遥感矿化蚀变信息提取中两种新方法的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西部高寒山区是我国极具找矿潜力的重要成矿区域。以遥感技术为先导,结合地质、地球物理、地球化学勘查技术,在西部高寒山区进行矿产资源勘查是快速、有效的勘查方法。矿化蚀变信息提取是遥感矿产勘查中最关键的技术,但是由于矿化蚀变信息在遥感图像上是一种弱信息,使用传统的信息提取方法效果往往不尽人意。因此,不断研究有效的遥感蚀变信息提取新技术新方法,提高遥感找矿的可信度和效益,具有非常重要的现实意义。
     支持向量机(Support vector machine, SVM)是机器学习界的研究热点,并在很多领域都得到了成功的应用。光谱相似尺度(Spectralsimilarity scale, SSS)是一种能同时度量光谱向量的大小和方向差异的新方法,能提高对光谱向量间相似性描述的准确性。
     本文基于国家“十五”科技攻关计划项目(2003BA612A-04)中的子课题“SVM遥感数据矿化信息提取技术研究”,对遥感矿化蚀变信息提取中的两种新方法—SVM和SSS进行了研究。
     研究工作中首先介绍了遥感矿化蚀变信息提取及SVM的研究现状,接着讨论了SVM和SSS理论基础及基本概念和要解决的关键技术问题,然后选择几个典型矿化区段作为试验区,对这两种新方法在遥感矿化蚀变提取信息中的应用进行了系统的研究,主要的研究内容概括如下:
     利用生成的遥感模拟影像对SVM应用中的几个关键问题进行了的实验分析。实验中分别研究了不同的核函数类型、核参数、错误惩罚因子、多类算法及训练样本数目对SVM分类器性能的影响,实验结果表明核参数和惩罚因子比核函数对分类精度影响更大。
     探讨了模型选择方法中较实用的网格搜索及交叉验证法的基本原理和方法,对网格搜索法确定支持向量机核函数参数和惩罚因子的过程作了详细描述,确定了SVM在遥感矿蚀变信息应用中模型参数的选择方法。
     将SSS应用于遥感矿化蚀变信息提取中。通过对提取结果的验证及与传统提取方法对比,表明该方法有利于减少异物同谱现象的影响,提高遥感蚀变信息提取的精度。
     将SVM方法应用于遥感矿化蚀变信息提取,通过野外实地验证和
The western high-cold mountainous districts are the most important mineral-forming areas, with extremely high mineral exploration potential. Using Remote Sensing technique and combining with geology, geophysics and geochemistry technology, mineral exploration in high-cold mountainous areas is fast and efficient way. Altered rock's information extraction is the most important technique in Remote Sensing mineral exploration. However altered rock's information is weak in Remote Sensing image, sometimes the effect with traditional information extraction approachs is not very good. So we can see that it is considerably significant to explore new approach of mineral resources searching and evaluating in accordance with west's natural condition.
    Support Vector Machine(SVM) is a hotspot in machine learning field and has been successfully applied in different fields. Spectral Similarity Scale(SSS) is a new approach which can simultaneously measure the magnitude and direction of spectral vectors, and it can improve the veracity of similarity description among spectral vectors.
    Based on the subordinate subject of the brainstorm state projects of the "Tenth Five-year Plan", two new approachs-SVM and SSS in Remote Sensing altered rock's information extraction are discussed.
    Firstly, the paper introduces the present researching situation of Remote Sensing altered rock's information extraction. Secondly, it discusses the SVM basic theory, concept and key technical problems by using SVM and SSS, and then the paper systematically researches the new approachs in the application of Remote Sensing information extraction selecting several typical mineralization districts as testing areas. The following research work has been done:
    Experimental attestation is made to several key problems in the application of SVM using inborn Remote Sensing simulative images. Author researches how different kernel functions, kernel parameters, penalty parameters, multi-classifying algorithm and the number of training examples affect the performance of SVM classifier. The result
引文
[1] 孙家炳主编.遥感原理与应用[M].武汉:武汉大学出版社,2003
    [2] Zhao Bin, LiuYong, Xia ShaoWei. Support vector machine and its application in handwritten numeral recognition[A]. Proceedings of 15th International Conferenceon Pattern Recognition, 2000: 720~723
    [3] Shen Lansun, Wei Baoguo, Cai Yiheng, et al. Image analysis for tongue characterization[J]. Chinese Journal of Electronics, 2003, 12(3): 317~323
    [4] Osuna E, Freund R, Girosit F. Training support vector machines: an application to face detection[A]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997: 130~136
    [5] 地质部情报研究所.遥感专辑——矿物岩石的可见-中红外光谱及其应用[M].北京:地质出版社,1980
    [6] Ambrams M J. Landsat thematic mapper and thematic mapper simulator data for a porphyry copper deposit[J]. Photogrammetric Engineering and Remote Sensing, 1984, 14: 128-136
    [7] Crosta A, Moore J M. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in S~ Minas Gerais State, Brazil-A prospecting case history in greenstone belt terrain[A]. Thematic Conference on Remote Sensing for Exploration Geology, 1989: 1173-1187
    [8] Loughlin W P. Principal component analysis for alteration mapping[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57: 1163-1169
    [9] Timothy M Kusky, Talaat M Ramdadan. Structural controls on Neoprotero zoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat-TM, and SIR-C /X SAR approach[J]. Journal of African Earth Sciences, 2002, 35: 107~121
    [10] 刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991
    [11] 赵元洪,张福祥,陈南峰等.波段比值主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,3:12~18
    [12] 陈赶良,杨柏林等.黔桂地区微细浸染型金矿蚀变信息提取机理[J].环境遥感,1996,11(2):88~93
    [13] 马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997, 1(3): 208-213
    
    [14] Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995
    
    [15] Osuna E, Freund R, Girosi F. Support Vector Machines: Training And Applications[M]. AI Memo 1602, MIT, 1997
    
    [16] Joachims T. Text Categorization With Support Vector Machines: Learning With Many Relevant Features. In Claire Nedellec and Celine Rouveirol, editors, Proceedings of the European Conference on Machine Learning, Springer, 1998: 137-142
    
    [17] Platt J C. Sequential minimal optimization: a fast algorithm for training support vector machines[R]. Cambridge: Microsoft Research, 1998
    
    [18] Platt J C. Using Analytic QP and Sparseness to Speed Training of Support Vector Machines[J]. Advances in Neural Information Processing Systems 1999,11: 557-563
    
    [19] Keerthi S., Shevade S., Bhattcharyya C, et al. Improvements To Platt' s SMO Algorithm For SVM Classifier Design[J]. Neural Computation, 2001,13(3): 637-649
    
    [20] Chang C C, Lin C J. LIBSVM: a library for support vector machines[R]. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, 2001
    
    [21] Luntz, Brailovsky V. On Estimation Of Characters Obtained In Statistical Rocedure Of Recognition[M]. Technicheskaya Kibernetica, 1969
    
    [22] Cauwenberghs G., Poggio T. Incremental And Decremental Support Vector Machine Learning[J]. in Advances in Neural Information Processing Systems (NIPS'2000), MIT Press, Cambridge, MA, 2001,13: 409-415
    
    [23] Wahba G, Lin Y, and Zhang H. GACV for support vector machines, Advances in Large Margin Classifiers[M]. MIT Press, Cambridge, MA, 1999
    
    [24] Chapelle, Vapnik V. Model Selection for Support Vector Machines [M]. Advances in Neural Information Processing Systems 12. Cambridge, Mass: MIT Press, 2000
    
    [25] Chapelle, Vapnik V, Bousquet 0, et al. Choosing Kernel Parameters For Support Vector Machines[J]. Machine Learning, 2001, 46: 131-160
    
    [26] Joachims T. The Maximum-Margin Approach To Learning Text Classifiers: Method, Theory And Algorithms[D]. PHD Thesis, Department of Computer Science, University of Dortmund, 2000
    [27] Vapnik V, Chapelle. Bounds On Error Expectation For Support Vector Machines[J]. Neural Computation, 2000,12(9): 2013-2036
    [28] Gold C, Sollich P. Model selection for support vector machine classification[J]. Neurocomputing, 2003, 55(1/2): 221~249
    [29] Keerthi S., Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667~1689
    [30] Heng-Nian Qi, Jian-Gang Yang, Yi-Wen Zhong, et al. Multi-class SVM based remote sensing image classification and its semi-supervised improvement scheme. Machine Learning and Cybernetics, 2004, 5: 3146~3151
    [31] Knerr S, Personnaz L, Dreyfus G. Single-layer learning revisited: A stepwise procedure[M]. In: Fogelman-Soulie F, Herault J, eds and Applications. NATO ASI. Springer, 1990: 41~50
    [32] Krebel U. Pairwise classification and support vector machines[J]. In: Scholkopf B, Burges, C, Smola, AJ, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA:MIT Press, 1999: 255~268.
    [33] Platt J, Cristianini N, Shave-Taylor 5. Large margin DAG's for multiclass classification[J]. In: SollaS, LeenT, Muller K, eds. Advances in Neural Information Processing Systems 12, Cambridge, MA: MIT Press, 2000: 547-553
    [34] Weston J, Watkins, C. Support vector machines for multi-class pattern recognition[A]. In: Verleysen M, ed. Proc. ESANN 99. Brussels, Belgium, 1999: 19~24
    [35] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273~297
    [36] Scholkopf B, Sung K, Burges C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[A]. IEEE Transactions On Signal Processing, 1997, 45: 2758~2765
    [37] 卢增样,李衍达.交互SVM学习算法及其在文本信息过滤中的应用[J].清华大学学报,1999,39(7):93~97
    [38] Joachims T. Text categorization with support vector machines: Learning with many relevant features[A]. In: Nedellec C, Rouveirol C, eds. Proceedings of the Tenth European Conference on Machine Learning (ECML '98). Berlin: Lecture Notes in Computer Science, 1998, 1398: 137~142
    [39] Osuna E, Freund R, Girosi F. Training support vector machines: An application to, face detection[A]. In Proceedings of the 1997 Computer Vision and Pattern Recognition (CVPR'97), Puerto Rico, 1997: 130-136
    [40]Jonsson K, Matas J, Kittler J et al. Learning Support Vectors for Face Verification and Recognition [A]. In:CrowleyJ, ed. Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, Grenoble, France, 2000:208-213
    
    [41] Kumar V, Poggio T. Learning-based approach to real time tracking and analysis of faces[A]. In: Crowley J, ed. Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, Grenoble, France, March 2000: 96-101
    
    
    [42] Smola A J, Scholkopf B. A tutorial on support vector regress ion [J]. Statistics and computing, 2004,14:199-222
    
    [43] 田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17~22
    
    [44] Vapnik V, Golowich S., Smola A. Support vector method for function approximation, regression estimation, and signal processing[J]. In: Mozer M, Jordan M, Petsche T, eds, Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1997:281-287
    
    [45] Miller KR, Smola AJ, Ratsch G, et al. Predicting time series with support vector machines. In: Gerstuner W, Germond A, Hasler M et al, eds. Artiificial Neural Networks (ICANN'97). Berlin: Springer Lecture Notes in Computer Science, 1997, 1327: 999-1004
    
    [46] Suykens JAK, Vandewalle J, De Moor B. Optimal control by least squares support vector machines, Neural Networks, 2001,14(1): 23—25
    
    [47] Furey TS, Cristianini N, DuffN et al. Support vecto'r machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000,16: 906—914
    
    [48] Dubchak I, Muchnik I, Mayor C et al. Recognition of a protein fold in the context of the SCOP classification[J]. Proteins: Structcture, Function and Genetics, 1999,35: 401-407
    
    
    [49] Bock J R, Gough, D A. Predicting protein-protein interactions from primary structure[J]. Bioinformatics, 2001,17: 455—460
    
    [50] Cai YD, Liu XJ, Xu XB, et al. Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect[J]. Journal of Cellular Biochemistry, 2002, 84: 343~348
    [51] Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach[J]. Journal of Molecular Biology, 2001, 308: 397~407
    [52] Hermes L, Rieauff D, Puzicha J. Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J]. Geoscience and Remote SensingSymposium, 1999, 1: 348~350
    [53] Fabio Roll, Fumera G. Support Vector Machines for Remote-Sensing Image Classification[J]. Proceedings of SPIE, 2001, 4170: 160~66
    [54] Huang C, Davis LS, Townshend JRG. An Assessment of Support Vector Machines for Land Cover Classification[J]. International Journal of Remote Sensing, 2002, 23: 725~749
    [55] Guobin Zhu, Blumberg DG. Classification Using ASTER Data and SVM Algorithms[J]. Remote Sensing of Environment, 2002, 80: 233~240
    [56] Pal M, Mather PM. Support Vector Classifiers for Land Cover Classification[M]. Image Processing & Interpretation, 2003
    [57] Camps-Vails G, Gomez-Chova L, Calpe-Maravilla J. Support Vector Machines for Crop Classification Using Hyperspectral Data[J]. Pattern Recognition and Image Analysis, 2003: 134~141
    [58] Melgani F, Bruzzone L. Classification of Hyperspectral Remote Sensing Images With SVM[J]. Geoscience and Remote Sensing, 2004, 42: 1778~1790
    [59] 骆剑承,周成虎,梁怡.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50~55
    [60] 夏建涛.基于机器学习的高维多光谱数据分类:[博士学位论文].西安:西北工业大学,2002
    [61] 赵书河,冯学智,都金康等.基于支持向量机的Spin一2影像与Spot-4多光谱影像融合研究[J].遥感学报,2003,7(5):407~412
    [62] 胡自申,张迁.基于SVM的遥感影像的分类[J].遥感信息,2003,2:14~19
    [63] 刘志刚.支持向量机在光谱遥感影像分类中的若干问题研究:[博士学位论文].武汉:武汉大学,2004
    [64] 梅建新,基于支持向量机的高分辫率遥感影像的目标检测研究:[博士学位 论文].武汉:武汉大学,2004
    [65] 洪金益,姚学恒,潘冬等.基于SVM遥感图像矿化信息提取试验[J].矿业研究与开发,2004,24(5):63~65
    [66] 边肇祺,张学工等编著.模式识别[M].北京:清华大学出版社,2000
    [67] Vapnik著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000
    [68] Y S Abu-Mostafa. The Vapnik-Chervonenkis dimension: information versus complexity in learning[J]. Neural Computation, 1989, 1: 312~317
    [69] Michael Schmitt. On using the poincare polynomial for calculating the VC dimension of neural networks[J]. Neural Networks, 2001, 14 (10) : 1465~1467
    [70] Pascal Loiran, Eduardo D S. Vapnik-Chervoneenkis dimension of recurrent neural networks[J]. Discrete Applied Mathematics, 1998, 86 (1) : 63~79
    [71] Fletcher R. Practical Methods of Optimization [M]. John Wiley and Sons, 2nd edition, 1987
    [72] Muller K R, Mika S, Ratsch G. An Introduction to Kernel-Based Learning Algorithms[A]. IEEE Transactions on Neural Networks, 2001, 12 (2) : 181~201
    [73] Scholkopf B, Smola A, and Klaus R M. Nonlinear Component Analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10: 1299~1319
    [74] B E Boser, I M Guyon, V N Vapnik. A training algorithm for optimal margin classification[A]. Proc 5th annual ACM workshop on computational learning theory. Pittsburgh: ACM Press, 1992: 144~152
    [75] Roger A Horn, Charles R Johnson. Matrix Analysis[M]. New York: Cabridge University Press, 1985
    [76] Garth P McCormick. Nonlinear Programming: theory, algorithms and applications[M]. John Wiley and Sons, Inc. , 1992
    [77] S Mukherjee, E Osuna, F Girosi. Nolinear prediction of chaotic time series using a support vector machine[A]. In: Proceeding of the IEEE Workshop on Neural Networks for Signal Processing. Amelia Island, 1997
    [78] Edgar E Osuna, Federico Girosi. Reducing the run-time complexity of support vector machines[A]. In: International Conference on Pattern Recognition, 1998
    [79] 辛宪会.支持向量机理论、算法与实现:[硕士学位论文].郑州:中国人民 解放军信息工程大学,2005
    [80] Nello Cristianini,John Shawe-Taylor著.李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社,2004
    [81] Vapnik著,许建华,张学工译.统计学习理论[M].北京:电子工业出版社,2004
    [82] Tax D, Duin R. Data domain description by support vectors[A]. Proceedings of the European Symposiumon Artificial Neural Networks[C]. Brussels: Facto D Press, 1999
    [83] Lee Y J, Mangasarian O L. RSVM: Reduced Support Vector Machines[A]. First SIAM International Conference on Data Mining, Chicago, 2001
    [84] 中国科学院黄金科技工作领导小组办公室.中国金矿研究新进展(第2卷)[M].北京:地震出版社,1994
    [85] 陈光火等著.高光谱遥感蚀变矿物岩石识别与填图译文集[M].全国遥感地质协调小组新技术方法课题组,天津市遥感中心资源部,冶金部大津地质研究院,1991
    [86] Hunt G R.粒状矿物的可见及近红外光谱特征标记图,王宗良译自《Geophsics》Vol.42,NO.3,1977.遥感专辑(第一辑)[M].北京:地质出版社,193~207
    [87] A. W. Siegrist, C. C. Schnetyler. 岩石判别的最佳波段,译自《photogr. Eng. Rem. Sen.》,Vol.46,No.9,1980.遥感专辑(第二辑)《图象处理和地质应用》[M].地矿部情报研究所编,北京:地质出版社,1982
    [88] 田庆久,董卫东,郑兰芬等.新疆柯坪地区沉积岩光谱特征分析[J].遥感技术与应用,1996,11(2):1~8
    [89] 童庆禧等编著.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990
    [90] 常青.甘肃北山南带岩(矿)石波谱特征的初步研究[J].甘肃地质学报,1999,8(1):49~55
    [91] 孟新,姚国清.内蒙古阿木乌苏地区TM图像褐铁矿化蚀变信息提取研究[J].遥感技术与应用,1995,10(2):23~27
    [92] 何国金,胡德永,陈志军等.从TM图像中直接提取金矿化信息[J].遥感技术与应用,1995,10(3):51~54
    [93] 陈松岭,卢福宏,高光明等.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[J].国土资源遥感,2001,2:13~18
    [94] 张满郎,郑兰芬.Landsat TM及JERS-1 SAR数据在金矿探测中的应用研 究[J].环境遥感,1996.11(4):260~266
    [95] 张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法.国土资源遥感,1998,2:46~53
    [96] 吴涛.核函数的性质方法及其在障碍检测中的应用:[博士学位论文].长沙:国防科学技术大学,2005
    [97] Keerthi S, Lin J C. Asymptotic Behaviours of Support Vector Machines with Gaussian Kernel [J]. Neural Computation, 2003, 15: 1667~1689
    [98] Luntz A. , Brailovsky V. On estimation of characters obtained in statistical procedure of recognition[M]. Technicheskaya Kibernetica, 1969
    [99] 萧嵘,孙晨.一种具有容噪性能的SVM多支分类器[J].计算机研究与发展,2000,37(9):1071~1075
    [100] Xiang Tian, Feiqi Deng. An Improved Multi-class SVM Algorithm and Its Application to the Credit Scoring Model[A]. proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China, 2004
    [101] Chih-Wei Hsu, Chih-Jen Lin. A Comparison of Methods for Multiclass Support Vector Machines[A]. IEEE transaction on neural networks. 2002, 13 (2) : 415~425
    [102] 刘华煜.基于支持向量机的机器学习研究:[硕士学位论文].大庆:大庆石油学院,2005
    [103] Jensen J R. Introductory digital image processing: A remote sensing perspective, 2nd ed. Upper Saddle River, N. J. : Prentice Hall, 1996
    [104] Baugh W M, Kruse F A, William W, et al. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible infrared Imaging Spectrometer(AVIRIS)[J]. Remote Sens. Environ, 1998, 65: 292~308
    [105] Fenstermaker L K, Miller J R. Identification of Fluvially Redistributed MillTailings Using High Spectral Resolution Aircraft Data[J]. Photogram metric Engineering Remote Sensing, 1994, 60 (8) : 989~995
    [106] 安斌,陈书海,严卫东.SAM法在多光谱图像分类中的应用[J].中国体视学与图像分析,2005,10(1):55~60
    [107] Crosta A P, Sabine C, Taranik J V. Hydrothermal Alteration Mapping atBodie, California, Using AVIRIS Hyperspectral Data[J]. Remote Sens Environ, 1998, 65: 309~319
    [108] Drake N A, Mackin S, Settle J J. Mapping Vegetation, Soil, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery[J]. Remote Sens Environ, 1998, 68: 12~25
    [109] Yuhas R H, Geotz F H A, Boardman J W. Discrimination Among Semiarid Landscape Endmembers Using the Spectral Angle Mapper(SAM) Algorithm[A]. Summaries of the Third Annual JPL Airborne Geoscience workshop[Z]. Pasadena, CA, JPL Publication 92-14, 1992
    [110] Granahan J. C. , Sweet J. N. An evaluation of atmospheric correction techniques using the spectral similarity scale[J]. IEEE 2001 International Geoscience and Remote Sensing Symposium, 2001, 5: 2022~2024
    [111] 赵元洪,张福祥,陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,3:12~16
    [112] Rutz-Armenta J R, Prol-Ledesma R. M. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico[J]. International Journal of Remote Sensing, 1998 (19) : 1981~2000
    [113] Tangestani, m. H, Moore, F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, Meidukarea, Kerman, Iran[J]. Canadian Journal of remote Sensing, 2001 (27) : 176~181
    [114] 张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用—方法选择和技术流程[J].国土资源遥感,2003,2:44~49
    [115] 刘成,王丹丽,李笑梅.用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].地质找矿论,2003,18(2):131~137
    [116] Giovanni Bianchini, Ugo Cortesi, Luca Palchetti. Emission Fourier transform spectroscopy for the remote sensing of the atmosphere[J]. Optics and Lasers in Engineering 2002, 37: 187~202
    [117] 吴德文,朱谷昌,吴健生等.青海芒崖地区岩石光谱特征分析及应用.国土资源遥感,2001,4:28~34
    [118] Ruiz-armenta J R. Prol-ledesma. Techniques for enhancing the spectral response of hydro-thermal alteration minerals in Thematic Mapper images of Central Mexico[J]. Int. J. Remote Sensing, 1998, 19 (10) : 1981~2000
    [119] David J. Kruglinski, Scot Wingo, George Shepherd著.希望图书创作室译:Visum C++6.0技术内幕(第五版),北京:北京希望电子出版社,2002
    [120] 向世明编著.Visum C++数字图像与图形处理.北京:电子工业出版社,2002
    [121] Microsoft Corporation. MSDN Library, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700