gases (Mondini and Sequi, 2008). Soil moisture is related to energy exchange between soil and atmosphere and favorable to N2O and CH4 production; both soil moisture and clay content are important for plant growth and soil quality. Soil nutrient conditions drive the rate of fertilizer applications that is directly related to N2O emission and soil capacity to consume atmosphere CH4. Phosphorus (P) has been identified as a pollutant carried into water bodies from agriculture land where excess fertilizers are applied. With the increasing requirement for quantitative soil information, remote sensing has been considered as a promising tool for rapidly quantifying single or multiple soil properties. Numerous studies show that different soil properties can be estimated with laboratory measured and simulated hyperspectral data (Ben-Dor and Banin, 1990; Ben-Dor and Banin, 1994; Palacious-Orueta and Ustin, 1998). The success of these laboratory spectra-based studies naturally lead to the exploration of imaging spectroscopy for characterizing soil properties on a large scale because imaging spectroscopy not only has the capability of acquiring spectral information at several tens of hundreds spectral bands as laboratory spectroscopy does but also provides a synoptic view which cannot be achieved by laboratory spectroscopy. In contrast to a large number of airborne hyperspectral sensor applications, few attempts have been made to map soil properties with satellite hyperspectral imagery. To extract the soil information using hyperspectral data with hundreds to thousands bands, a feasible statistic method need to be applied to analyze the relationship between these two parameters. Partial least squares regression (PLS) is full-spectrum methods and commonly used to quantify hyperspectral soil data. This study aims to evaluate the potential of Hyperion imagery for estimating soil moisture content (SMC), total C, total nitrogen (N), total P, SOM, and soil clay content and to compare the estimates of these soil properties with Hyperion image spectra to those resulting from laboratory measured spectra in order to address the effects of spectral and spatial resolutions on the estimation of soil properties. The effectiveness of hyperspectral reflectance data coupled with the partial least squares (PLS) regression method for mapping agricultural soil properties is examined in this study.
     Soil samples were collected from central Indiana, California, USA and Castilla-La Mancha (CLM), Spain. For the samples collected in central Indiana, Hyperion images covering the Cicero Creek reservoir of central Indiana were used to estimate soil properties including soil moisture, soil organic matter (SOM), total carbon (C), total phosphorus (P), total nitrogen (N) and clay content. Two scenes of the Hyperion images were acquired, calibrated and georeferenced, and image spectra for the locations of soil samples collected in field were extracted from the calibrated and corrected images. To examine the performance of partial least square (PLS) regression for estimating major soil properties mentioned above from Hyperion data, the PLS results for Hyperion image spectra were compared with laboratory measured spectra. The laboratory spectra across the 0.4-2.5nm region (2151 bands) were collected for moist field soil samples and then resampled to 165 bands matching the spectral characteristics of Hyperion data. To conduct these comparisons, several statics were used including the coefficient of determination (R2) and RPD (the ratio of standard deviation of sample chemical concentration to root mean square error). PLS was conducted in two phases: phase-1 where all samples were used in a calibration step to determine outliers and calibrated again after outlier removal, and phase-2 where the outlier removed dataset were split into two subsets for calibration and validation. Based on R2 and RPD values, the results for the phase-1 calibration indicate that PLS can estimate some of soil properties from Hyperion spectra. In phase 2, PLS can predict most of soil properties satisfactory with Hyperion reflectance spectra except for moisture, SOM, and clay content. The higher spectra resolution increased prediction accuracy for most of soil properties except for moisture and total P. Prediction accuracy dropped to unreliable using Hyperion reflectance spectra for moisture and clay content maybe due to lower signal-to-noise ratio of Hyperion spectra and the Hyperion spectral resolution of 30 m. Spectral absorbance used to build PLS model to remove the nonlinearity on soil spectra could improve prediction accuracy for soil moisture with laboratory data, SOM with hyperspectral data and total C with resampled laboratory and Hyperion data. PLS generated the poorest results for estimating clay content especially with Hyperion data. This primarily originates from the interfering effects of soil moisture on the clay absorption feature and a low signal-to-noise ratio of Hyperion data in the shortwave infrared region.
     For the samples collected in California and CLM, Spain, carbonate and clay concentrations were analyzed after oven dry soil samples, but laboratory spectra were measured for soil samples at sequential moisture levels. Carbonate, clay and SMC were estimated using PLS. PLS had high performance for estimating carbonate and SM, but poor estimation for clay due to band overlapping.
     In the future, we want to use satellite hyperspectral data with a signal-to-noise ratio equivalent to those for HyMap and AVIRIS to improve the estimation of clay content from reflectance. The existing drawbacks in empirical models limited the spatial and temporal transferability. We will collect more soil samples to acquire wider range samples to improve the feasibility of PLS models predicting soil properties. We also want to develop a non-linear PLS models and testing them with Hyperion, HyMap and AVIRIS images.
引文
[1]Mondini, C.,P. Sequi.Implication of soil C sequestration on sustainable agriculture and environment[J]. Waste Management, 2008, 28: 678-684.
    [2]Ben-Dor, E.,A. Banin.Near-infrared reflectance analysis of carbonate concentration in soils[J]. Applied Spectroscopy, 1990, 44: 1064-1069.
    [3]Ben-Dor, E.,A. Banin.Visible and near-infrared (0.4-1.1 um) analysis of arid and semiarid soils[J]. Remote Sensing of Environment, 1994, 48: 261-274.
    [4]Palacious-Orueta, A.,S. L. Ustin.Remote sensing of soil properties in the Santa Monica Mountains ?. Spectral analysis[J]. Remote Sensing of Environment, 1998, 65:170-183.
    [5]Vane, G., R. O. Green, et al.The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)[J]. Remote Sensing of the Environment, 1993, 44: 127-143.
    [6]Kruse, F. A. (1994). Imaging spectrometer data analysis- a tutorial. International Symposium on Spectral Sensing Research '94 San Diego, CA, ISSSR.
    [7]Staenz, K.A decade of imaging spectrometry in Canada[J]. Canadian Journal of Remote Sensing, 1992, 18: 187-197.
    [8]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取分析研究[J].环境遥感, 1992, 7(1): 49-58.
    [9]陈述彭,童庆禧等.遥感信息机理的研究[M].北京:科学出版社,(1998).
    [10]Green, R. O.. Determination of in-flight calibration of AVIRIS using atmospheric absorption features Fifth Annual JPL Airborne Earth Science Workshop. Pasadena, California, JPL Publisher. 1995,1: 71-74.
    [11]Showengerdt, R. A. Remote sensing, models and methods for image processing [M]. San Diego, USA: Academic Press,(1997).
    [12]王晋年.以地物识别和分类为目标的高光谱数据挖掘[J].中国图像图形学报, 1999, 11(4): 957-964.
    [13]Hunt, G. R. Electromagnetic radiation: the communication link in remote sensing. Remote Sensing in Geology. B. S. S. a. A. R. Gillespie. New York, John Wiley and Sons. 1980.
    [14]Vane, G.,A. F. H. Goetz.Terrestrial imaging spectroscopy[J]. Remote Sensing of Environment 1988, 24: 1-29.
    [15]Goetz, A. F. H., G. Vane, et al.Imaging spectrometry for earth remote sensing[J]. Science 1985, 228: 1147-1153.
    [16]Cocks, T., R. Jenssen, et al. (1998). The HyMap Airborne Hyperspectral Sensor: The System, Calibration and Performance. Proc. 1st EARSeL Workshop on Imaging Spectroscopy. D. S. M. Schaepman, and K.I. Itten. Zurich, EARSeL, Paris: 37-43.
    [17]童庆禧.地球空间信息科学之刍议[J].地理与地理信息科学, 2003, 19(4): 1-3.
    [18]Chen, F., D. E. Kissel, et al.Field-Scale Mapping of Surface Soil Organic Carbon Using Remotely Sensed Imagery[J]. Soil Science Society of America Jounal, 2000, 64: 746-753.
    [19]Ray, S. S., J. P. Singh, et al. (2004). Use of High Resolution Remote Sensing Data for Generating Site-specific Soil Mangement Plan. XX ISPRS Congress, Commission 7. Istanbul, Turkey The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 127-131.
    [20]Dematte, J. A. M., M. V. Galdos, et al.Quantification of tropical soil attributes from ETM+/LANDSAT-7 data[J]. International Journal of Remote Sensing, 2007, 28(17): 3813-3829.
    [21]Dalal, R. C.,R. J. Henry.Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Soiciety of America Journal, 1986, 50: 120-123.
    [22]Morra, M. J., M. H. Hall, et al.Carbon and Nitrogen Analysis of Soil Fractions Using Near-Infrared Reflectance Spectroscopy[J]. Soil Science Soiciety of America Journal, 1999, 38(15-16): 1965-1974.
    [23]Masserschmidt, I., C. J. Cuelbas, et al.Determination of Organic Matter in Soils by FTIR/Diffuse Reflectance and Multivariate Calibration[J]. Journal of Chemometrics, 1999, 13(3-4): 265-273.
    [24]Chang, C. W., D. A. Laird, et al.Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties[J]. Soil Science Society of America Jounal, 2001, 6: 480-490.
    [25]Udelhoven, T., C. Emmerling, et al.Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study[J]. Plant Soil, 2003, 251(2): 319-329.
    [26]He, Y., M. Huang, et al.Prediction of soil macronutrients content using near-infrared spectroscopy[J]. Computers and Electronics in Agriculture, 2007, 58(2): 144-153.
    [27]Condit, H. R.The spectral reflectance of American soils[J]. Photogrammetric Engineering & Remote Sensing, 1970, 36: 955-966.
    [28]Stoner, E. R., M. F. Baumgardner, et al.Extension of laboratory-measured soil spectra to field conditions[J]. Soil Science Society of America Jounal, 1980, 44: 572-574.
    [29]Ben-Dor, E.,A. Banin.Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Jounal, 1995, 59: 364-372.
    [30]Hunt, G. R.,J. W. Salisbury.Visible and near infrared spectra of minerals and rocks, I. Silicate minerals[J]. Modern Geology, 1970, 1: 283-300.
    [31]Gaffery, S. J.Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55) microns: calcite, aragonite, and dolomite[J]. American Mineralogist, 1986, 71: 397-414.
    [32]Sullivan, D. G., J. N. Shaw, et al.IKONOS imagery to estimate surface soil property variability in two Alabama Physiographies [J]. Soil Science Society of America Jounal, 2005, 69: 1789-1798.
    [33]戴昌达(1981).中国主要土壤光谱反射特性分类与数据处理的初步研究[A].遥感文集[C].北京,科学出版社: 315-323.
    [34]徐彬彬,季耿善,朱永豪.中国陆地背景和土壤光谱反射特性的地理分区的初步研究[J].环境遥感, 1991, 6(2): 142-151.
    [35]Hunt, G. R.Near infrared (1.3 to 2.4μm) spectra of alteration minerals: Potential for use inremote sensing applications[J]. Geophysics, 1979, 44: 1974-1986.
    [36]van der Meer, F. D.Spectral unmixing of LANDSAT thematic mapper data[J]. International journal of remote sensing, 1995, 16: 3189-3194.
    [37]Baumgardner, M. F., S. J. Kristof, et al.Effects of organic matter on the multispectral properties of soils[J]. Proceedings Indian National Science Academy, 1970, 79: 413-422.
    [38]Montgomery, O. L. (1976). An investigation of the relationship between spectral reflectance and the chemical , physical and generic characteristics of soils. West Lafayette, Indiana, Purdue Unidversity. Ph. D.
    [39]Baumgardner, M. F., L. F. Suva, et al.Reflectance properties of soils[J]. Advance in Agronomy, 1985, 38: 1-44.
    [40]Ben-Dor, E., Y. Inbar, et al.The Reflectance Spectra of Organic Matter in the Visible Near-Infrared and Short Wave Infrared Region (400 - 500 nm) during a Controlled Decomposition Process[J]. Remote Sensing of Environment, 1997, 61: 1-15.
    [41]Hunt, G. R.,J. W. Salisbury.Visible and near infrared spectra of minerals and rocks: carbonates[J]. Modern Geology, 1971, 2: 23-30.
    [42]Cartiati, F., L. Erre, et al.Polarization of water molecules in phyllosylicates in relation to exchange cations as tudied by near infrared spectroscopy[J]. Clays Clay Minerals, 1983, 31: 155-157.
    [43]Ishida, T., H. Ando, et al.Estimation of complex refractive index of soil particles and its dependence on soil chemical properties[J]. Remote Sensing of Environment, 1991, 38: 173-182.
    [44]Stoner, E. R.,M. F. Baumgardner.Characteristic variations in reflectance of surface soils[J]. Soil Science Society of America Jounal, 1981, 46(6): 1161-1165.
    [45]Reeves, J. B., G. W. McCarty, et al.Mid-infrared Diffuse Reflectance Spectroscopy for the Quantitative Analysis of Agricultural Soils[J]. Journal of Agricultural and Food Chemistry, 2001, 49(2): 766-772.
    [46]Brown, D. J., K. D. Shepherd, et al.Global soil characterization with VNIR diffuse reflectance spectroscopy[J]. Geoderma, 2006, 132(3-4): 273-290.
    [47]浦瑞良,宫鹏高光谱遥感及其应用[M].北京:高等教育出版社,(2000).
    [48]Fox, G. A.,G. J. Sabbagh.Estimation of soil organic matter from red and near-infrared remotely sensed data using a soil line Euclidean distance technique[J]. Soil Science Society of America Jounal, 2002, 66(6): 1922-1929.
    [49]Clark, R. N., G. A. Swayze, et al. (1991). Mapping with imaging spectrometer data using the complete band shape least-squared algorithm simultaneously fit to multiple spectral features from multiple materials. Third Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) Workshop. Pasadena, CA, JPL. 91-28: 2-3.
    [50]Boardman, J. W.,F. H. Goetz (1991). Sedimentary facies analysis using imaging spectometry: a geophysical inverse problem. Third Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) Workshop. Pasadena, CA, JPL. 91-28: 4-13.
    [51]Farrand, W. C.,R. B. Singer (1991). Analysis of altered volanic pyroclastic using AVIRIS data. Third Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) Workshop. Pasadena, CA, JPL.91-28: 245-257.
    [52]Crowley, J. K.Mapping playa evaporite minerals with AVIRIS data: a 1st report from Death Valley, Clifornia[J]. Remote Sensing of Environment, 1993, 44: 337-356.
    [53]Kruse, F. A., A. B. Lefkoff, et al.Expert system-based mineral mapping in northern Death Vally, California Nevada, using the Airborne Visible Infrared Imaging Spectometer (AVIRIS) [J]. Remote Sensing of Environment, 1993, 44: 309-336.
    [54]King, T. V. V., R. N. Clark, et al. (1995). Remote mineral mapping using AVIRIS data at Summitville, Colorado and the adjacent San Juan Mountains. Summitville Forum' 95. Colorado, Colorado Geological Survey Special Publication.
    [55]Palacious-Orueta, A.,S. L. Ustin.Multivariate classification of soil spectra[J]. Remote Sensing of Environment, 1996, 57(2): 108-118.
    [56]Ben-Dor, E., K. Patkin, et al.Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel[J]. International Jounral of Remote Sensing, 2002, 23(6): 1043-1062.
    [57]Stevens, A., B. Van Wesemael, et al.Detection of carbon stock change in agricultural soils using spectroscopic techniques[J]. Soil Science Society of. America Journal, 2006, 70(3): 844-850.
    [58]Stevens, A., B. V. Wesemael, et al.Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils[J]. 144, 2008: 395-404.
    [59]Lagacherie, P., F. Baret, et al.Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment[J]. Remote Sensing of Environment, 2008, 112: 825-835.
    [60]Gomez, C., R. A. Viscarra Rossel, et al.Soil organic carbon prediction by hyperspectral remote sensing and field VIS-NIR spectroscopy: An Australian case study[J]. Geoderma, 2008, 146: 403-411.
    [61]Hummel, J. W., K. A. Sudduth, et al.Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor[J]. Computers and Electronics in Agriculture, 2001, 32: 149-165.
    [62]何挺,王静, et al.土壤有机质光谱特征研究[J].武汉大学学报(信息科学版), 2006, 31(11).
    [63]Jolliffe, I. T.A Note on the Use of Principal Components in Regression[J]. Applied Statistics, 1982, 31: 300-303.
    [64]Jolliffe, I. T. Principal Component Analysis[M]. New York: Springer-Verlag,(1986).
    [65]蒋焕煜,应义斌.尖椒叶片叶氯素含量的近红外检测分析实验研究[J].光谱学与光谱分析, 2007, 27(3): 499-502.
    [66]卢艳丽,白由路, et al.基于主成分回归分析的土壤有机质高光谱预测与模型验证[J].植物营养与肥料学报, 2008, 14(6): 1076-1082.
    [67]Huang, W.,S. Foo.Neural network modelling of salinity variation in Apalachicola River[J]. Water Research, 2002, 36(1): 356-362.
    [68]Maier, H. R.,G. C. Dandy.Neural network based modelling of environmental variables: A systematic approach[J]. Mathematical and Computer Modelling, 2001, 33(6-7): 669-682.
    [69]Yang, H., Griffiths, P. R., & Tate, J. D.Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra[J]. Analytica Chimica Acta, 2003, 489(2): 125-136.
    [70]Farifteh, J., F. Van der Meer, et al.Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods (PLSR and ANN)[J]. Remote Sensing of Environment, 2007, 110: 59-78.
    [71]Friedman, J.Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 28(2): 391-393.
    [72]Freund, Y.,R. E. Schapire.A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Science, 1997, 55(1): 119-139.
    [73]Friedman, J., T. Hastie, et al.Additive logistic regression: a statistical view of boosting[J]. Annals of Statistics, 2000, 28(2): 337-374.
    [74]Friedman, J., T. Hastie, et al.Additive logistic regression: a statistical view of boosting—rejoinder[J]. Annals of Statistics, 2000, 28(2): 400-407.
    [75]Friedman, J. H.,J. J. Meulman.Multiple additive regression trees with application in epidemiology[J]. Statistics in Medicine 2003, 22(9): 1365-1381.
    [76]Ridgeway, G.Additive logistic regression: a statistical view of boosting—discussion[J]. Annals of Statistics, 2000, 28(2): 393-400.
    [77]Wilson, J. T., S. E. Morlock, et al. (1996). Bathymetric Surveys of Morse and Geist Reservoirs in Central Indiana Made with Acoustic Doppler Current Profiler and Global Positioning System Technology, U.S. Geological Survey Water Resources Division.
    [78]Heisel, J. E., R. E. Hoggatt, et al. (1972). Evaporation from Morse Rservoir Water Resources Division in cooperation with Indiana Department of Natural Resources. Indianapolis, Indiana, Open-file report U.S. Department of the Interior Geological Survey, Indiana: 33.
    [79]Sanchez, J., R. Boluda, et al. (1996). 2.1. Assessment of soil degradation in desertification threatened areas: a case study in Castilla-La Mancha (Spain). EFEDA-II Final Report: Desertification processes in the Mediterranean Area and their interlinks with the global climate F. M. Manas. Albacete, Spain, Universidad de Castilla-La Mancha: 19-53.
    [80]Courault, D., P. Bertuzzi, et al.Monitoring surface changes of bare soils due to slaking using spectral measurements[J]. Soil Science Society of America Jounal, 1993, 57(1595-1601).
    [81]鲍士旦土壤农化分析:中国农业出版社,(2000).
    [82]Liu, W. D., F. Baret, et al.Relating soil surface moisture to reflectance[J]. Remote Sensing of Environment, 2002, 81: 238-246.
    [83]Lobell, D. B.,G. P. Asner.Moisture Effects on Soil Reflectance [J]. Soil Science Society of America Jounal, 2002, 66: 722-727.
    [84]Bowers, S. A. H., R.J. .Reflection of radiant energy from soils[J]. Soil Science, 1965, 100: 130-138.
    [85]Angstrom, A.The albedo of various surfaces of ground[J]. Geografiska Ann, 1925, 7: 323-342.
    [86]Stoner, E. R.,M. F. Baumgardner.Characteristic variations in reflectance of surface soil[J]. soil Science Society of America Jounal, 1981, 45: 1161-1165.
    [87]Bedidi, A., B. Cervelle, et al.Moisture effects on spectral characteristics (visible) of lateritic soils[J]. Soil Science, 1992, 153(129-141).
    [88]Neema, D. L., A. Shah, et al.A statistical optical model for light reflection and penetration through sand[J]. International Journal of Remote Sensing 1987, 8(1209-1217).
    [89]Dematte, J. A. M.,G. J. Garcia.Alteration of soil properties through a weathering sequence as evaluated by spectral reflectance[J]. Soil Science Society of America Jounal, 1999, 63(327-342).
    [90]徐彬彬土壤光谱反射特性与理化性状的相关分析[M].北京:科学出版社,(1986).
    [91]Asner, G. P.,K. B. Heidebrecht.Imaging spectroscopy for desertification sutdies: Comparing AVIRIS and EO-1 Hyperion in Argentina drylands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1283-1296.
    [92]Bishop, J. L., C. M. Pieters, et al.Infrared spectroscopic analyses on the nature of water in montmorillonite[J]. Clays and Clay Minerals, 1994, 42: 702-716.
    [93]Hapke, B. Theory of Reflectance and Emittance Spectroscopy[M]. New York: Cambridge University Press.,(1993).
    [94]Wold, H. Nonlinear estimation by eterative least squares procedure. Research Papers in Statistics. F. David. Hoboken, N. J., John Wiley. 1966: 441-444.
    [95]Wold, H. Estimation of principal components and related models by iterative lease squares. Multivariate Analysis. P. R. Krishnaiah. New York, Elsevier. 1966: 391-420.
    [96]Haaland, D. M.,E. V. Thomas.Partial least-squares methods for spectral analyses.1. Relation to other quantitative calibration methods and the extraction of qualitative information[J]. Analytical Chemistry, 1988, 60(11): 1193-1202.
    [97]Svensoon, O., T. Kourti, et al.An investigation of orthogonal signal correction algorithms and their characteristics[J]. Journal of Chemometrics, 2002, 16: 176-188.
    [98]Geladi, P.,B. R. Kowalski.Partial least-squares regression: A tutorial[J]. Analytica Chimica Acta, 1986, 185: 1-17.
    [99]Martens, H.,T. N?s Multivariate calibration[M]. NJ: John Wiley and Sons,(2002).
    [100]Azzouza, T., A. Puigdoménechb, et al.Comparison between different data pre-treatment methods in the analysis of forage samples using near-infrared diffuse reflectance spectroscopy and partial least-squares multivariate calibration method[J]. Analytica Chimica Acta, 2003, 484(1).
    [101]Gauch, H. G., J. T. G. Hwang, et al.Model evaluation by comparison of model-based predictions and measured values[J]. Agronomy Journal, 2003, 95(6): 1442-1446.
    [102]Brown, D. J., R. S. Bricklemyer, et al.Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana[J]. Geoderma, 2005, 132: 273-290.
    [103]Du, C., J. Zhou, et al.Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy[J]. Vibrational Spectroscopy, 2009, 49: 32-37.
    [104]Willams, P. C.,D. C. Sobering.Comparison of commercial near infrared transmittace andreflectance instruments for analysisi of whole grains and seeds[J]. Journal of Near Infrared Spectroscopy, 1993, 1: 25-32.
    [105]Nduwamungu, C., N. Ziadi, et al.Opportunities for, and limitaions of , near infrared reflectance spectoscopy applications in soil analysis: A review[J]. Cananian Journal of Soil Science, 2009, 89: 531-541.
    [106]王中宇,张海滨, et al.剔除离群值的学生化残差新方法[J].仪器仪表学报, 2006, 27(6): 624-637.
    [107]Ludwig, B., P. K. Khanna, et al.Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability[J]. Forest Ecology and Management, 2002, 171: 121-132.
    [108] Whiting, M. L., Li, L. and Ustin, S. L. Predicting water content using Gaussian model on soil spectra. Remote Sensing of Environment, 2004.89:535-552.
    [109]Dalal, R.C. and Henry, R. J. Simulaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Soiciety of America Journal, 1986, 50: 120-123.
    [110] Ingleby, H. R. and T. G. Crowe. Reflectance models for predicting organic carbon in Saskatchewan soils. Can. Agr. Eng.,2000, 42(2): 57-63
    [111] Chang, C. W., D. A. Laird, and C. R. Hurburgh. Influence of Soil Moisture on Near-Infrared Reflectance Spectroscopic Measurement of Soil Properties. Soil Sci., 2005, 170(4): 244-255.
    [112] Van Waes, C., I. Mestdagh, P. Lootens, and L. Carlier. Possibilities of near infrared reflectance spectroscopy for the prediction of organic carbon concentrations in grassland soils. J. Agr. Sci., 2005,143: 487-492.
    [113] Sudduth, K. A. and J. W. Hummel . Geographic operating range evaluation of a NIR soil sensor. Trans. ASAE. 1996,39(5): 1599-1604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700