基于GIS和HydraN的复杂河网地区洪水风险管理及水资源联合调度应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以复杂河网平原地区作为研究区域和对象,选取西洞庭湖典型区域——常德冲柳复杂河网地区进行研究。复杂河网地区因其特殊的地理气候特征和复杂的江湖河网形态而易受洪水威胁和损失,研究该类地区的洪水风险和优化调度具有非常重要的科学价值和现实意义。本文综述了国内外学者在该领域取得的成就和进展,分析了目前方法和模型的瓶颈所在,并在此基础上引入国内外多个模型进行多方位的研究和分析。
     本文的研究工作和研究内容主要包括以下的内容:(1)考虑到复杂河网的特点,在降雨、地形等常规指标不能很好地反映该区域风险等级的前提下,本文引入土壤结构、类型和河网结构、特性等多项指标对常德冲柳复杂河网地区进行分级区域洪水灾害风险评价,并在GIS环境下对整个地区进行风险区划。研究发现利用该法取得了比传统分析方法更精确更全面的实验结果。结果同时表明,由于复杂河网本身特点,河网特性和下垫面指标对洪灾风险的影响比其他地区更大,而降雨、地形等常规指标虽对洪灾及损失起决定性作用,但在小区域的风险区划上不能得到理想结果。(2)针对该地区河网的复杂性和河流关系的不确定性,考虑到复杂河网地区河网要素的地理特征及空间拓扑特性,本文引入基于地理信息系统(GIS)的网络分析技术,对区域河网进行网络模型化,并在GIS网络分析模块下完成河流追踪和突发事件应急响应模拟研究。模拟的结果反映出GIS网络分析在该类地区应用的灵活性和准确性,能够满足突发性事故的迅速应急响应要求。如何将水质模型与GIS网络分析技术更加紧密结合并为决策者提供有效指导将是今后该领域发展的一个重点。(3)针对传统调度方法单一、低效,无法在防灾的同时最大限度地节约和利用能源和水资源的现状,本文引入HydraN软件对冲柳复杂河网地区进行产流、汇流、稳态和非稳态多项河流模拟,并在此基础上提出优化调度方案。HydraN软件因其内嵌的先进水文模型和水动力模型以及准确的泵、闸、涵、水库等多种水工构筑物模拟功能而在冲柳复杂河网地区实现了很好的应用。通过与历史洪水统计资料进行对比发现,进行校正后的HydraN软件能够比较精确地反应河网中各条河流的即时水位,而水工构筑物的分别模拟和集成GIS的可视化界面,可以动态演示实施某种调度规则之后洪水发展情况,并支持辅助优化决策。该调度模式的应用比传统调度更加准确、灵活、高效,而兼容其他模型和经验公式的自定义调度方式,则更能取长补短,将节能、引水、减灾的最优调度发挥到极致。(4)针对研究区域受灾频率高、承载时间长,遭灾损失大的状况,本文从防灾减灾的目的出发,通过多种模型和技术手段实现在特大洪水条件下的灾害时间和空间统一模拟,取得了较好的结果。研究在空间上采用较高精度遥感影像运用ERDAS IMAGINE的Virtual GIS模块进行洪水淹没动态模拟,并得到时间-水深曲线的空间分布;在时间上通过结合Damage Calculator和1:50000DEM,绘制得到水深-灾害曲线,将二者结合之后得到整个冲柳地区及其局部的时间-水深-灾害空间分布曲线。在这些时空统一的灾害曲线基础上,本文对1998年冲柳特大洪水进行了模拟淹没及调度方案优化,运用优化后的方案不论从灾害上限的承灾时间、重点堤垸受灾时间、还是淹没总体损失都比1998年当时要小很多。
     本文针对复杂河网地区的地理空间、气候、历史以及社会经济特点等众多特点,运用系统的分析方法,采用多种先进的模拟软件和模型,对西洞庭湖常德冲柳复杂河网地区进行了洪水风险、应急响应与优化调度等多方面研究。研究认为,常德冲柳地区洪水灾害风险总体偏高,灾害应急响应速度较慢,宏观调度手段单一,水资源与能源的节约利用及各湖泊、堤垸的效能发挥一般,在科学决策、适时调度上有较大提升空间。论文的方法和结论对于该类地区的洪灾风险评价以及联合配水优化调度将具有一定的科学价值和借鉴意义。
The complex river networks area located at Chongliu in Changde were taken as object of study as a typical type in this articel. Due to the special characteristics of geographic climate and complicated morphology of river network, the complex river networks areas are threatened by flood and suffer loses much more than other types of areas, and research on risk of flood and optimal dispatch in such area exhibits quite important scientific value and practical signification., This dissertation first summarized achievements and progress of reseachers in this field, and then analyzed the bottleneck problems of available methods and model, and as which a basis of research, introduced several modles domestic and overseas onto multiangular analysis.
     The main works and novel results of this dissertation include the following elements.(1) Aiming at the characteristics of complex river networks areas, many indexes such as soil structure and types、river network stucture and properties were used to make flood risk analysis and zonation in GIS, because the ordinary indexes like rainfall and terrain can't describe flood risk well in Chongliu Area. The results of study shows that the indexes of river networks propertie and underlying surface have more important effects on complex river networks areas rather than other areas, and although the rainfall and terrain indexes play a key role in flood, they can't help getting ideal results.(2)Aiming at the complexity and uncertainty of river networks, and considering the geographic characteristics and spatail topology of complex river networks areas, this research used network analysis based on GIS, by which the study simulated river tracing and emergent event response on the basis of nework modeling. The simulated results show that the network analysis based on GIS is a more flexible and accurate way to solve sudden emergency than traditional ways, and it can meet the demand of rapid decision. The results also proposed that the intergration of water quality model and network analysis based on GIS will benefit more to decision makers and play a more important role in this field.(3)According to the lack of varieity and efficiency of traditional methods, by which can't economy utilize energe and water resources well at the same time of flood defend, this research use HydraN program to simulated the rainfall-runoff situation based on steady model and unsteady model in Chongliu Area, an then proposed optimal dispatch schemes. HydraN program had been applied well in Chongliu complex river networks area, because of the precise simulation of pumps、sluices、culverts and reserviors. By the comprison of simulation results and statistical data, it is obvious that HydraN program after adjustment can display stages of rivers in network exactly, besides, the function of water constructionsl works simulations can demonstrate flood progress dynamically under different dispatch schemes. The application of this dispatch model has the advantages of nicety、aility、efficiency, and the compatibility of HydraN program can help dispatch to be more complete and effective.(4)Aiming at the situation of study area——high flood frequency、long time last、huge disaster damage, this research based on disaster damage reducing, assisted by some models and technologies, simulated flood disaster damage in time and space under extraordinary flood conditions. This research used the Virtual GIS module of ERDAS IMAGINE to simulate time-depth curves distribution in space; and used Damage Calculator combined1:50000DEM to draw depth-damage curve in time, then get the time-depth-damage spatial distribution of Chongliu Area by integrated the upper two. This research simulated flood submerged in1998, when there was a extraordinary flood in Chongliu Area, based on time-depth-damage curves. Compared with the damage of optimal dispatch and the1998's, it is obvious that the optimal dispatch based on time-space damage curve can postpone the disaster time、shorten the whole disaster time and lessen disaster damage.
     According to the special characteristics of geographic、clamite、history and social economy, this dissertationusing used systemic analysis method, and assited by some advanced models and methods to evaluate the flood risk、design emergency response system、 propose optimal dispatch sche ules. The results of this research shows that, the flood risk of Chongliu Area is high as a whole, the damage emergency response is slow, the macro flood coordination is simple and absence of variety, the usage of lakes and embankments is not efficient and the energy and water resources is not utilized well in Chongliu Area, and there is a huge space to promote the level of flood management. The methods and results of this dissertation will have some scientific value and practice significant in complex river network areas flood assement and optimal combined dispatch.
引文
[1]陈秀万.中国洪水灾害分析.海洋地质与第四纪地质,1995,15(3):161-168
    [2]周寅康.洪水灾害风险评价.大自然探索,1995,14(52)48-52
    [3]魏一鸣.洪水灾害空间分布的复杂性研究.科技导报,1999,(6):25-27
    [4]严立冬.生态环境保护与长江流域经济可持续发展—1998年长江流域特大洪水灾害的生态经济学思考.中南财经大学学报,1999,(1):9-13
    [5]张行南,罗健,陈雷,等.中国洪水灾害危险程度区划.水利学报,2000,(3): 1-7
    [6]魏一鸣,金菊良.洪水灾害研究进展.大自然探索,1998,17(64):6-10
    [7]魏一鸣,金菊良,周成虎,等.洪水灾害评估体系研究.灾害学,1997,12(3):1-5
    [8]Augustine O. Esogbue, Maria Theologidu, Kejiao Guo. Fuzzy Sets and Systems,1992,48(2):155-172
    [9]Paul F. Hudson, Rene R. Colditz. Flood delineation in a large and complex alluvial valley, lower Pa'nuco basin, Mexico. Journal of Hydrology,2003, 280(4):229-245
    [10]中国水利部水文局.2007水情年报.北京:中国水利水电出版社,2008,2-8
    [11]毛德华,李景保,龚重惠,等.湖南省洪涝灾害研究.长沙:湖南师范大学出版社,2000,2-103
    [12]石林,曾光明,张硕辅,等.基于GIS的复杂河网区域洪水灾害风险评价.湖南大学学报(自然科学版),2009,36(7):68-72
    [13]文俊.区域水资源可持续利用预警系统研究.北京:中国水利水电出版社,2006,3-10
    [14]石林,曾光明,张华,等.地理信息系统在突发性环境污染事故应急处理中的应用.遥感技术与应用,2005,20(6):630-634
    [15]石林,曾光明,刘卡波,等.复杂河网平原地区的防洪调度决策——基于洪水灾害时空模拟的西洞庭湖冲柳地区案例研究.自然灾害学报,2010,19(2):28-31
    [16]石林,谢更新,曾光明,等.基于Hydran和GIS网络技术的复杂河网洪灾分析.人民长江,2009,40(14):55-56
    [17]Erich J. Plate. Flood risk and flood management. Journal of Hydrology,2002, 267(2):2-11
    [18]Weiguo Jiang, Lei Denga, Luyao Chen, et al. Risk assessment and validation of flood disaster based on fuzzy mathematics. Progress in Natural Science,2009, 19(10):1419-1425
    [19]刘树坤.国外防洪减灾发展趋势分析.水利水电科技进展,2000(1):2-9
    [20]王燕生.工程水文学.北京:水利电力出版社,1992,141—151
    [21]傅湘,王丽萍.防洪减灾风险管理研究综述.水利水电科技进展,2001(1):11-15
    [22]李健生.中国江河防洪丛书:总论卷.北京:中国水利水电出版社,1999,15-28
    [23]李娜.基于GIS的洪灾风险管理系统:[中国水利水电科学研究院博士学位论文].北京:中国水利水电科学研究院,2002,7-8
    [24]纪昌明,梅亚东.洪灾风险分析.武汉:湖北科学技术出版社,2000,2-8
    [25]魏一鸣,金菊良,杨存建,等.洪水灾害风险管理理论.北京:科学出版社,2002,6-12
    [26]冯峰,许士国,刘建卫,等.基于边际等值的区域洪水资源最优利用量决策研究.水利学报,2008,39(9):1060-1065
    [27]杜国志.洪水资源管理研究:[大连理工大学博士学位论文].大连:大连理工大学,2005,3-10
    [28]闻艳秋.试述我国水资源可持续利用的对策措施.黑龙江科技信息,2009,(23):249
    [29]魏景忠,贾志国.水资源可持续利用初探.水利规划与设计,2009,(5):29-30
    [30]Erich J. Plate. Early warning and flood forecasting for large rivers with the lower Mekong as example. Journal of Hydro-environment Research,2007, 1(2):80-94
    [31]John Handmer. Improving flood warnings in Europe:a research and policy agenda. Global Environmental Change Part B:Environmental Hazards,2001, 3(1):19-28
    [32]金菊良,张礼兵,魏一鸣.水资源可持续利用评价的改进层次分析法.水科学进展,2004,15(2):228-232
    [33]刘恒,耿雷华,陈晓燕.区域水资源可持续利用评价指标体系的建立.水科学进展,2003,14(3):266-270
    [34]Simon McCarthy, Sylvia Tunstall, Dennis Parker, et al. Risk communication in emergency response to a simulated extreme flood. Environmental Hazards, 2007, (7)3:179-192
    [35]M. Hashizume, H. Kondo, T. Murakami, et al. Use of rapid diagnostic tests for malaria in an emergency situation after the flood disaster in Mozambique. Public Health,2006,120(5):444-447
    [36]K. BOOSIK, LEE Seung-jong, KANG Dong-hyun. A flood risk projection for Yongdam dam against future climate change.Journal of Hydro-environment Research,2007,1(2):118-125
    [37]H. Posthumus, C.J.M. Hewett, J. Morris, et al. Agricultural land use and flood risk management:Engaging with stakeholders in North Yorkshire. Agricultural Water Management,2008,95(7):787-798
    [38]K.M. Neaupane, M. Piantanakulchai. Analytic network process model for landslide hazard zonation. Engineering Geology,2006,85(3):281-294
    [39]周成虎,万庆,黄诗峰,等.基于GIS的洪水灾害风险区划研究.地理学报,2000,55(1):15-24
    [40]陈华丽,陈刚,丁国平.基于GIS的区域洪水灾害风险评价.人民长江,2003,34(6):49-51
    [41]宫清华,黄光庆,郭敏,等.基于GIS技术的广东省洪涝灾害风险区划.自然灾害学报,2009,18(1):58-63
    [42]刘家福,李京,刘荆,等.基于GIS/AHP集成的洪水灾害综合风险评价———以淮河流域为例.自然灾害学报,2008,17(6):110-114
    [43]周栋民.常德市水利志.常德:常德市水利局,2005,1-6
    [44]周栋民.常德市防汛工作手册.常德:常德市防汛抗旱指挥部办公室,2007,25-40
    [45]周栋民.常德市防汛知识手册.常德:常德市水利局,2007,5-10
    [46]常德统计局.常德市统计年鉴.常德:常德市统计局,2008,35-90
    [47]白景昌.基于遥感和地理信息系统的洪灾风险区划研究:[中国科学院研究生院博士学位论文].北京:中国科学院遥感应用研究所,43-44
    [48]梅亚东,冯尚友.蓄滞洪区洪水演进模拟.水利学报,1996,2(2):63-67
    [49]程晓陶,杨磊,陈喜军.分蓄洪区洪水演进数值模型.自然灾害学报,1996,5(1): 34-40
    [50]刘树坤,李小佩,李士功,等.小清河分洪区洪水演进的数值模拟.水科学进展,1991,2(3):188-193.
    [51]刘树坤,沈振明.利用洪水风险图指导洪泛区及城市建设.灾害学,1991,6(4):26-31
    [52]刘光跃.湖南省洞庭湖区堤垸图集.长沙:湖南省洞庭湖水利工程管理局,2004,55-68
    [53]鲍文.蓄滞洪区减灾与可持续发展研究.人民黄河,2007,29(10):14-15
    [54]高学平,李静怡,韩延成.蓄滞洪区蓄水模拟研究.中国农村水利水电,2007,12(6): 16-19
    [55]余萍,冯平,周潮洪.蓄滞洪区洪灾损失的评估方法及其应用.中国农村水利水电,2009,15(4):15-1 7
    [56]阎俊爱.基于GIS的河道、蓄滞洪区洪水演进动态可视化仿真研究.数学的实践与认识,2008,38(22):70-75
    [57]史培军.三论灾害研究的理论与实践.自然灾害学报,2002,11(3):1-9
    [58]史培军.四论灾害系统研究的理论与实践.自然灾害学报,2005,14(6):1-7
    [59]蒋卫国,李京,陈云浩,等.区域洪水灾害风险评估体系(Ⅰ)——原理与方法.自然灾害学报,2008,17(6):53-58
    [60]Burton I, Katers R W, White G F. The Environment as Hazard. New York:The Guilford Press,1993,25-40
    [61]石勇,许世远,石纯,等.洪水灾害脆弱性研究进展.地理科学进展,2009,28(1): 41-46
    [62]Smith D I. Flood damage estimation? A review of urban stage-damage curves and loss functions. Water SA,1994,20(3):231-238
    [63]L. L.Battaglia, R. R. Sharitz. Responses of floodplain forest species to spatially condensed gradients:a test of the flood-shade tolerance tradeoff hypothesis. Oecologia,2006,2(1):108-118
    [64]E. Rengifo, W. Tezara, A. Herrera. Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flood. Photosynthetica,2005,6(2):203-210
    [65]陈炳浩.长江洪涝灾害的原因与森林水文生态效应机制.林业经济,1998,10(5): 23-28
    [66]柴锡周,洪利兴,孙惠根.森林植被对防治洪水灾害的作用分析.浙江农业学报,1995,7(2):37-41
    [67]Chun-Tian Cheng, K.W. Chau. Flood control management system for reservoirs. Environmental Modelling & Software,2004,19(4):1141-1150
    [68]T. Nakayama, M. Watanabe. Role of flood storage ability of lakes in the Changjiang River catchment. Global and Planetary Change,2008,63(10):9-22
    [69]郭涛,谭徐明.中国历史洪水灾害和洪水灾害的自然历史特征.自然灾害学报,1994,3(2):34-40
    [70]Maskrey A. Disaster Mitigation:A Community Based Approach. Oxford: Oxfam,1989,25-37
    [71]刘希林,莫多闻.泥石流风险评价.成都:四川科技出版社,2002,57-62
    [72]李观义,程晓陶.北江大堤洪水风险信息管理系统研究.水文,2003,23(3):5-9
    [73]张行南,罗健,陈雷等.中国洪水灾害危险程度区划.水利学报,2000,6(3):1-7
    [74]李忠武,张棋,曾光明,等.基于GIS的红壤丘陵区脆弱生态系统土壤侵蚀研究——以长沙市为例.资源科学,2006,28(5):201-206
    [75]D.Saint-Laurent, L. Lavoie, A. Drouin, et al. Floodplain sedimentation rates, soil properties and recent flood history in southern Quebec. Global and Planetary Change,2010,70(4):76-91
    [76]M. Temimi, R. Leconte, F. Brissette, et al. Flood and soil wetness monitoring over the Mackenzie River Basin using AMSR-E 37 GHz brightness temperature. Journal of Hydrology,2007,333(4):317-328
    [77]Jiang Ming, Lu Xian-guo, Xu Lin-shu, et al. Flood mitigation benefit of wetland soil—A case study in Momoge National Nature Reserve in China. Ecological Economics,2007,61(3):217-223
    [78]Marco Sangati, Marco Borga, Davide Rabuffetti, et al. Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: An evaluation based on the Sesia river basin, North Western Italy. Advances in Water Resources,2009,32(7):1090-1106
    [79]Teodosio Lacava, Vincenzo Cuomo, Elena V. Di Leo, et al. Improving soil wetness variations monitoring from passive microwave satellite data:The case of April 2000 Hungary flood. Remote Sensing of Environment,2005,96(2): 135-148
    [80]C. De Michele, G. Salvadori. On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. Journal of Hydrology,2002,262(4):245-258
    [81]Daniele Norbiato, Marco Borga, Silvia Degli Esposti,et al. Flash flood warning based on rainfall thresholds and soil moisture conditions:An assessment for gauged and ungauged basins. Journal of Hydrology,2008,362(4):274-290
    [82]V.A. Bell, A.L. Kay, R.G. Jones, et al. Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. Journal of Hydrology,377(4):335-350
    [83]王爱娟,张平仓.水土保持措施对小流域洪水过程的影响研究.水土保持研究,2008,15(6):18-20
    [84]唐晓旭,张怀清,刘锐.基于GIS的洞庭湖流域农用地适宜性评价.林业科学 研究,2008,21(6):74-79
    [85]E. Diaz-Barrientos, L. Madrid, I. Cardo. Effect of flood with mine wastes on metal extractability of some soils of the Guadiamar river basin (SW Spain). The Science of The Total Environment,1999,242(3):149-165
    [86]J. Herrero, D.A. Robinson, J. Nogues. A regional soil survey approach for upgrading from flood to sprinkler irrigation in a semi-arid environment. Agricultural Water Management,2007,93(3):145-152
    [87]Fred E. Rhoton, Sean J. Bennett. Soil and sediment properties affecting the accumulation of mercury in a flood control reservoir. CATENA,2009,79(1): 39-48
    [88]T. Lacava, E.V. Di Leo, N. Pergola, et al. Space-time soil wetness variations monitoring by a multi-temporal microwave satellite records analysis.Physics and Chemistry of the Earth,2006,31(18):1274-1283
    [89]Junhong Bai, Hua Ouyang, Wei Deng, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma,2005,124(2):181-192
    [90]胡敏,姬宝霖,索全义.治沙淤地土壤养分与粒径组成关系的研究.人民黄河,2008,30(5):68-69
    [91]章俊霞,李小军,左长清.南方红壤入渗影响因素研究.中国水土保持,2008,10(6): 27-29
    [92]杜国明,宋戈,王红梅,等.面向防洪救灾的人口空间分布模拟——以大安市为例.自然灾害学报,2007,16(5):100-104
    [93]杜国明,张树文.面向防洪救灾的人口统计数据空间化研究——以扶余县为例.长江流域资源与环境,2007,16(2):265-268
    [94]康相武,吴绍洪,戴尔享,等.大尺度洪水灾害损失与影响预评估.科学通报,2006,51(6):155-164
    [95]李长安,陈国金,皮建高.长江中游洪灾形成的地学分析.第四纪研究,2003,23(6):675-681
    [96]张生,朱诚.长江流域水土流失及其对洪灾的影响.水土保持学报,2001,15(6): 9-13
    [97]张大任.洞庭湖与长江中游洪灾治理策略研究.地理学与国土研究,1999,15(3): 47-51
    [98]Pradhan Biswajeet, Lee Saro. Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model. Earth Science Frontiers,2007,14(6):143-151
    [99]Alexis Comber, Chris Brunsdon, Edmund Green. Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landscape and Urban Planning,2008,86(1):103-114
    [100]Jianjun Zhang, John Hodgson, Erhan Erkut. Using GIS to assess the risks of hazardous materials transport in networks. European Journal of Operational Research,2000,121(2):316-329
    [101]T.O. Brenden, L. Wang, P.W. Seelbach, et al. A spatially constrained clustering program for river valley segment delineation from GIS digital river networks. Environmental Modelling & Software,2008,23(5):638-649
    [102]Olexandr Nekhay, Manuel Arriaza, Luc Boerboom. Evaluation of soil erosion risk using Analytic Network Process and GIS:A case study from Spanish mountain olive plantations. Journal of Environmental Management,2009, 90(10):3091-3104
    [103]高勇,刘瑜,邬伦.GIS网络分析的动态分段方法与实现.地理与地理信息科学,2003,19(4):41-44
    [104]邬伦,刘瑜,张晶,等.地理信息系统一一原理、方法和应用.北京:科学出版社,2001,175-178
    [105]陈述彭.地理信息系统导论.北京:科学出版社,1998,105-109
    [106]周旭东,吴明冠,李宏伟.GIS在处置地下管线突发事件中的应用研究一以苏州市地下综合管网应急处置系统为例.测绘科学,2008,33(5):214-216
    [107]黄诗峰,魏一鸣,杨存建,等.灾民撤退网络流模型及其GIS模拟技术.自然灾害学报,1998,(3):65-70
    [108]Djokic D, Maidment R.Application of GIS network routines for water flow and transport. Journal of Water Resources Planning and Management,1993,15(2): 229-245
    [109]樊红,詹晓国ARC/INFO应用与开发技术(修订版).武汉:武汉大学出版社,2002,436-445
    [110]王志刚.地理信息系统的网络分析技术浅谈.测绘标准化,2002,53(18):14-16
    [111]乔彦友,武红敢.地理信息系统中动态分段技术的研究.环境遥感,1995,10(3):211-216
    [112]傅作良,王立平,朱剑勇.动态分段技术研究及实现.计算机世界,1994(4):130-134
    [113]王杰臣,张伟,毛海城.GIS网络分析的图简化方法研究.测绘学报,2001,30(3):263-268
    [114]董涌江.GIS网络分析功能的实现.三晋测绘,2003,10(4):19-21
    [115]李振宇,杨松林.基于GIS的物流配送中心选址模型研究.物流技术,2003,10(12): 74-75
    [116]王亚.不确定性选址问题探讨.测绘科学,2003,28(3):46-51
    [117]吕海峰,马维忠,王衍华.基于网络分析方法的物流配送中心选址的研究.运筹与管理,2004,13(6):80-84
    [118]Johnson D B. A note on Dijkstra's shortest path Algorithm. Journal o ACM, 1973,20:385-388
    [119]Kolliopoulos Stavros G, Clifford Stein. Finding Real-Valued Single-Source Shortest Paths in o(n3) Expected Time. Journal of Algorithms,1998,28(1): 125-141
    [120]Brett F. Sanders, Evaluation of on-line DEMs for flood inundation modeling, Advances in Water Resources,2007,30(8):1834-1843
    [121]彭盛华,赵俊琳,翁立达.GIS网络分析技术在河流水污染追踪中的应用.水科学进展,2002,13(4):461-466
    [122]王船海,李光炽.流域水文模拟.水利学报,1996(3):35-38
    [123]赵人俊.水文预报文集.北京:水利电力出版社,1984,98-167
    [124]赵人俊.流域水文模拟.北京:水利电力出版社,1984,105-122
    [125]熊立华,郭生练,田向荣.基于DEM的分布式流域水文模型及应用.水科学进展,2004,15(4):517-520
    [126]詹道江,叶守泽.工程水文学.北京:中国水电出版社,2000,125-138
    [127]熊立华,郭生练,胡彩虹TOPMODEL在流域径流模拟中的应用研究.水文,2002,22(5):5-8
    [128]Beven KJ, Binley AM.The future of distributed models:model calibration and uncertainty prediction.Hydrological Processes,1992,6(12):279-298
    [129]谭炳卿,金光炎.水文模型与参数识别.北京:中国科学技术出版社,1998,52-88
    [130]Li Zhijia. Comparing hydrological models in real time flood forecast system. International Journal Hydro-electric Energy,1996,14(6):188-195
    [131]李娜,蔡振华,王祥三.流域洪水实时预报模型研究及应用.湖北水利发电,2004,57(2):10-14
    [132]雒文生,宋星原.洪水预报与调度.武汉:湖北科学技术出版社,2000,37-62
    [133]BatesBC, Campbell Ep. A Markov chain Monte Carlo seheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resources Research,2001,37(4):937-948
    [134]Zhao R J. The Xinanjiang model applied in ChinaJournal of Hydrology,1992, 135(2):371-381
    [135]赵人俊,王佩兰.新安江模型参数的分析.水文,1988,8(6):2-9
    [136]赵人俊,王佩兰,胡凤彬.新安江模型的根据及模型参数与自然条件的关系.河海大学学报,1992,20(1):52-59
    [137]朱求安,张万昌.新安江模型在汉江江口流域的应用及适应性分析.水资源与水工程学报,2004,15(3):19-23
    [138]翟啸鹏,王梦.新安江模型在吉林省东部山区年径流预报上的应用.吉林水利,2004,257(1):1-3
    [139]程春田,李向阳.三水源新安江模型参数不确定性分析PAM算法.中国工程科学,2007,9(9):47-51
    [140]崔庆忠,高世斌,车延路.新安江三水源模型在蒲河流域上的应用.东北水利水电,2002,21(3):32-35
    [141]周广刚,温立成,侯国柱.三水源新安江模型在洒河流域的适用性研究.水利水电工程设计,1999,11(3):45-47
    [142]胡守仁,余少波,戴葵.神经网络导论.北京:国防科技大学出版社,1993,16-33
    [143]Alexander G Parlos. An accelerated learning algorithm for multiplayer perceptron networks. IEEE Trans on Neural Networks,1994,5(3):493-497
    [144]胡建军.BP网络的权值诱导与层次训练算法.计算机科学,1998,25(1):60-63.
    [145]贺昌政,李晓峰,俞海.BP人工神经网络模型的新改进及其应用.数学的实践与认识,2002,32(4):554-561
    [146]覃光华,丁晶,刘国东.自适应BP算法及其在河道洪水预报上的应用.水科学进展,2002,13(1):37-41
    [147]吴超羽,张文.水文预报的人工神经网络方法.中山大学学报(自然科学版),1994,33(1):79-90
    [148]李超群,郭生练,张俊,等.人工神经网络水文模型适度训练.武汉大学学报(工学版),2007,40(5):25-29
    [149]熊立华,郭生练,王元.神经网络在洪水实时预报中的应用研究.水电能源科学,2002,20(3):28-31
    [1 50]庞博,郭生练,熊立华,等.丹江口库周区人工神经网络预报模型研究.人民长江,2004,35(4):30-31
    [151]庞博,郭生练,熊立华,等.改进的人工神经网络水文预报模型及应用.武汉大学学报(工学版),2007,40(1):33-41
    [152]屈忠义,陈亚新,史海滨,等.地下水文预测中BP网络的模型结构及算法探讨.水利学报,2004,(2):88-93
    [153]冯国章.人工神经网络结构对径流预报精度的影响分析.自然资源学报,1998,13(2):169-174
    [154]刘国东,丁晶.BP网络用于水文预测的几个问题的探讨.水利学报,1999,(1):65-70
    [155]T. Nakayama, M.Watanabe. Role of flood storage ability of lakes in the Changjiang River catchment. Global and Planetary Change,2008,63 (1): 9-22
    [156]Yun Du, Shuming Cai, Xiaoyang Zhang, etc. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by210Pb measurement and satellite image analysis. Geomorphology,2001,41: 171-181
    [157]覃晖,周建中,王光谦,等.基于多目标差分进化算法的水库多目标防洪调度研究.水利学报,2009,40(5):513-519
    [158]ZHANG Ming-liang, SHEN Yong-ming. Study and application of steady flow and unsteady flow mathematical model for channel networks. Journal of Hydrodynamics,2007,19 (5):572-578
    [159]Chun-Tian Cheng, K. W. Chau. Flood control management system for reservoirs. Environmental Modelling & Software,2004,19 (12):1141-1150
    [160]Luis Filipe Gomes Lopes, Jose S. Antunes Do Carmob, Rui Manuel Vitor Cortes, etc. Hydrodynamics and water quality modelling in a regulated river segment:application on the instream flow definition. Ecological Modelling, 2004,173:197-218
    [161]Gert A. Schultz. Remote sensing in hydrology. Journal of Hydrology,1988, 100(1):239-265
    [162]Guo-Jing Yang, Penelope Vounatsou, Zhou Xiao-Nong, etc. A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. Acta Tropica,2005, 96(2):117-129
    [163]陈述彭.遥感地学分析.北京:测绘出版社,1990,78-85
    [164]孙育秋.遥感技术在我国自然灾害研究中的应用现状和前景.遥感技术动态,1990,(3):48-51
    [165]Leggett D J, Jones, A. The application of GIS for flood defense in the Angliean region:developing for the future. Int.of Geographical Information Systems, 1996,10(1):75-80
    [166]Binyuan He, Tinghe Lai, Hangqing Fan, etc. Comparison of flooding-tolerance in four mangrove species in a diurnal tidal zone in the Beibu Gulf. Estuarine, Coastal and Shelf Science,2007,74(2):254-262
    [167]Yves Tardy, Vincent Bustillo, Claude Roquin, etc. The Amazon. Bio-geochemistry applied to river basin management:Part I. Hydro-climatology, hydrograph separation, mass transfer balances, stable isotopes, and modelling. Applied Geochemistry,2005,20(9):1746-1829
    [168]王腊春.太湖流域洪涝灾害淹没范围模拟.地理学报,2000,55(1):46-54
    [169]刘权,任祖春,杨明.GIS支持下辉发河流域遥感洪水监测与预报系统研究.东北师大学报自然科学版,2001,33(4):99-103
    [170]李胜阳,赵阳,张芳.黄河流域区域洪涝灾害卫星遥感监测与评估系统.人民黄河,2000,22(4):13-14
    [171]翟宜峰,殷峻退.基于Gls/Rs的洪水灾害评估模型.人民黄河,2003,25(4):6-7
    [172]杨存建,魏一鸣,陈德清,等.基于遥感的洪水灾害承灾体神经网络的提取方法探讨.灾害性,1998,13(4):1-6
    [173]李香颜,陈怀亮,李有.洪水灾害卫星遥感监测与评估研究综述.中国农业气象,2009,30(1):102-108
    [174]李科,王毅勇.改进TM图像水体自动提取模型的研究.水资源与水工程学报,2007,18(6):20-22
    [175]周成虎,骆剑承,杨晓梅,等.遥感影像地学理解与分析.北京:科学出版社,1999:11-45
    [176]钱乐祥.遥感数字影像处理与地理特征提取.北京:科学出版社,2004:101-150
    [177]郑伟,刘闯,曹云刚,等.基于Asar与TM图像的洪水淹没范围提取.测绘科学,2007,32(5):180-182
    [178]刘志明,晏明,逢格江,等.1998年吉林省西部洪水过程遥感动态监测与灾情评估.自然灾害学报,2001,10(3):98-102
    [179]刘亚岚,王世新,魏成阶,等.利用星载SAR快速监测评估我国的洪涝灾害.中国技术,2001,(1):32-35
    [180]唐伶俐,李传荣,戴昌达.雷达卫星在1998年抗洪减灾中的作用.遥感技术与应用,1998,13(4):2-4
    [181]戴昌达,唐伶俐.从TM图像自动提取洪涝灾情的研究.自然灾害学报,1993,2(2):35-37
    [182]彭定志,郭生练,黄玉芳,等.基于MODIS和GIS的洪灾监测评估系统.武汉大学学报,2004,37(4):8-31
    [183]陈秀万.洪水灾害损失评估系统.北京:中国水利水电出版社,1999:102-142
    [184]孙涛,黄诗峰Envisat ASAR在特大洪涝灾害监测中的应用.南水北调与水利科技,2006,4(2):33-35
    [185]丁莉东,吴昊,王长健,等.基于谱间关系MODIS遥感影像水体提取研究.测绘与空间地理信息,2006,29(6):25-27
    [186]都金康,黄永胜,冯学智,等.SPOT卫星影像的水体提取方法及分类研究.遥感学报,2001,5(3):214-219
    [187]刘小生,黄玉生.基于Arc/Info的洪水淹没面积的计算方法.测绘通报,2003,(6):46-48
    [188]刘亚岚,王世新,周艺,等.遥感与GIS支持下的基于网络的洪涝灾害监测评估系统关键技术研究.遥感学报,2001,5(1):53-57
    [189]刘仁义,刘南.一种基于数字高程模型DEM的淹没区灾害评估方法.中国图象图形学报,2001,6(2):118-122
    [190]郭利华,龙毅.基于DEM的洪水淹没分析.测绘通报,2002,(11):25-30
    [191]葛小平,许有鹏.G1S支持下的洪水淹没范围模拟.水科学进展,2002,13(4):456-460
    [192]易永红,陈秀万,吴欢.基于遥感信息的淹没水深算法研究.地理与地理信息科学,2005,21(3):26-29
    [193]康相武,吴绍洪,戴尔阜,等.大尺度洪水灾害损失与影响预评估.科学通报,2006, (51):155-164
    [194]]冯民权,周孝德,张根广.洪灾损失评估的研究进展.西北水资源与水工程,2002,13(1):32-36
    [195]傅湘,纪昌明.洪灾损失评估指标的研究.水科学进展,2000,11(4):432-435
    [196]冯平,崔广涛,张立忠,等.城市洪涝灾害直接经济损失的评估与预测.水利学报,2001,8(8):64-68
    [197]李纪人,丁志雄,黄诗峰,等.基于空间展布式社经数据库的洪涝灾害损失评估模型研究.中国水利水电科学研究院学报,2003,1(2):104-110
    [198]朱强,陈秀万,彭俊.基于网格的洪水损失计算模型.武汉大学学报,2007,40(6):42-46
    [199]T. M. Carpenter, J. A. Sperfslage, K. P. Georgakakos, etc. National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. Journal of Hydrology,1999,224(1):21-44
    [200]Jiqun Zhang, Chenghu Zhou, Kaiqin Xu, etc. Flood disaster monitoring and evaluation in China. Global Environmental Change Part B:Environmental Hazards,2002,4(2):33-43
    [201]Venkatesh Merwade, Aaron Cook, Julie Coonrod. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environmental Modelling & Software,2008,23(10):1300-1311
    [202]潘耀忠,史培军.区域自然灾害系统基本单元研究——Ⅰ:理论部分.自然灾害学报,1997,6(4):1-9
    [203]帅红,刘春平,王慧彦.洞庭湖区农户洪涝灾害脆弱性评价.自然灾害学报,2009,18(3):37-42
    [204]党安荣,王晓栋,陈晓峰,等ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2002,440-448
    [205]李登科,张京红,戴进.遥感图像处理系统ERDAS IMAGINE及其应用.陕西气象,2002,(2):20-22
    [206]尚东ERDAS IMAGINE遥感图像处理系统的特点与应用.中国水利,2003,(9): 47-49
    [207]刘俊杰,贾永红,柯美忠Erdas Imagine二次开发与客户化方法研究.地理空间信息,2003,1(4):29-30
    [208]高文清.利用ERDAS IMAGINE遥感影像软件编制区域水文地质图.河北煤炭,2004,(1):35-36
    [209]徐占华,陈晓玲,李毓湘.基于ArcGIS与ERDAS IMAGINE的三维地形可视化.测绘信息与工程,2005,30(1):3-4
    [210]杨金香,程学丰.基于ERDAS IMAGINE操作平台的遥感图像处理.测绘与空间地理信息,2006,29(2):107-110
    [211]何昌顺,周利明.不同洪水风险级灾害关系曲线的制作及应用.浙江水利科技,1999,(3):47-48
    [212]付湘,王丽萍,边玮.洪水风险管理与保险.北京:科学出版社,2008,45-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700