通用光谱模式分解算法及植被指数的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多时相、多传感器卫星数据为我们在区域乃至全球尺度的环境变化监测提供了丰富的信息。Landsat/TM(ETM+)、Terra(Aqua)/MODIS、ADEOS-Ⅱ/GLI以及其他一些传感器为我们提供了大量多/高光谱数据。由于不同传感器在波段数、波长范围以及中心波长位置等方面存在差异,数据分析结果依赖于传感器,尤其是受波段数和波长的影响。因此,不同传感器得到的分析结果很难进行比较。
     本文发展了一种通用光谱模式分解算法(UPDM)。UPDM是一种与传感器无关的多/高光谱遥感数据分析算法。“与传感器无关”是指对同一样本的数据分析结果不受传感器的限制。许多分析方法是依赖于传感器的。例如,主成分分析方法是一种多元统计方法,通过剔除冗余数据来压缩多光谱数据。虽然PCA可以应用于各种传感器,但其结果依赖于传感器。模式分解方法(PDM)是一种线性光谱混合分析方法,它把原始遥感数据每个像素的光谱分解为固定的标准模式(水体、植被、土壤)。虽然PDM方法可以应用于不同的传感器,但PDM系数随传感器而变,即使分析的是同一个目标。
     本文第三章介绍了作者发展的通用光谱模式分解算法(UPDM)。卫星传感器记录的每像素的光谱数据,可以通过标准UPDM转换矩阵,转换成用三个(或四个)UPDM特征分量表示。标准模式定义的光谱范围为350~2500nm,即太阳辐射能量波长范围。当应用于不同的传感器时,从标准模式中选择出与传感器波段对应的数值组成转换矩阵即可。一般情况下,使用三种标准模式时,地表反射信息的95.5%可以用转换后的三个UPDM成分表示。每自由度的光谱重构误差为4.2%。但是,对于某些目标,如黄叶,光谱重构误差较大。根据具体的研究目的,可以选择一种附加模式,标准模式数量增加到4个。如果研究目的是植被变化,需要增加黄叶作为附加模式。本研究选择它作为附加模式。
     实验选择了652种地面样本的光谱测量数据来研究UPDM。样本包括植被绿叶、黄叶、枯叶,各种土壤,各种水体,建筑材料,等等。利用这些地面测量光谱数据模拟了不同的传感器数据并比较他们的UPDM分析结果,卫星传感器包括Landsat/MSS、ALOS/AVNIR-2、Landsat/ETM+、Terra/MODIS和ADEOS-Ⅱ/GLI等。实验结果证明,UPDM特征转换产生的新特征具有“与传感器无关”的特性。即不同传感器得到的UPDM系数几乎相同。
     针对不同的研究目的,人们设计出了各种植被指数。NDVI是一种被普遍采用的植被指数。但NDVI只利用了近红外和红色两个波段。EVI不仅利用了近红外和红色两个波段,还增加了蓝色波段用于纠正气溶胶对红色波段的影响,以及其他几个纠正因子来抵抗气溶胶的影响。基于PDM的植被指数VIPD在反映植被植土覆盖百分比、植被垂直密度和植被类型方面比NDVI和EVI有优势。但PDM含有依赖于传感器的参数。同样不能直接比较不同传感器得到的结果。
Multi-temporal and multi-sensor satellite data supply a wealth of information for monitoring environmental changes at regional, continental, and global scales. Larger volumes of multi-spectral data have become available from Landsat/TM (ETM+), Terra (Aqua)/MODIS, ADEOS-II/GLI and other sensors. The characteristics of each sensor differ, as the number of bands, the band wavelengths and the central wavelength of each band vary by satellite. Thus, analysis results depend on sensor performance and are especially affected by the number of bands and wavelengths observed. Consequently, it is difficult to compare analysis results obtained using data from different satellite sensors.This paper developed a universal pattern decomposition method (UPDM). The UPDM is a sensor-independent method that is tailored for satellite data analysis. Sensor independence means that analysis results for the same sample should be the same or nearly the same, regardless of the sensor used. Most analysis methods are sensor dependent. For example, the principal component analysis (PCA) is a multivariate statistical method used to compress multispectral datasets by removing redundancy in such a way that each successive PC has a smaller variance. Although PCA method can be applied to data obtained from any type of optical sensor, the results differ depending on the sensor type, so PCA is a sensor-dependent method. The pattern decomposition method (PDM) is a type of spectral mixing analysis, which expresses the spectrum of each pixel as the linear sum of three fixed, standard spectral patterns (i.e., the patterns of water, vegetation, and soil). The PDM can be applied to data obtained from any satellite sensor. However, the resulting pattern decomposition coefficients may differ by sensor, even for the same sample object.In Chapter 3, we developed a universal pattern decomposition method (UPDM). Sets of spectral reflectance measured by a sensor are transformed by the UPDM into three or four coefficients. The "universal standard spectral patterns" are determined in the spectral region between 350 nm and 2500 nm (the solar reflected wavelength region). Sensor wavelength values are selected from the universal standard spectral patterns to construct the transform matrix of each sensor. On average, 95.5% of land-cover spectral reflectance information can be transformed into the three decomposition coefficients and decomposed into the three standard patterns with about 4.2% error per degree of freedom. However, some objects, such as yellow leaves, have slightly larger decomposition errors. Depending on the research purpose, supplementary standard patterns can be applied. For example, to study vegetation changes in more detail, an additional supplementary spectral pattern can be added to reproduce the spectral reflectance. In this study, a yellow-leaf pattern was used as a supplementary spectral pattern.
    To study sensor independence using the UPDM, we analyzed about 652 ground-measured samples, including green-leaf, yellow-leaf, dead-leaf, soil, water, and concrete samples etc.. We made simulated data of Landsat/MSS, ALOS/AVNIR-2, Landsat/ETM+, TerraMODIS, and ADEOS-II/GLI sensors using ground-measured data, and compared the analyses results of these data. The results demonstrated that the pattern decomposition coefficients obtained using the UPDM are nearly sensor independent.Various vegetation indices have been developed for specific research objectives. A commonly used index is the normalized difference vegetation index (NDVI). However, it uses only red and near infrared reflectance data. The enhanced vegetation index (EVI) uses the red and near infrared bands, and also includes blue-band reflectance data to correct for aerosol influences in the red band, and some other aerosol resistance coefficients. The vegetation index based on the PDM (VIPD) is more sensitive than the NDVI for determining the vegetation cover ratio, vertical vegetation thickness, and vegetation type. However, the PDM has sensor-dependent parameters. It is difficult to directly compare results obtained using data from different sensors.In Chapter 4, we proposed a new vegetation index based on the universal pattern decomposition method (VIUPD). The VIUPD is defined as a linear sum of the pattern decomposition coefficients but is sensor independent. The VIUPD has many benefits over the conventional VIPD. We compared how our new vegetation index (VIUPD), the NDVI, the EVI, and the VIPD represent the relationships between photosynthesis, the vegetation area ratio, and the number of overlapping leaves. Results demonstrated that the VIUPD reflected vegetation concentrations, the amount of CO2 absorption, and the degree of terrestrial vegetation vigor more sensitively than did the NDVI and EVI. The NDVI and EVI became more rapidly saturated as a function of PAR. The VIUPD is more suitable for multi-spectral analysis than the EVI, NDVI, and VIPD.For validation of the UPDM, in Chapter 5, four UPDM coefficients were computed using Landsat/ETM+ and Terra/MODIS data observed over the Three Gorges region. Vegetation indices were computed in the same multi-dimensional space. UPDM coefficients computed with 6-band ETM+ data, with wavelengths between 350 and 2500 nm were compared to coefficients computed with MODIS data in bands 1 to 7. Both datasets were re-sampled to a spatial resolution of 484.5 m. The DN value was converted to a reflectance value by considering radiometric calibration and atmospheric correction. Reflectance values are the input vector for calculating UPDM coefficients.The four UPDM coefficients derived from the satellite data are independent of the sensor. The independence of Cs and Cv is better than Cw and C4, because both Cw and C4 have values near zero. Consequently, any small bias will move them far from a linear line. UPDM coefficients and vegetation indices (VIUPD, NDVI, and EVI) were computed using 3x3 pixel averages to evaluate the effect of pixel spatial location errors. Coefficients and vegetation indices computed this way both showed smaller root mean square (rms) values. Results also suggest that the VIUPD is sensor-independent, especially in areas with little topographic influence.
    In Chapter 6, we proposed a new classification method based on the UPDM. Sets of spectral reflectance measured by a sensor are transformed by the UPDM into three coefficients with three fixed spectral reflectance patterns. This paper considered ETM+ data for a classification study. The satellite digital signal number (DN) was first converted to reflectance value after adjusting for the influence of Rayleigh scattering. Application of the UPDM to satellite reflectance data reduces the number of UPDM features from the original hyper-multi dimensional data. Classification results are compared to classification accuracy from PCT using MDC (using minimum Euclidean distance and minimum Mahalanobis distance) and MLC algorithms. The classification used PCT and UPDM were similar. Unlike PCT components, UPDM components have physical meanings. Classification results using UPDM are sensor-independent, which are very significant for comparison of results derived from different data.
引文
1 陈述彭,童庆禧,郭东华.遥感信息机理研究.北京:科学出版社,1998
    2 宫鹏等.不同季相针叶树种高光谱数据识别分析.遥感学报.1998
    3 郭广猛.关于MODIS卫星数据的几何校正方法.遥感信息.2002,(3):26-28
    4 郭东华.遥感新进展与发展战略.北京:中国科学技术出版社,1996
    5 刘玉洁,杨忠东等.MODIS遥感信息处理原理与算法.北京:科学出版社,2001
    6 刘卫东.高光谱遥感土壤信息提取与挖掘研究[博士论文].中国科学院,2002
    7 刘政凯等.成像光谱遥感图像的有限光谱混合分析.环境遥感,1996
    8 马吉平.成像光谱图像数据处理及在植被区的应用:[博士论文].武汉:武汉测绘科技大学,2003
    9 梅安新,彭望禄,秦其明,刘慧平.遥感导论.北京:高等教育出版社,2001
    10 浦瑞良,宫鹏.高光谱遥感及应用.北京:高等教育出版社,2000
    11 孙家柄,舒宁,关泽群.遥感原理、方法和应用.北京:测绘出版社,2002
    12 孙家抦.遥感原理与应用.武汉:武汉大学出版社,2003,2
    13 盛裴轩,毛节泰,李建国等.大气物理学.北京:科学出版社,2003
    14 田庆久,张良培等.成像光谱定标模型的分析与评价.遥感技术与应用,1996
    15 童庆禧.遥感发展趋势的思考.见:郭东华主编.遥感新进展与发展战略.北京:中国科学技术出版社,1996
    16 汤国安,张友顺,刘咏梅,谢元礼,杨昕,刘爱利.北京:科学出版社,2004
    17 王长耀,牛铮,唐华俊等.对地观测技术与精细农业.北京:科学出版社,2001
    18 徐瑞松,马跃良,何在成.遥感生物地球化学.广州:广东科技出版社,2003
    19 肖温格,RA.李德熊译.遥感中的图像处理和分类技术.北京:科学出版社,1991
    20 叶荣华,范文义,龙晶等.高光谱遥感技术在荒漠化监测中的应用.北京:中国林业出版社,2001,12
    21 张永生.遥感图像信息系统.北京:科学出版社,2000
    22 张立福,张良培,村松加奈子,藤原界.利用MODIS数据计算陆地植被指数VIUPD.武汉大学学报[信息科学版].
    23 张立福,张良培,村松加奈子,藤原昇.基于高光谱卫星遥感数据的UPDM分析方法.武汉大学学报[信息科学版].30(3):264-268
    24 张良培,李德仁,童庆禧,郑兰芬.鄱阳湖地区土壤,植被光谱混合模型的研究.测绘学报 1997
    25 张良培等.利用高光谱对生物量进行估计.遥感学报,1997
    26 张良培.光谱分析在高光谱遥感中的应用:[博士论文].武汉:武汉测绘科技大学,1998
    27 中国科学院.2002年中国天文年历.北京:科学出版社,2001
    28 赵英时.遥感应用分析原理与方法.北京:科学出版社,2003
    29 朱述龙,张占睦.遥感图像获取与分析.北京:科学出版社,2000
    30 周成虎,骆剑承,杨晓梅等.遥感影像地学理解与分析.北京:科学出版社,2001
    31 Adams, J. B., Sabol, D. E., Kapos, V, Fiiho, R. A., Roberts, D. A., Smith, M. O., and Gillespie, A. R. (1995). Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon, Remote Sensing of Environment, 52: 137-154.
    32 Ahern, F. J., Goodenough, D. G, Jain, S. C. Rac, V. R., and Rochon, G. (1977). Use of clear lakes as standard reflectors for atmospheric measurements. In Proceedings of the 11th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, 731-775.
    33 Baret, F., and Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and PAR assessment. Remote Sensing of Environment, 35: 161-173.
    34 Baret, F., Guyot, G., and Major, D. J. (1989). Crop biomass evaluation using radiometric measurements. Photogrammetria (PRS) 43(5): 241-256.
    35 Bannari, A., Morin, D., Bonn, F., and Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Review, 13: 95-120.
    36 Byrne, G. F., Crapper, P. F., and Mayo, K. K.(1980). Monitoring land-cover change by principal components analysis of multitemporal Landsat data, Remote Sensing of Environment, 10: 175-184.
    37 Bauer, M. E., (1986). Field spectroscopy of agriculture crops. IEEE Transaction on Genscience and Remote Sensing, 24(1): 65-75.
    38 Barrett, E. C., and Curtis, L. F. (1992). Introduction to environmental remote sensing. Chapman and Hall.
    39 Clevers J G P W. (1989). The application of a weighted infrared-red vegetation index for estimating Leaf Area Index by correcting soil moisture. Remote Sensing of Environment, 29: 25-37
    40 Crist, E. P., and R. C. Cicone, (1984). Application of the Tasseled Cap concept to simulated Thematic Mapper data. Photogrammetric Engineering and Remote Sensing, 50(3): 343-352
    41 Cihlar, J., Caramori, P. H., Schuepp, P. H., Desjardins, R. L., and Macpherson, J. I. (1992). Relationship between satellite-derived vegetation indices and aircraft-based CO2 measurements. Journal of Geophysical Research-Atmospheres, 97: 18515-18521.
    42 Chang, C.-I, Zhao, X., Althouse, M. L. G, and Pan, J.-J. (1998). Least squares subspace projection approach to mixed pixel classification in hyperspectral images. IEEE Transaction on Geoscience and Remote Sensing, 36: 898-912.
    43 Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal application. Canada Journal of Remote Sensing, 22(3): 229-242.
    44 Carlson, T. and Ripley, D. (1997). On the relationship between NDVI, fractional vegetation cover, and Leaf Area Index. Remote Sensing of Environment, 62: 241-252.
    45 Chavez, P. S., Jr. (1989). Radiometric calibration of Landsat Thematic Mapper multispectral images. Photogrammetric Engineering and Remote Sensing. 55: 1285-1294.
    46 Chavez, P. S., Jr. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24: 459-479.
    47 Collins, W. (1978). Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing, 44: 43-55.
    48 Congalton, R. G. (1996). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37: 35-46.
    49 Daigo, M., Ono, A., Fujiwara, N., and Urabe, R. (2004). Pattern decomposition method for hyper-multi-spectral data analysis. International Journal of Remote Sensing, 25(6): 1153-1166.
    50 Duda, R. O., Hart, P. E., Stork, D. G. (2001). Pattern Classification. 2nd edition, New York: John Wiley & Sons Inc.
    51 Duggin, M. J., Piwinski, D., Whitehead, V., and Ryland, G. (1982). Scan-angle dependence of radiance recorded by the NOAA-AVHRR. Proceedings SPIE, (363): 98 101.
    52 DeFries, R. S., and Townshend, J. R. G., (1994). NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing, (15): 3567 3586.
    53 Davis, J. C. Statistics and Data Analysis in Geology. 2nd edition. New York: John Wiley & Sons, 1986.
    54 Dymond, C. C., Mladenoff, D. J., & Radeloff, V. C. (2002). Phonological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sensing of Environment, 80, 460-472.
    55 Elvidge, C. D., and Lyon, R. J. P. (1985). Influence of rock-soil spectral variation on assessment of green biomass. Remote Sensing of environment, 17: 265-279.
    56 Eastman, R. J., and Fulk, M. (1993). Long sequence time series evaluation using standardized principal components. Photogrammetric Engineering and Remote Sensing, (59)8: 1307-1312.
    57 Eklundh, L., and Singh, A. (1993). A comparative analysis of standardized and unstandardized principal components analysis in remote sensing. International Journal of Remote Sensing, 14(7): 1359-1370.
    58 Epiphanio, J. C. N., and Huete, A. R. (1995). Dependence of NDVI and SAVI on Sun/Sensor geometry and its effect on fAPAR relationships in Alfalfa. Remote Sensing of Environment, 51: 351-360.
    59 Ferreira, L.G., Yoshioka, Huete, A., and Sano, E. E. (2004). Optical characterization of the Brazilian Savanna physiognomies for improved land cover monitoring of the cerrado biome: preliminary assessments from an airborne campaign over an LBA core site. Journal of Arid Environments 56: 425-447.
    60 Fang, T., and LeDrew, E. (1987). Application of principal components analysis of to change detection. Photogrammetric Engineering and Remote Sensing, (53)12: 1649-1658.
    61 Fujiwara, N., Muramatsu, K., Awa, S., Hazumi, A. and Ochiai, F. (1996). Pattern expansion method for satellite data analysis, (in Japanese). Journal of Remote Sensing Society of Japan, 17(3): 17-37.
    62 Furumi, S., Hayashi, A., Murumatsu, K., Fujiwara, N. (1998). Relation between vegetation vigor and new vegetation index based on pattern decomposition method. Journal of Remote Sensing Society of Japan, 18(3): 17-34.
    63 Furumi, S., Xiong, Y., and Fujiwara, N. (2004). Establishment of an algorithm to estimate canopy photosynthesis by pattern decomposition using multi-spectral data, Journal of Remote Sensing Society of Japan, (accepted).
    64 Gao, J. (1999). A comparative study on spatial and spectral resolutions of satellite data in mapping mangrove forests. International Journal of Remote Sensing, 20(14): 2823-2833.
    65 Gonzalez, R. C., and Wintz, P. Digital image processing. Addison-Wesley, Reading MA. 1977
    66 Gilabert, M. A., Gonza'lez-Piqueras, J., Garci'a-Haro, J., & Melia', J. (2002). A generalized soil-adjusted vegetation index, Remote Sensing of Environment 82: 303-310
    67 Gilabert, M. A., Gonzz'lez-Piqueras, J., Garci'a-Haro, J., & Melia', J. (1998). Designing a generalized soil-adjusted vegetation index (GESAVI). In E. T. Engman (Ed.), Remote sensing for agriculture, ecosystems, and hydrology. Proceedings of SPIE, (3499): 396-404.
    68 Gong, P. (1996).Integrated analysis of spatial data from multiple sources: using evidential reasoning and an artificial neural network for geological mapping. Photogrammetric Engineering and Remote Sensing, 62(5): 513-523
    69 Green, R. (1990). Retrieval of reflectance from calibrated radiance imagery measured by the airborne visible/infrared imaging spectrometer (AVIRIS) for lithological mapping of the Clark Mountains. California, Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop. Jet Propulsion Laboratory, Pasadena, CA, 167-175.
    70 Gallo, K. P., & Danghtry, C. S. T. (1987). Differences in vegetation indices for simulated landsat-5 MSS and TM, NOAA-9 AVHRR and SPOT-1 sensor systems. Remote Sensing of Environment, 23: 439-452.
    71 Goetz, S. J. (1997). Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 18: 71-94.
    72 Guyot, G., and Gu, X. F.(1994). Effect of radiometric corrections on NDVI-determined from SPOT HRV and Landsat TM data. Remote Sensing of Environment, 49: 169-180.
    73 Gordon, H. R. (1978), Removal of atmospheric effects from satellite imagery of the ocean. Applied Optics 17: 1631 1636.
    74 Huete A, Didan K, Miura T, Rodriguez E P, et al. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83: 195-213
    75 Huete A. R., and Jackson, R. D. (1987). Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands, Remote Sensing of Environment, 23: 213-232
    76 Huete A. R. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309
    77 Huete, A. R. (1989), Soil influences in remotely sensed vegetation-canopy spectra. In Theory and Applications of Optical Remote Sensing. G. Asrar (Ed.), John Wiley & Sons, Inc., New York: 107-141.
    78 Huete, A., Liu, H. Q., Batchily, K., and van Leeuwen, W. J. D. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59: 440-451.
    79 Huete, A., Justice, C., and Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS, Remote Sensing of Environment, 49: 224-234.
    80 Hayashi, A., Muramatsu, K., Furumi, S., Shiono, Y., Fujiwara, N., Daigo, M. (1998). An algorithm and a new vegetation index for ADEOS-Ⅱ/GLI data analysis. Journal of Remote Sensing Society of Japan, 18(2): 28-50.
    81 Holben, B. N., Tucker, C. J., and Fan, C. J. (1980). Spectral assessment of soybean leaf area and leaf biomass, Photogrammetric Engineering and Remote Sensing, 46: 651-656
    82 Hirosawa, Y. Marsh, S. E. and Kliman, D. H. (1996). Application of standardized principal component analysis to land-cover characterization using multitemporal AVHRR data. Remote Sensing of Environment, 58(3): 267-281
    83 Hodges, J., Morrow N., and Strahler, A. (2000). Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America. International Journal of Remote Sensing, 21(6, 7): 1115-1138.
    84 Hill, J., and Aifadopoulou, D. (1990). Comparative analysis of Landsat-5 TM and SPOT HRV-1 data for use in multiple sensor approaches. Remote Sensing of Environment, 34: 55-70.
    85 Harsanyi, J. C., and Chang, C.-I (1994). Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection. IEEE Transactions on Geoscience and Remote Sensing, 32: 779 785.
    86 Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, IT-14 (1): 55-63.
    87 Ingebritsen, S. E., and Lyon, R. J. P. (1985). Principal components analysis of multitemporal image pairs. International Journal of Remote Sensing, 6(5): 687-696.
    88 Jordan C F. (1969). Derivation of Leaf Area Index from quality of light on the forest floor. Ecology, 50: 663-666
    89 Joachim H, Boris S. (1991). Radiometric correction of multitemporal Thematic Mapper data for use in agricultural land-cover classification and vegetation monitoring. International Journal of Remote Sensing, (12)7: 1471-1491
    90 Jia, X., and J. A. Richards (1999). Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing, 37(1): 538-542.
    91 Jia, X. (1999). Adaptable class data representation for hyperspectral image classification. Asia Remote Sensing conference.
    92 Jia, X., and Richards, J.A. (1992). Simplified maximum likelihood classification for hyperspectral data sets. Proceedings of 6th Australasian Remote Sensing Conference, Wellington, vol. 3, pp. 61-69.
    93 Jia, X. (2002). Simplified maximum likelihood classification for hyperspectral data in cluster space. IGARSS'02, Toronto, 24-28.
    94 Kenea, N. H. (2001). Influence of desert varnish on the reflectance of gossans in the context of Landsat TM data, southern Red Sea Hills, Sudan. International Journal of Remote Sensing, 22(10), 1879-1894.
    95 Kaufman, Y. J. (1989). The atmospheric effect on remote sensing and its correction. In Theory and Application of Optical Remote Sensing (G. Asrar, Ed.), New York, pp. 341 ff.
    96 Kaufman, Y., and Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30: 261-270.
    97 Kaufman, Y. J. (1993). Aerosol optical thickness and atmospheric path radiance. Journal of Geophysical Research. 98: 2677 2692.
    98 Kaufman, Y. J., Wald, A., Remer, L. A., Gao, B., Li, R., and Flynn, L. (1997). The MODIS 2.1 Im channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing 35: 1-13.
    99 Kauth, R. J., and Thomas, G. S. (1976). The Tasselled Cap—a graphic description of spectral-temporal development of agricultural crops as seen by Landsat. Proceedings: 2nd International Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette.
    100 Kruse, F. A., Lefkoff, A. B., Boardman, J. W. (1993). The Spectral image processing system (SIPS) —Interactive visualization and analysis of imaging spectrometer data Remote Sensing of Environment, 51: 375-384.
    101 Lillesand, T. M., Kiefer, R. W. (2000). Remote Sensing and Image Interpretation, 4nd edition, New York: John Wiley & Sons Inc.
    102 Liu, H.Q., Huete, A.R., (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing 33: 457-465.
    103 Muramatsu, K., Furumi, S., Fujiwara, N., Hayashi, A., Daigo, M., and Ochiai, F. (2000). Pattern decomposition method in the albedo space for Landsat TM and MSS data analysis. International Journal of Remote Sensing, 21(1): 99-119.
    104 Merembeck, B. F., and Turner, B. J., (1980). Directed canonical analysis and the performance of classifiers under its associated linear transformation. IEEE Transactions on Geoscience and Remote Sensing, 18: 190-196.
    105 Maiersperger, T. K., Cohen, W. B., & Ganio, L. (2001). A TM-based hardwood-conifer mixture index for closed canopy forests in the Oregon Coast Range. International Journal of Remote Sensing, 22(6): 1053 1066.
    106 Members of the MODIS Characterization Support Team for NASA/Goddard Space Flight Center. MODIS Level 1B product Users Guide, 2000
    107 Murat, D. M., and Landgrebe, D. (2002). A model-based mixture-supervised classification approach in hyperspectral data analysis. IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2692-2699.
    108 Major, D. J., Baret, F., and Guyot, G.(1990). A ratio vegetation index adjusted for soil, brightness. International Journal of Remote Sensing, 11(5): 727-740.
    109 Nemani, R., Pierce, L., Running, S., and Band, L. (1993). Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed leaf area index estimates. International Journal of Remote Sensing, 14: 2519.
    110 Oneill, N T. Atmospheric Correction of airborne BRF to Yield Surface BRF: Nomenclature Theory and Methods. Canadian Journal Remote Sensing, 1995
    111 Pinty, B., Leprieur, C., and Verstraete,.M.M. (1993). Towards a quantitative interpretation of vegetation indices—Part 1: Biophysical canopy properties and classical indices. Remote Sensing Review, 7: 127-150.
    112 Philpot W D. (1991). The derivative ratio algorithm: avoiding atmospheric effects in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 29(3): 350-357
    113 Pearson, R. L., and Miller, L. D. (1972). Remote mapping of standarding crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado. Processing of 8th International symposium on Remote Sensing of Environment, ERIM, Ann Arbor, MI, 1357-1381.
    114 Qi, J., Chehbouni, Al., Huete, A. R., Kerr, Y. H., and Sorooshian, S. (1994). A modified soil adjusted vegetation index (MSAVI). Remote Sensing of Environment, 48: 119-126.
    115 Richardson A J, Wiegand C L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43: 1541-1552
    116 Richardson, A. J., and Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43: 1541-1552.
    117 Ren, H., and Chang, C.-I. (2000). A generalized Orthogonal Subspace Projection approach to unsupervised multispectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 38(6): 2515-2528.
    118 Rogan, J., and Yool, S. R. (2001). Mapping fire-induced vegetation depletion in the Peloncillo Mountains, Arozona and New Mexico. International Journal of Remote Sensing, 22(16): 3101-3121.
    119 Rogan, J., Franklin, J., & Roberts, D. A. (2002). A comparison of methods for monitoring multi-temporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80: 143-156.
    120 Ridao, E., Conde, J. R., and Mi'nguez, M. I. (1998). Estimating fAPAR from nine vegetation indices for irrigated and nonirrigated Faba Bean and semileafless Pea Canopies. Remote Sensing of Environment, 66: 87-100.
    121 Roujean, J. L., and Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51: 375-384.
    122 Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., and Harlan, J. C. (1974). Monitoring the vernal advancement of retrogradation of natural vegetation. Greenbelt, MD: NASA/GSFC (Type Ⅲ, Final Report), 371
    123 Rondeaux, G., Steven, M., and Baret, E (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55: 95-107.
    124 Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., & Kaufmann, R. K. (2002). Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23(10): 1985-2004.
    125 Schott, J. R., Salvaggio, C., and Volchok, W. J. (1998). Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment, 26: 1-16.
    126 Stevena, M. D., Malthusb, T. J., Baretc, F., Xud, H., Chopping, M. J. (2003). Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment, 88: 412-422.
    127 Swain, P. H., and Davis, S. M. (eds). Remote Sensing: The Quantitative Approach. New York: McGraw-Hill, 1978
    128 Teillet, P. M., Staenz, K., and Williams, D. J. (1997). Effects of Spectral, Spatial, and Radiometric Characteristics on Remote Sensing Vegetation Indices of Forested Regions, Remote Sensing of Environment, 61: 139-149.
    129 Tucker, C. and Compton J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8: 127-150.
    130 Tu, T. M., Chen, C. H., and Chang, C.-I (1997). A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection. IEEE Transactions on Geoscience and Remote Sensing, 35: 127-139.
    131 Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., & Morcrette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35: 675-686.
    132 Warren, B. C., Thomas K. M., Stith T. G., and David P. T. (2003). An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 84: 561-571
    133 Yoshioka, H., Huete, A. R., and Miura, T. (2000). Derivation of vegetation isoline equations in red-NIR reflectance space. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 838-848.
    134 Zhang, L., Mitsushita, Y., Furumi, S., Muramatsu, K., Fujiwara, N., Daigo, M., and Zhang, L. (2003). Universality of modified Pattern Decomposition Method for satellite sensors, Asia GIS Conference Publications.
    135 Zhang, L., Furumi, S., Murumatsu, K., Fujiwara, N., Daigo, M., and Zhang, L. (2004). Sensor-independent analysis method for hyper-multi spectra based on the pattern decomposition method. International Journal of Remote Sensing, (in review).
    136 Zhang, L., Furumi, S., Murumatsu, K., Fujiwara, N., Daigo, M., and Zhang, L. (2004). A new vegetation index based on the Universal Pattern Decomposition Method. International Journal of Remote Sensing, (in review).
    137 Zhang, L., Fujiwara, N., Furumi, S., Muramatsu, K., Daigo, M., and Zhang L (2005). Assessment of the universal pattern decomposition method using MODIS and ETM+ data. International Journal of Remote Sensing, (in review)
    138 Zhang, L., Li, D., Tong, Q., Zheng, L. (1998). Calibration of airborne imaging spectrometer data acquired from Poyang Lake area, China. Proceedings of SPIE, 3502: 57-64.
    139 Zhang Ye, Zhang Junping, Jin Ming. (2000). Adaptive subspace decomposition and classification for hyperspectral images. Chinese Journal of Electronics, 9(1): 82-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700