冬季北半球大气活动中心异常规律和遥联成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气活动中心(ACA)是月平均海平面气压(SLP)场中全年或季节地出现在特定地理区域的巨大高压、低压系统,ACA的季节变化决定区域气候的季节变化,它们的异常及遥联与大气环流和区域气候异常关系密切,故它们也是大气环流异常与短期气候预测的重要研究对象。本文用Hadley研究中心160年(1850~2009年)月平均SLP场资料,确定了北半球ACA成员及性质。对冬季北半球的5个ACA,定义了物理意义清晰的环流指数(面积S、强度P、中心位置λc、φc),并完成了它们的计算,初步分析了它们的气候及异常特征。在此基础上,研究了ACA的气候效应,ACA的遥联,ACA异常及遥联与大气热机热源热汇异常的关系,取得了对冬季北半球ACA的较系统和较深入的认识。论文的主要结论是:
     1)用可靠资料论证了北半球存在6个ACA,它们是北大西洋上的冰岛低压(LI)、北大西洋高压(HA),北太平洋上的阿留申低压(LA)、北太平洋高压(HP)和亚洲大陆上的蒙古高亚(HM)、印度低压(LIN)。其中,冬半年位于高纬的LI.HM、LA和夏半年位于低纬的LIN是半永久性ACA;全年位于低纬大洋上的HA和HP是永久性ACA,或准永久性ACA(冬季弱)。
     2)按统一的定义和计算方法、用可靠的资料算出了1850-2009年冬季北半球5个ACA(LI、HA、HM、LA、HP)的季、月环流指数(S、P、λc、φc)160年序列。用它们中具有独立性的三个环流指数(P、λc、φc)定量地分析了ACA的气候及异常特征,论证了其自身的合理性,从而为大气环流异常及短期气候预测研究,提供了一套有应用价值的环流指数。
     3)冬季北半球ACA均对所在地及周边一定区域的气候及异常有显著的、符合天气动力学意义的影响。其中,海洋上ACA对气候的影响范围远大于陆上ACA,ACA强度异常对气候的影响大于位置异常的影响,ACA异常对气温的影响大于对降水的影响。北大西洋上的LI.HA对气候异常的影响在分布区域及影响性质两方面均十分相似,而北太平洋上的LA.HP对气候异常影响的性质则近于相反。影响中国冬季气候及异常的ACA主要是HM, HM强年,全国(除西南地区外)冬季气温偏低、四川和华北局部地区降水偏多;其次是位于上游的LI、HA的影响,LI、HA强年,我国‘三北’部分地区气温偏高;LA、HP对中国气候异常的影响相对弱。
     4)北半球冬季5个ACA间存在3对强显著遥联:LI~HA、LI~HM和LA~HP。LI~HA即北大西洋涛动(NAO), LI~HM和LA~HP则是相邻高压、低压强度负相关、气压正相关的新型遥联。冬季北太平洋上国际日更线附近的一对南北遥联,因其南方无高压环流实体支持,本质上是‘遥相关型’、而非‘涛动’,应当称为北太平洋遥相关型(NP)。冬季北半球ACA的遥联可区分为两个相对独立的遥联系统:北大西洋/欧亚大陆遥联系统由LI~HA、LI~HM共同构成,北太平洋遥联系统仅由LA~HP构成。我国位于北大西洋/欧亚大陆遥联系统东部,冬季大气环流及气候异常主要受它的影响。
     5)ACA异常及遥联与海洋外强迫的关系如下:高纬海冰异常主要影响北大西洋/欧亚大陆遥联系统,海冰偏多(极涡偏强)年,HM减弱、LI加强、位置偏南,北大西洋涛动加强;北太平洋上的LA、HP无明显异常。低纬海洋海表温度(SST)异常主要影响北太平洋遥联系统,热带中东太平洋SST异常偏高(El Nino事件发生)年,LA加强、HP主体所在区域Hadley环流下沉支偏弱,HP减弱。
     6) CCSM4模式大气、海洋中ACA遥联与同期实际大气遥联接近;但在海洋对冬季北半球ACA遥联及其外强迫模拟中,高纬海冰与同期PV、ACA的相关不显著,热带SST对北大西洋LI、HA的显著强迫与实际不符。
An atmospheric center of action(ACA) is defined as a spatially extensive high-pressure or low-pressure system in the monthly mean sea level pressure (SLP) field, stagnating over a specific geographic area throughout the year and/or season. Seasonal variations of ACA determine the seasonality of the regional climate. The anomaly and teleconnection of ACA are closely related with atmospheric circulation and regional climate anomalies. Therefore, ACA is an important research subject of the atmospheric circulation anomalies and short-term climate prediction. The members and characteristics of ACA over the Northern Hemisphere are identified using Hadley monthly mean SLP dataset (from1850to2009). The circulation indices (area S, the intensity P, the center position) with clear physical meaning of5ACAs are defined and calculated for winter season over the Northern Hemisphere, and their climatic and abnormal features of ACA are preliminarily analyzed. On this basis, the climatic effects of the ACA, teleconnection between ACAs and the relationship between the abnormal teleconnection of ACA and abnormal heat source-sink of atmospheric heat engine are researched, through which more systematic and more in-depth understanding of the ACA for winter over the Northern Hemisphere are obtained. The main conclusions are as follows:
     1)There are6ACAs over the Northern Hemisphere demonstrated by reliable data, including Icelandic low(LI) and North Atlantic subtropical high (HA) over the North Atlantic, Aleutian Low (LA) and North Pacific subtropical high (HP) over the North Pacific, together with Mongolian high (HM) and India low(LIN) over the Asian continent. Among them, LI, HM, LA at the high latitudes throughout the winter season and LIN at the low latitudes throughout the summer season are semi-permanent ACAs. HA and HP in low-latitude ocean throughout the year are permanent ACAs, or quasi-permanent ACAs (Winter weak).
     2) The seasonal and monthly Circulation Indices (S、P、λc、φc) of five ACAs (LI, HA, HM, LA, HP) from1850to2009are calculated by uniform definitions and calculation methods, based on reliable data. The climatic and abnormal characteristics of the ACA are quantitatively analyzed and the reasonableness is demonstrated by the three independent Circulation Indices (P、λc、φc). Thus, a set of application value circulation indices are provided for atmospheric circulation anomaly and short-term climate prediction research.
     3) It is demonstrated that the ACA significantly affects the climate and anomaly at the location and the surrounding area, according with the synoptic dynamics significance. The impact area of ACA on climate is much larger on the ocean than on the continent. The impact on climate from ACA intensity anomalies is greater than from its position anomalies. The impact on temperatures is greater than on precipitation from ACA anomalies. The impacts of LI and HA over the North Atlantic on climate anomalies in both the properties and the distribution areas are very similar, while the impact on properties of climate anomalies is nearly opposite. HM is the main ACA that affects China's winter climate and anomalies. In winter, the temperature is lower on China (except Southwest Region) and precipitation over Sichuan and some areas of North China is more on the positive phase of HM. LI and HA, which located on the upstream of China, are the secondary ACAs that affects on China's winter climate and anomalies. When LI and HA are stronger, the temperature is higher over China's'Three North'parts. The impacts of LA and HP on China climate anomalies are relatively weak.
     4) It is revealed that there are three significant teleconnections among five ACAs in winter over the Northern Hemisphere, which are LI-HA, LI-HM and LA-HP. LI-HA is the North Atlantic Oscillation (NAO). LI-HM and LA-HP are newly defined teleconnections. The intensity of LI's (LA's) and HM's (HP's) is negatively correlated. The teleconnections among ACAs in winter over the Northern Hemisphere are divided into two relatively independent systems:(1) the North Atlantic/Eurasia teleconnection system consists of LI-HA and LI-HM, and (2) North Pacific teleconnection system includes only LA-HP. Winter season atmospheric circulation and climate anomalies in China are mainly influenced by the North Atlantic/Eurasia teleconnection system.
     5) The relationships among climate anomalies, teleconnections of ACAs, and Ocean external forcing can be summarized as follows:(1) Sea ice anomalies at high-latitude mainly affect the North Atlantic/Eurasia teleconnection system. When sea ice is above normal, polar vortex is stronger, HM is weaker, LI is stronger and shifts southward, and NAO is stronger. LA and HP over the North Pacific have no obvious anomalies.(2) SST anomalies over tropical central East Pacific mainly affect teleconnection system over the North Pacific. Positive SST anomalies over tropical central East Pacific cause LA strengthening and HP weakening, and the sinking branch of Hadley circulation associated with HP move southward and become weaker.
     6) CCSM4can qualitatively simulate the teleconnections of ACA in comparison to observations. However, role of the tropical ocean as external forcing is overemphasized in the simulations for controlling ACA anomoalies and teleconnection. Forcing mechanism due to sea ice at high-latitude and polar vortex is under estimated in model simulations, as compared with observed data.
引文
Alexander M A, Bhatt U S, Walsh J E. The atmospheric response to realistic sea ice anomalies in an AGCM during winter[J]. J. Climate,2004,17:890-905.
    Allan R J,Ansell T J. A new globally complete monthly historical mean sea level pressure data set(HadSLP2):1850-2004.Journal of Climate,2006,19:5816-584.
    Angell J K. Relation between 300mb north polar vortex and equatorial SST, QBO, and sunspot number and the record contraction of the vortex in 1988-89[J]. J. Climate,1992,5(1):22-29.
    Angell J K. Relation of size and displacement of the 300mb north circumpolar vortex to QBO, El Nino, and sunspot number,1963-2000[J]. J.Geophys. Res.,2001,106(31):787-794.
    Antoni Jordi and Sultan Hameed. Influence of the Icelandic Low on the Variability of Surface Air Temperature in the Gulf of Lion:Implications for Intermediate Water Formation. Journal of Physical Oceanography,2009,39:3228-3232.
    Barnston A G, Livezey R E. Classificaion, seasonality and persistence of low-frequency atmospheric circulation patterns [J]. Mon. Wea. Rev.,1987,115:1803-1125.
    Blackmon M,Boville B,Bryan F, et al.. The community Climate system model[J]. Bull. Amer. Meteor. Soc., 2001,82(11):2357-2376.
    Brandefelt J,Otto-Bliesner B L. Equilibration and variability in a Last Glacial Maximum climate simulation with CCSM3[J].Geophys. Res. Lett.,2009,36:L19712.
    Deser C, Magnusdottir G, Saravanan R. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. PartⅡ:Direct and indirect components of the response[J]. J. Climate,2004,17:877-889.
    Deser C, Tomas R A, Peng S. The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies[J]. J. Climate,2007,20:4751-4767.
    Fang Z,Wallace J.M. Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing[J]. J Climate.,1994,7 (12):1897-1914.
    Garreaud R D, Battisti D S. Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation [J]. J. Climate,1999,12:2113-2123.
    Gong D Y, Wang S W. Definition of Antarctic oscillation index[J]. Geophysical Research Letters,1999, 26(4):459-462.
    Graham, N E, Barnett T P, Wilde R, Ponater M, and Schubert S. On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation[J]. J. Climate,1994,7:1416-1441
    Greatbatch R J, Rong P P. Discrepancies between different Northern Hemisphere summers atmospheric data products [J]. J. Climate,2006,19 (1):1261-1273.
    Honda M, Nakamura H, Ukita J et al.. Interannual Seesaw between the Aleutian and Icelandic Lows. Part I:Seasonal Dependence and Life Cycle. American Meteorological Society,2001,14:1029-1042.
    Honda M,Yamazaki K, Nakamura H, et al. Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk[J]. J Clim.,1999,12:3347-3358.
    Horel,J. D. A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev.,1981,109:2080-2092.
    Horman G F, Johuson W T. The effect of extreme sea ice variations on the elimatology of the Goddard GCM, sea ice processes and models. Proc. ICSI/AIDIEX Symp.,Univ. of Whiasngton Press,1979.
    Hoskins B.J., D J Karoly. The Steady Linear Response of a Spherical Atmosphereto Thermal and Orographic Forcing[J]. Journal of the Atmospheric Sciences,1981,38(6):1179-1196.
    Huang Ronghui, Wu Yifang. The influence of ENSO on the summer climate change in China and it smechanism[J].Adv.Atmos. Sci.,1989,6:21-32.
    Hurell J W.Decadal trends in the North Atlantic Oscillation:regional temperatures and precipitations[J],Science.1995,269:676-679.
    Inoue Tomoshige, Jun Matsumoto. A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960-99[J]. J Meteor Soc Japan,2004,82(3): 951-95.
    J.K.Angell,J.Korshover. Comparison of Year-Average Latitude, Longitude and Pressure of the Four Centers of Action with Air and Sea Temperature,1899-1978 [J]. Monthly Weather Review,1982,110:300-303.
    Julian,P.R. and Chervln, R.M. A study of the Oscillation and Walker circulation phenomenon, Mon. Wea. Rev.,1978,106,1433-1451.
    Kalnay E,Kanamistsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of American Meteorological Society.1996,77:437-471.
    Karoly D J. Southern Hemisphere circulation features associated with El Ni-no-Southern Oscillation events [J]. J. Climate.,1989,2:1239-1252.
    Keshavamurty,R.N. Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleeonnections of the Southern Oscillation, J.Atmos.Sci.,1982,39,1241-1259.
    Kistler R, Kalnay E, Collins W, et al. The NCEP/NCAR 40-year reanalysis:Monthly means CD-ROM and documentation[J].Bulletin of American Meteorological Society.2001,82:27-268.
    Kumar A, Perlwitz J, Eischeid J, et al. Contribution of sea ice loss to Arctic amplification[J]. Geophys Res Lett,2010,37:L21701.
    L'Heureux M L, Thompson, David W J.Observed relationships between the El Ni-no-Southern Oscillation and the extratropical zonal-mean circulation [J]. J. Climate.,2006,19:276-287.
    1960s[J]. Mon. Wea. Rev.,1969,97:173-192.
    Latif M, Bernett T P. Causes of decadal climate variability over the North Pacific and North America[J]. Science,1994,266:634-637.
    Lau N C. Interactions between global SST anomalies and the midlatitude atmospheric circulation[J]. Bull. Amer. Meteor. Soc.,1997,78:21-33.
    Livezey R E,Chen W Y. Statistical field significance and its determination by Mante Carlo techniques[J]. Mon Wea Rev,1983,111(1):46-59.
    Lorenz E N. The nature and theory of the general circulation of the atmosphere [M].Geneva:World Meteorol.Org.,1967:161.
    Magnusdottir G, Derser C, Saravanan R. The effects of North Atlantic SST and sea ice anomalies in the winter circulation in CCM3. Part I:Main features and storm track characteristics of the response[J]. J. Climate,2004,17:857-876.
    Mo K C, White G H. Teleconnections in the Southern Hemisphere [J]. Mon. Wea. Rev.,1983,113:22-37.
    Nakamura H, Tanaka M, Wallace J M. Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns [J]. J. Atmos. Sci.,1987,44:3377-3391.
    Namias J. Expeliments in objectively predicting some atmosphere and oceanic variables for the winter of 1971-1972[J]. J. APPI. Meteo.,1972:1164-1174.
    Namias J. Recent seasonal interactions between North Pacific waters and the overlying atmosphere[J]. J. GeoPhys. Res.,1959,64:631-646.
    Namias J. Seasonal interaetion between North Pacific ocean and the atmosphere during the
    Newell R E, Kidson J W, Vincent D G, et al., The General Circulation of the Tropical Atmosphere and Inter-actons with Extratropical Latitudes[M]. MIT Press,1972:258.
    Overland J E, Adams J M, Bond N A. Decadal variability of the Aleutian Low and its relation to high-latitude circulation[J]. J. Climate,1999,12:1542-1548.
    Overland J E, Pease C H. Cyclone climatology of the Bering Sea and its relation to sea ice extent[J].Mon Wea Rev.,1982,110(1):5-13.
    Panxing Wang Julian X. L. Wang, Hai Zhi, et al.Circulation Indices of the Aleutian Low Pressure System: Definitions and Relationships to Climate Anomalies in the Northern Hemisphere[J]. Advances in Atmospheric Sciences,2012,29:1111-1118.
    Peter R., Gokhan, Leo J, et al. The Community Climate System Model Version 4[J]. J. Climate,2011,24: 4973-4991.
    Prisenberg S J, Peterson I K, Narayanan S, et al.. Interaction between atmosphere, ice cover, and ocean off Labrador and New foundland from 1962-1992[J]. Can J Aquat Sc.,1997,54(1):30-39.
    Qin Y., Wang P., Yue Y, et al. Comparison of the Hadley cells calculated from two reanalysis data sets[J]. Chinese Science Bulletin.2006,51:1741-1746.
    Rasmusson E M, Wallace J M. Meteorological aspects of El Nino/Southern Oscillation[J]. Science,1983, 222:1195-1202.
    Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature,2010,464:1334-1337.
    Seager R, Harnik N, Kushnir Y, et al. Mechanisms of hemispherically symmetric climate variability [J]. J. Climate.,2003,16:2960-2978.
    Shin S I, Liu Z, Otto-Bliesner B, et al.. A simulation of the Last Glacial Maximum Climate using the Ncar-CCSM[J]. Climate Dyn.,2003,20:127-151.
    Shukla, J. and Wallace, J. M. Numerical simulation of the atmopsheric response to equatorial pacific sea surface temperature anomalies, J. Atmos. Sci.,1983,40:1613-1630.
    Simmons A J, Gibson J K. ERA-40 Project Report Series No.1 [J]. The ERA-40 Project Plan.2000.
    Slonosky,Mysak V C A, Derome J. Linking arctic sea ice and atmospheric circulation anomalies on interannual and decadal timescales[J].AtmosOcean.,1997,35(3):333-366.
    Teisserenc de Bort, L., Etude sur l'hiver de 1879-80 et recherches sur la position des centres d'action de l'atmosphere dans les hivers anormaux, Ann. Bureau Central Meteor.1883,4:17-62.
    Thompson D.W.J., and Wallace J.M., The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J],Geophys.Res.Lett.,1998,25(9),1297-1300.
    Trenberth K E, Branstator G W, Karoly D, et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures [J]. J.Geophys. Res., 1998,103:14291-14324.
    Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dyn.,1994,9:303-319.
    Trenberth K E. Recent observed interdecadal climate changes in the northern hemisphere[J]. Bull. Amer. Meteor. Soc.,1990,71:988-993.
    Walker, G. T., and E. W. Bliss. World Weather V. Mem. Roy[J]. Meteor. Soc.,1932,4(36):53-84.
    Wallace J.M., C.Smith and C.S. Bretherton. Singular value decom-position of winter time sea-surface temperature and 500 hPa height anomalies[J]. J Climate.,1992,5(6):561-576.
    Wallace, J.M., David and Gutzler S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review,1981,109:784-812.
    Wallace, J.M.and Blackmon, M.L.Observations of low-frequency atmospheric variability, Large-scale dynamical processes in the atmosphere,Ed. By B.J. Hoskins and R.Pearcc, Academic press,1983:55-94.
    Walsh J E, Johnson C M. Interannual atmospheric variability and associated fluctuations in Arctic sea ice extent[J]. JGeophy Res.,1979,84(c11):6915-6928.
    Watshaw M and Ra R R. An experiment on the sensitivity of a global circulation model [J]. J.Appl.Meteor., 1973, (12):43-49.
    Wettstein J J, Mearns L O. The influence of the North Atlantic-Arctic Oscillation on mean, variance[J], and extremes of temperature in the northeastern United States and Canada. J Clim.,2002,15(24): 3586-3600
    WMO:International Meteorological Vocabulary.见:国际气象词典编译组(1994):中英法俄西国际气象词典,北京,气象出版社,1992,1-698.
    Wu B Y, Su J Z, Zhang R H. Effects of autumn-winter Arctic sea ice on winter Siberian High [J]. Chinese Sci Bull,2011,56.
    Yang Song, K M Lau, K M Kim. Variations of the East Asian jet stream and Sian-Pacific-American winter climate anomalies[J]. J Climate,2002,15:306-325.
    Yeh S W, Kirtman B P. The North Pacific Oscillation-ENSO and internal atmospheric variability [J]. Geophys Res Lett,2004,31:13206-13210.
    Zhang X J, Jin L Y, Chen C Z, et al. Interannual and interdecadal variations in the North Atlantic Oscillation spatial shift. Chinese Sci Bull,2011,56:2621-2627.
    陈芳丽,黎伟标.北半球大气遥相关型冬夏差异及其与温度场关系的探讨[J].大气科学,2009,33(3):513-523.
    陈延聪,王盘兴,周国华,等.夏季南亚高压的一组环流指数及其初步分析[J].大气科学学报,2009,32(6):101-107.
    崔锦,杨修群.马斯克林高压的变化及其与ENSO的关系[J].气象科学,2005:25(5),441-449.
    《大气科学辞典》编委会.大气科学辞典[M].气象出版社,1994:93.
    方之芳,高玉庄,代民.极地海冰对太平洋副热带高压影响的可能途径[J].海洋学报,1986,8:558-565.
    方之芳,谭友邦,隋学海.夏季北极海冰激发的500hPa遥相关型[J].海洋学报,1991,15(1):53-60.
    方之芳,张丽.夏季NCEP资料质量和20世纪70年代东亚热低压的突变[J].高原气象,2006,25(2):179-189.
    冯康等编.数值计算方法[M].国防工业出版社,北京,1978.
    复旦大学数学系.概率论与数理统计[M].上海:上海科技出版社出版社,1961.
    工盘兴.大气环流基木分析方法及应用(讲义)[M].2007.
    龚道溢,王绍武.大气涛动对全球低层大气环流的贡献[J].高原气象,2002,9(4):427-434.
    龚道溢,王绍武.全球变暖可能影响的研究.地理学报,1999,54(2):125-133.
    龚道溢,朱锦红,王绍武.西伯利亚高压对亚洲大陆的气候影响分析[J].高原气象,2002,21(1):8-21.
    管树轩,王盘兴,麻巨慧,等.北半球10 hPa极地涡旋环流指数定义及分析[J].高原气象,2009,28(4):777-785.
    郭冬,孙照渤.冬季北太平洋涛动异常与东亚冬季风和我国天气气候的关系[J]南京气象学院学 报,2004,27(4):461-470.
    侯亚红,杨修群,李刚.冬季西伯利亚高压变化特征及其与中国气温的关系[J].气象科技,2007,35(5):646-650.
    黄荣辉,陈金中.平流层球面大气地转适应过程和惯性重力波的激发[J].大气科学,2002,26(3):289-303
    黄荣辉,魏凤英.北半球夏季遥相关型的年际变化及其数值模拟[J].大气科学,1992,16(1):52-61.
    黄荣辉.引起我国夏季旱涝的东亚大气环流异常遥相关及其物理机制的研究[J].大气科学,1990,14(1):108-111.
    黄荣辉.冬季低纬度热源异常对北半球大气环流影响的物理机制[J].中国科学,1986,B辑,1:91-103.
    凌铁军,王彰贵,王斌,等.基于CCSM3气候模式的同化模拟实验[J].海洋学报,2009,31(6):9-21.
    刘梅,胡洛林,濮梅娟,等.夏季南亚高压的演变及有关天气系统的响应研究[J].气象科学,2007:27(3),295-301.
    刘晴晴,王盘兴,徐祥德,等.蒙古高压一组环流指数及与中国同期气候异常关系分析[J].热带气象学报,2011,27(6):889-898.
    麻巨慧,王盘兴,郭栋,等.南半球10 hPa极地涡旋环流的多尺度变化特征分析[J].高原气象,2009,28(6):1299-1307.
    孟文和吴国雄.赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件:Ⅰ.资料分析[J].大气科学,2000,24(1):15-25.
    任广成.冬季冰岛低压对西欧天气的影响及长期预报[J].海洋预报,1990,2(05):37-45.
    任律,王盘兴,李丽平.印度低压异常特征及与印度、中国同期降水相关的分析[J].热带气象学报,2011,27(4):509-518.
    施能,陈辉,谌芸.北半球冬季大气活动中心的基本态特征及影响研究[J].热带气象学报,2001,17(3):215-222.
    施能,袁晓玉,陈绿文,等.北半球夏季大气活动中心与海平面气压场的气候基本态及变率特征[J].南京气象学院学报,2000,23(1):9-16.
    施宁,王盘兴,徐海明,等.南极洲低层两种位势高度再分析资料的比较[J].高原气象,2008,27(06):1249-1256.
    孙晓娟,王盘兴,智海,等.阿留申低压四种环流指数的分析与比较[J].大气科学学报,2011,34(1):74-84.
    孙晓娟,王盘兴,智海,等.蒙古高压若干环流指数及与我国冬季气温异常相关的分析和比较[J].高原气象,2010,29(6):1493-1500.
    王盘兴,高智,李长清.北半球1月500百帕高度场遥相关结构的分析.南京气象学院学报,1986,9(3):217-227.
    王盘兴,李长清,高智.北半球1月和7月100百帕高度场遥相关结构的分析.气象科学,1988,8(1):56-65.
    王盘兴,卢楚翰,管兆勇,等.闭合气压系统环流指数的定义及计算[J].南京气象学院学报,2007,30(6):730-735.
    王盘兴,吴洪宝,王秉春.北半球月平均高度场的纬向相关半径.长期天气预报论文集(2)[C],气象出版 社,1992:89-95.
    王盘兴,赵辉,任律,等.闭合气压系统中心位置指数的计算方案[J].大气科学学报,2010,33(5):520-526.
    王绍武.1962.大气活动中心的多年变化[J].气象学报,31(4):305-318.
    王遵娅,丁一汇.2006.近53年中国寒潮的变化特征及其可能原因[J].大气科学,30(6):1068-1075.
    吴国雄,Stcfano T.平均经圈环流在大气角动量和感热收支中的作用[J].大气科学,1988,12(01):8-17.
    吴洪宝.北半球大气活动中心的一些统计特征[J].南京气象学院学报,1991,14(3):461-467.
    武炳义,王佳.冬季北极涛动和北极海冰变化对东亚气候变化的影响[J].极地研究,2004,19(2):297-318.
    谢倩,黄士松.冬季赤道中东太平洋海温和北极海冰异常对大气环流影响的研究[J].气象科学,1990,10(4):325-338.
    叶笃正,朱抱真.大气环流的若干基本问题[M].科学出版社,1958.
    曾红玲,高新全,戴新刚.近20年全球冬、夏季海平面气压场和500 hPa高度场年代际变化特征分析[J].高原气象,2002,21(1):66-73.
    张恒德,高守亭,张友姝.300hPa北极涡年际及年代际变化特征的研究[J].高原气象,2006,25(4):583-592.
    张庆云,杨鉴初,林学椿.大气活动中心长期变化的阶段性[J].大气科学,1983,4(7):364-373.
    张琼,钱永甫,张学洪.南亚高压的年际和年代际变化[J].大气科学,2000:24(1),67-78.
    章基嘉.中长期天气预报基础[M].北京气象出版社,1994.1-348.
    赵天保,符淙斌.应用探空观测资料评估几类再分析资料在中国区域的适用性[J].大气科学,2009,33(3):634-648.
    朱炳海,王鹏飞,束家鑫.气象学词典[M].上海出版社,1985:63.
    朱乾根,林锦瑞,寿绍文等.天气学原理和方法[M].北京:气象出版社,2000:144.
    朱乾根,施能,吴朝珲,等.近百年北半球冬季大气活动中心的长期变化及其与中国气候[J].气象学报,1997,55(6):750-758.
    朱乾根,施能,吴朝珲,等.近百年北半球冬季大气活动中心的长期变化及其与中国气候[J].气象学报,1997,55(6):750-758.
    朱小洁,孙即霖.冬季西北太平洋阿留申低压-南北向海温差-西风急流正反馈过程分析[J].科学通报,2006,51(9):1096-1102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700