机器人遥控焊接非结构化环境力觉辅助装配策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核环境设备修复、海洋工程水下施工、空间站建设维护以及地下管道维修等极限环境任务,需要操作者在远离工作现场的安全环境中,根据现场反馈的传感信息对焊接设备和焊接过程进行远程监视和控制,实现遥控焊接。对于极限环境管道裂纹修复任务,采用基于管道替换策略的机器人遥控焊接维修方案具有很好的应用前景。本文针对基于力觉传感控制的非结构化环境装配策略进行研究,用于实现管道替换遥控焊接方案中涉及的作业工具装配操作,为机器人遥控焊接技术在极限环境管道维修领域的实际应用奠定基础。
     根据管道替换遥控焊接方案中工具装配操作的过程特点,设计开发了基于开放式位置伺服机器人、六维力/力矩传感器和力反馈操纵杆的机器人遥控焊接力觉传感控制系统,作为表面跟踪共享力觉控制和工具装配主动柔顺控制等力觉传感控制关键技术的研究平台。力觉传感控制技术是机器人遥控焊接非结构化环境装配策略研究的核心问题。
     通过对遥控焊接任务空间和人机智能分配模式的分析,提出了被动柔顺共享监督和宏观遥控局部自主两类非结构化环境装配策略。被动柔顺共享监督装配策略采用表面跟踪共享力觉控制任务空间标定技术将非结构化环境转化为结构化环境,通过人机交互任务分析规划技术和人机共享遥操作辅助功能,实现工具装配任务的共享监督控制,以被动柔顺方式补偿装配误差。宏观遥控局部自主装配策略通过宏观遥控操作引导装配工具与任务环境发生接触,根据工具重力补偿后的实际接触力信息进行基于受控Petri网模型的工具装配过程离散事件控制,通过主动柔顺控制消除装配位置姿态偏差。
     对表面跟踪共享力觉控制任务空间标定技术进行了研究,采用基于球形力探测头和给定约束运动平面的任务环境表面跟踪策略,根据跟踪轨迹接触点受力状态分析,提出了位置伺服机器人表面跟踪局部自主力控制算法,建立了基于人机智能协作的表面跟踪共享力觉控制系统,用于实现任务空间标定。通过基于坐标系变换的接触点测量算法,精确计算跟踪轨迹接触点的空间位置。采用直接最小二乘拟合算法,对管道工件表面的椭圆跟踪轨迹进行拟合。提出了针对管道工件的任务空间标定算法,用于建立满足管道维修遥控焊接被动柔顺装配精度要求的结构化环境模型。
     对于被动柔顺共享监督装配策略,采用智能分级思想和基元任务概念,进行人机交互任务分析规划器设计,用于构造实现监督控制的基元任务序列。针对受限运动空间装配任务,提出了基于平面辅助功能和直线—速度—力辅助功能的人机共享控制策略,提高了任务分析规划器的适应能力。开发了基元任务编译器,将监督控制高级指令序列解释为结构体格式的中间指令序列,进而生成机器人指令序列,以被动柔顺方式完成工具装配任务。
     对基于负载参数标定的工具重力补偿技术进行了研究,在无接触只存在重力作用的条件下,通过工具重力计算和线性最小二乘进行工具负载参数标定。在此基础上,提出了用于消除主动柔顺装配过程重力干扰的工具重力补偿算法,使重力补偿精度满足工具装配任务局部自主力控制的需要。
     对于宏观遥控局部自主装配策略,在接触形式描述和接触状态分析的基础上,构造基于受控Petri网的管道工具装配接触状态离散事件模型,提出了基于状态标识检测的装配接触状态变迁识别方法,设计了用于实现主动柔顺工具装配的离散事件控制器,根据工具重力补偿后的实际接触力信息进行工具装配离散事件控制,以主动柔顺方式消除工具装配位置姿态偏差。
     针对基于管道替换策略的极限环境管道维修遥控焊接任务,分别采用被动柔顺共享监督和宏观遥控局部自主策略进行非结构化环境工具装配实验。从操作精度、执行效率、通用性和可靠性角度进行对比分析的结果表明,被动柔顺共享监督策略的通用性和可靠性较好,宏观遥控局部自主策略的操作精度和执行效率较高。针对机器人遥控焊接非结构化环境力觉辅助装配策略的研究工作为解决遥控焊接管道维修涉及的工具装配操作问题提供了切实可行的途径。
For extreme environment tasks such as maintenance in nuclear power plants, marine engineering undersea, construction of space stations and pipelines repairing underground, it is necessary for operator to implement remote welding at a safe place away from the worksite, monitor the welding process and control the welding equipments with sensor feedback information from a distance. The maintenance scheme based on pipe segment replacement strategy with robotic remote welding illustrates a wide prospect of application for crack repairing task on pipelines in hazardous environment. In this dissertation, the assembly strategies for robotic remote welding in unstructured environment based on force sensing and control have been studied for the realization of tool assembly operation in remote welding scheme with pipe segment replacement, and the research work will be the foundation for futher practical application of robotic remote welding technology in extreme environment pipeline maintenance area.
     According to the features of tool assembly operation during pipeline maintenance process, a force sensing and control system for robotic remote welding is designed and developed with position-servo open architecture robot, six-dimensional force/torque sensor and force-feedback joystick, which is the research platform for key technologies of force sensing and control, such as shared force control for surface tracking and active compliant control for tool assembling. The core issue for research on robotic remote welding assembly strategy is how to use the key technologies to implement assembly task in unstructured environment.
     Based on the analysis of remote welding task space and human-machine intelligence distribution mode, the strategies of shared supervisory with passive compliance and local autonomous with global teleoperation are proposed for assembly task in unstructured environment. For shared supervisory strategy with passive compliance, task space calibration technique based on surface tracking with shared force control is adopted to turn the unstructured environment into a structured environment. The shared supervisory control of assembly task is achieved by human-computer interactive task analyzing and planning technology and human-machine shared teleoperation assistance function. The assembly error is compensated by passive compliant device. For local autonomous strategy with global teleoperation, the assembly tool is manipulated in global teleoperation mode to contact with the task environment. The discrete event control of tool assembly process is based on the actual contact force information with tool gravity compensation and contact state model with controlled Petri Net. The deviation of assembly position and orientation is eliminated by active compliant control.
     Task space calibration technique based on surface tracking with shared force control is studied, while the task environment surface tracking strategy based on spherical force probe and constrained motion plane is adopted. According to the force status analysis of contact point on tracking trajectory, a local autonomous force control algorithm for surface tracking with position-servo robot is proposed, and the shared force control system for surface tracking is established to realize task space calibration. Based on the algorithm of coordinate system transformation, the accurate spatial locations of contact points on tracking trajectory are calculated. A task space calibration algorithm for pipe workpiece, in which the elliptic tracking trajectory on pipe surface are fitted by direct least squares algorithm, is presented to make structured environment model meet the requirements of passive compliant assembly accuracy for pipe maintenance remote welding.
     Shared supervisory strategy with passive compliance for assembly task is based on the concept of hierarchical intelligence and atomic task. A human-computer interactive task analyzer and planner is designed and implemented to construct the supervisory control command sequence of atomic tasks. For assembly task in restricted motion space, a human-machine shared control strategy based on planar and linear-velocity-force teleoperation assistance function is proposed to improve the adaptability and reliability of task analyzing and planning system. An atomic task compiler is developed to interpret high-level command sequence into intermediate struct-format command sequence. Robot command sequence is generated to achieve tool assembly task with passive compliance.
     The load parameters calibration algorithm is based on tool gravity calculation and direct least squares solution under non-contact gravity condition. Tool gravity compensation technique is studied to eliminate the gravity disturbance during active compliant tool assembly process, and make the precision of gravity compensation meet the requirements of local autonomous force control for tool assembly task.
     Local autonomous strategy with global teleoperation for assembly task is based on contact formation description and contact state analysis. A discrete event controlled Petri-net model of tool assembly contact state is constructed. An identification method of assembly contact state transition with state mark checking is proposed. A discrete event controller is designed to realize local autonomous compliant control of tool assembly process which is based on the actual contact force information with tool gravity compensation. The deviation of assembly position and orientation during tool assembly operation is gradually eliminated by active compliant control.
     Based on pipe segment replacement strategy of crack repairing tasks on pipelines in extreme environment with remote welding, the experiments on assembly operation in unstructured environment are performed with shared supervisory strategy with passive compliance and local autonomous strategy with global teleoperation respectively. The comparative analysis is made with respect to the operation accuracy, execution efficiency, adaptability and reliability. The analysis results show that, the adaptability and reliability of shared supervisory strategy with passive compliance are greater, while the operation accuracy and execution efficiency of local autonomous strategy with global teleoperation is higher. The research work on force assisted assembly strategies for robotic remote welding in unstructured environment provide a practical solution of tool assembly operation during remote welding for pipeline maintenance.
引文
1 W. Kanne. Remote Reactor Repair: GTA Weld Cracking Caused by Entrapped Helium. Welding Journal. 1988, 67(8): 33~39
    2 J. De Geeter, M. Decreton, E. Colon. The Challenges of Telerobotics in a Nuclear Environment. Robotics and Autonomous Systems. 1999, 28(1): 5~17
    3舒新宇,王国荣,李国进.水下机器人技术在焊接中的应用现状与前景.电焊机. 2005, 35(6): 24~28
    4 J. H. Nixon. Development of Underwater Welding. Welding and Metal Fabrication. 1991, 59(4): 174~177
    5吴林,冯吉才,高洪明,何景山.空间焊接技术.航空制造技术. 2005, (5): 32~35
    6 J. Singh, A. Kulkarni, N. Kang. Welding in Space. Advanced Materials and Processes. 2005, 163(6): 54~57
    7张连新.基于多智能体技术的机器人遥控焊接系统研究.哈尔滨工业大学博士学位论文. 2006: 9~10
    8李海超,吴林,高洪明,张广军.基于机器人遥操作的遥控焊接最新研究进展.焊接学报. 2006, 27(6): 108~112
    9 L. Wu, H. C. Li, H. M. Gao, G. J. Zhang. Development of Telerobotic System for Remote Welding Operations in Unstructured Environment. Solid State Phenomena: Designing of Interfacial Structures in Advanced Materials and their Joints. 2007, 127: 37~42
    10宋学斌.加快建设我国大型核燃料后处理厂.中国核工业. 2008, (3):37
    11林灿生.浅谈核燃料后处理.中国核工业. 2006, (10):45~47
    12林尚扬,陈善本,李成桐.焊接机器人及其应用.机械工业出版社. 2000: 188~212
    13殷跃红,尉忠信,黄晓曦.智能机器系统力觉及力控制技术.国防工业出版社. 2001: 23~26
    14殷跃红,朱剑英.智能机器力觉及力控制研究综述.航空学报. 1999, 20(1): 1~7
    15 T. Yoshikawa. Force Control of Robot Manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, 2000: 220~226
    16 J. Craig.机器人学导论.贠超.机械工业出版社. 2006: 253~267
    17蒋新松.机器人学导论.辽宁科技技术出版社. 1993: 139~149
    18日本机器人学会.新版机器人技术手册.宗光华,程君实.科学出版社. 2007: 283~292
    19 D. Whitney. Historical Perspective and State of the Art in Robot Force Control. International Journal of Robotics Research. 1987, 6(1): 3~14
    20 D. Whitney. Force Feedback Control of Manipulator Fine Motions. ASME Journal of Dynamic Systems, Measurement and Control. 1977, 99(2): 91~97
    21 J. K. Salisbury. Active Stiffness Control of a Manipulator in Cartesian Coordinates. Proceedings of the 19th IEEE Conference on Decision and Control. 1980: 95~100
    22 M. Mason. Compliance and Force Control for Computer Controlled Manipulators. IEEE Transactions on Systems, Man and Cybernetics. 1981, 11(6): 418~432
    23 N. Hogan. Impedance Control: An Approach to Manipulation. ASME Journal of Dynamic Systems, Measurement and Control. 1985, 107(1): 1~24
    24 M. Raibert, J. Craig. Hybrid Position/Force Control of Manipulators. ASME Journal of Dynamic Systems, Measurement and Control. 1981, 103(2): 126~133
    25 O. Khatib. A Unified Approach for Motion and Force Control of Robot Manipulators: the Operational Space Formulation. IEEE Journal of Robotics and Automation. 1987, 3(1): 43~53
    26 T. Yoshikawa. Dynamic Hybrid Position/Force Control of Robot Manipulators: Description of Hand Constraints and Calculation of Joint Driving Force. IEEE Journal of Robotics and Automation. 1987, 3(5): 386~392
    27 R. Anderson, M. Spong. Hybrid Impedance Control of Robotic Manipulators. IEEE Journal of Robotics and Automation. 1988, 4(5): 549~555
    28 J. De Schutter, H. Bruyninckx, W. H. Zhu, M. W. Spong. Force Control: A Bird's Eye View. IEEE DSS/RAS International Workshop on Control Problems in Robotics and Automation: Future Directions, 1997: 1~17
    29 J. De Schutter, H. Van Brussel. Compliant Robot Motion II. A Control Approach Based on External Control Loops. International Journal of Robotics Research. 1988, 7(4): 18~33
    30 S. Chiaverini, L. Sciavicco. The Parallel Approach to Force/Position Control ofRobotic Manipulators. IEEE Transactions on Robotics and Automation. 1993, 9(4): 361~373
    31 S. Chiaverini, B. Siciliano, L. Villani. Parallel Force/Position Control Schemes with Experiments on an Industrial Robot Manipulator. The 13th World Congress of International Federation of Automatic Control, 1996: 25~30
    32 F. Caccavale, C. Natale, B. Siciliano, L. Villani. Resolved-acceleration Control of Robot Manipulators: A Critical Review with Experiments. Robotica. 1998, 16(5): 565~573
    33 S. Chiaverini, B. Siciliano, L. Villani. A Survey of Robot Interaction Control Schemes with Experimental Comparison. IEEE/ASME Transactions on Mechatronics. 1999, 4(3): 273~285
    34 F. Caccavale, C. Natale, B. Siciliano, L. Villani. Integration for the Next Generation: Embedding Force Control into Industrial Robots. IEEE Robotics and Automation Magazine. 2005, 12(3): 53~64
    35 P. Hokayem, M. Spong. Bilateral Teleoperation: An Historical Survey. Automatica. 2006, 42(12): 2035~2057
    36 A. Bejczy. Challenges of Human-robot Communication in Telerobotics. IEEE International Workshop on Robot and Human Communication, 1996: 1~8
    37 T. Massie, J. Salisbury. The PHANTOM Haptic Interface: A Device for Probing Virtual Objects. Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 1994: 295~302
    38 A. Madhani, G. Niemeyer, J. Salisbury. The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 1998: 936~944
    39 J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S.Butner, M. Smith. Transatlantic Robot-assisted Telesurgery. Nature. 2001, 413(6854): 379~380
    40 E. Slawi?ski, J. Postigo, V. Mut. Bilateral Teleoperation through the Internet. Robotics and Autonomous Systems. 2005, 55(3): 205~215
    41 G. Raju, G. Verghese, T. Sheridan. Design Issues in 2-port Network Models of Bilateral Remote Manipulation. Proceedings of the IEEE International Conference on Robotics and Automation. 1989: 1316~1321
    42 R. Anderson, M. Spong. Bilateral Control of Teleoperators with Time Delay. IEEE Transactions on Automatic Control. 1989, 34(5): 494~501
    43 G. Niemeyer, J. E. Slotine. Stable Adaptive Teleoperation. IEEE Journal of Oceanic Engineering. 1991, 16(1): 152~162
    44 D. Lawrence. Stability and Transparency in Bilateral Teleoperation. IEEE Transactions on Robotics and Automation. 1993, 9(5): 624~637
    45 A. Sano, H. Fujimoto, M. Tanaka. Gain-scheduled Compensation for Time Delay of Bilateral Teleoperation Systems. Proceedings of the IEEE International Conference on Robotics and Automation. 1998, (3): 1916~1923
    46 K. Hashtrudi-Zaad, S. Salcudean. Analysis of Control Architectures for Teleoperation Systems with Impedance Admittance Master and Slave Manipulators. International Journal of Robotics Research. 2001, 20(6): 419~445
    47 F. Buzan and T. Sheridan. A Model-based Predictive Operator Aid for Telemanipulators with Time Delay. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1989: 138~143
    48 W. Kim, A. Bejczy. Graphic Displays for Operator Aid in Telemanipulation. Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1059~1067
    49 T. Kotoku, K. Komoriya. A Force Display for Virtual Environments and its Evaluation. IEEE International Workshop on Robot and Human Communication, 1992: 246~251
    50 H. Morikawa, N. Takanashi. Ground Experiment System for Space Robots Based on Predictive Bilateral Control. Proceedings of the IEEE International Conference on Robotics and Automation, 1996: 64~69
    51 M. Oda. System Engineering Approach in Designing the Teleoperation System of the ETS-VII Robot Experient Satelite. Proceeding of the IEEE International Conference on Robotics and Automation, 1997: 3054~3061
    52 T. Imaida, Y. Yokokohji, T. Doi, M. Oda, T. Yoshikwa. Ground-space Bilateral Teleoperation of ETS-VII Robot Arm by Direct Bilateral Coupling under 7-s Time Delay Condition. IEEE Transactions on Robotics and Automation. 2004, 20(3), 499~511
    53 W. Yoon, T. Goshozono, H. Kawabe, M. Kinami, Y. Tsumaki, M. Uchiyama, M. Oda, T. Doi. Model-based Space Robot Teleoperation of ETS-VII Manipulator. IEEE Transactions on Robotics and Automation. 2004, 20(3),602~612
    54陈卫东,蔡鹤皋,赵杰,贾国武.主从式遥控机器人力觉临场感技术的研究.高技术通讯. 1996, 6(12):19~22
    55孙立宁,谢小辉,杜志江,富立新.基于Internet的机器人实时双向遥操作.西安电子科技大学学报自然科学版. 2005, 32(1): 146~150
    56高理富,王定成,唐毅,张建军,葛运建,宋宁.一种具有力觉触觉临场感的主从机器人装配作业平台.机器人. 2002, 24(1): 81~85
    57朱广超,王田苗,丑武胜,孟偲,伍军,薛喜梅.基于增强现实的机器人遥操作系统研究.系统仿真学报. 2004, 16(5): 943~946
    58刘威.基于虚拟现实的力觉临场感遥操作研究.东南大学博士学位论文. 2006: 76~99
    59 W. Ferrell, T. Sheridan. Supervisory Control of Remote Manipulation. IEEE Spectrum. 1967, October: 81~88
    60 R. Murphy.人工智能机器人学导论.杜军平.电子工业出版社. 2004:17~21
    61 T. Sheridan. Telerobotics, Automation and Human Supervisory Control. The MIT Press, 1992: 393~402
    62 H. C. Li, L. Wu, H. M. Gao. Applying Shared Visual Control to Telerobotic Welding Seam Tracking. The 3rd International Symposium on Instrumentation Science and Technology, 2004: 921~925
    63 S. Hayati, S. Venkataraman. Design and Implementation of a Robot Control System with Traded and Shared Control Capability. Proceedings of the IEEE International Conference on Robotics and Automation, 1989: 1310~1315
    64 P. Backes. Multi-sensor Based Impedance Control for Task Execution. Proceedings of the IEEE International Conference on Robotics and Automation, 1992: 1245~1250
    65 W. Kim, B. Hannaford, A. Bejczy. Force-refection and Shared Compliant Control in Operating Telemanipulators with Time Delay. IEEE Transactions on Robotics and Automation. 1992, 8(2): 176~185
    66 G. Hirzinger, B. Brunner, J. Dietrich, J. Heidl. Sensor-based Space Robotics—ROTEX and Its Telerobotic Features. IEEE Transaction Robotics and Automation. 1993, 9(5): 649~663
    67 S. Everett, R. Dubey. Human-machine Cooperative Telerobotics Using Uncertain Sensor or Model Data. Proceedings of the IEEE InternationalConference on Robotics and Automation, 1998: 1615~1622
    68 C. Kuan, K.Young. VR-based Teleoperation for Robot Compliance Control. Journal of Intelligent and Robotic Systems. 2001, 30(4): 377~398
    69 W. Griffin, W. Provancher, M. Cutkosky. Feedback Strategies for Telemanipulation with Shared Control of Object Handling Forces. Presence: Teleoperators and Virtual Environments. 2005, 14(6): 720~731
    70 J. Park, O. Khatib. A Haptic Teleoperation Approach Based on Contact Force Control. International Journal of Robotics Research. 2006, 25(5-6): 575~591
    71 T. Raimondi. Remote Handling in the Joint European Tonus (JET) Fusion Experiment. Proceedings of the 24th Conference on Remote System Technology, 1976: 188~195
    72吴威,蔡鹤皋,吴娟,林韧卒.主从式焊接机器人力觉临场感技术.焊接学报. 1996, 17(2):122~127
    73 S. Hosegood. CEGB Work on In-reactor Maintenance Techniques. Proceedings of the 29th Conference on Remote System Technology, 1981: 155~162
    74 J. Agapakis, K. Masubuchi. Fundamental and Advances in the Development of Remote Welding Fabrication System. Welding Journal. 1986, 65(9): 21~34
    75 J. Conrath. Remotely Controlled Repair of Piping at Douglas Piont. International Conference on Robotics and Remote Handling in the Nuclear Industry, 1984: 112~121
    76 B. S. Herschel, R. T. Charles. Complex Intelligent Machines. Proceedings of 18th Symposium on Energy Engineering Sciences, 2000: 667~674
    77张惠斌,周振丰,吴林,侯明.遥控焊接机器人系统.焊接学报. 1995, 16(3): 153~157
    78吕伟新.遥控弧焊运动控制新方法研究.哈尔滨工业大学博士学位论文. 1997:72~78
    79李海超,吴林,高洪明.应用于遥控焊接的激光视觉传感辅助遥控示教.焊接学报. 2006, 27(5): 39~42
    80李海超.焊接遥操作机器人系统及人机协作控制策略的研究.哈尔滨工业大学博士学位论文. 2006: 67~80
    81 T. Heale, T. Larkum. ARM and Rovsim: Extending Our Reach. Industrial Robot: An International Journal. 1999, 26(3): 202~208
    82 J. Launary. Teleoperation and Nuclear Services Advantages of Computerized Operator-assistance Tools. Nuclear Engineering and Design. 1998, 180: 47~52
    83陈家庆,焦向东,邱宗义,房晓明,栾国红.摩擦叠焊:一种新型的固相连接技术.焊接技术. 2007, 36 (1): 1~6
    84刘立君.遥控焊接力觉遥示教技术研究.哈尔滨工业大学博士学位论文. 2006: 41~120
    85 L. J. Liu, L. Wu. Investigation on Human-simulation Intelligent Control of the Touch Force in Remote Welding Teleteaching. IEEE International Conference on Innovative Computing, Information and Control, 2006: 85~89
    86刘立君,吴林.遥控焊接遥示教力学模型.机器人. 2006, 28(2): 187~190
    87 L. J. Liu, L. Wu. Investigation on Teleteaching-playback Technology of Remote Welding Based on Force Sensing. The 6th International Symposium on Test and Measurement, 2005: 6812~6815
    88 P. C. Tung, M. C. Wu, Y. R. Hwang. An Image-guided Mobile Robotic Welding System for SMAW Repair Processes. International Journal of Machine Tools and Manufacture. 2004, 44(11): 1223~1233
    89李海超,高洪明,吴林,孙华.基于共享控制策略的遥控弧焊机器人焊缝跟踪.焊接学报. 2006, 27(4): 5~8
    90高胜.基于分布式虚拟环境的多机器人遥操作研究.哈尔滨工业大学博士学位论文. 2004: 20~25
    91张永和.用于遥控焊接的管道全位置自动焊技术.哈尔滨工业大学硕士学位论文. 2008: 28~38
    92陈有权.机器人作业工具快速更换技术.哈尔滨工业大学硕士学位论文. 2008: 23~41
    93 L. X. Zhang, H. M. Gao, L. Wu, G. J. Zhang. PC-based Open Control System for Arc Welding Robot. The 6th International Symposium on Test and Measurement, 2005: 7248~7251
    94王建伟.用于遥控焊接机器人系统的视觉临场感技术研究.哈尔滨工业大学硕士学位论文. 2003: 23~25
    95魏秀权.基于人机交互的机器人遥控焊接虚拟环境标定.哈尔滨工业大学硕士学位论文. 2005: 1~6
    96 J. Pires, G. Afonso, N. Estrela. Force Control Experiments for Industrial Applications: A Test Case Using an Industrial Deburring Example. Assembly Automation. 2007, 27(2): 148~156
    97 A. Fitzgibbon, M. Pilu, R. Fisher. Direct Least Squares Fitting of Ellipses.IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 21(5):476~480
    98 W. Hamel, S. Everett. Robot Task Space Analyzer: Technical Overview DE-AR26-97FT34314R01. University of Tennessee, 2000: 14~17
    99 W. Hamel, R. Kress. Elements of Telerobotics Necessary for Waste Clean Up Automation. Proceedings of the IEEE International Conference on Robotics and Automation, 2001: 393~400
    100宋月娥,吴林,戴明.用于机器人离线编程的作业标定算法研究.焊接学报. 2002, 23(3): 32~36
    101 K. Cooper, L. Torczon.编译器工程.冯速.机械工业出版社. 2006: 1~15
    102 J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeli?n, K. Claes, H. Bruyninckx. Constraint-based Task Specification and Estimation for Sensor-based Robot Systems in the Presence of Geometric Uncertainty. The International Journal of Robotics Research. 2007, 26(5): 433~455
    103熊有伦.机器人操作.湖北科学技术出版社. 2002: 245~281
    104 S. Desai, R. Volz. Identification and Verification of Termination Conditions in Fine Motion in Presence of Sensor Errors and Geometric Uncertainties. Proceedings of the IEEE International Conference on Robotics and Automation, 1989: 800~807
    105 S. Hirai, K. Iwata. Recognition of Contact State Based on Geometric Model. Proceedings of the IEEE International Conference on Robotics and Automation, 1992: 1507~1512
    106 S. Hirai. Identification of Contact States Based on a Geometric Model for Manipulative Operations. Advanced Robotics. 1994, 8(2): 139~155
    107 J. Xiao and L. Zhang. Towards Obtaining All Possible Contacts—Growing a Polyhedron by Its Location Uncertainty. IEEE Transactions on Robotics and Automation. 1996, 12(4): 553~565
    108 C. Laugier. Planning Fine Motion Strategies by Reasoning in the Contact Space. Proceedings of the IEEE International Conference on Robotics and Automation, 1989: 653~659
    109 H. Lau. A Hidden Markov Model-based Assembly Contact Recognition System. Mechatronics. 2003, 13(8-9): 1001~1023
    110 H. Asada, S. Hirai. Towards a Symbolic-level Force Feedback: Recognition of Assembly Process States. Proceedings of the IEEE International Conference on Robotics and Automation, 1987: 341~346
    111 H. Mosemann, T. Bierwirth, F. Wahl, S. Stoeter. 2000 Generating Polyhedral Convex Cones from Contact Graphs for the Identification of Assembly Process States. Proceedings of the IEEE International Conference on Robotics and Automation, 2000: 744~749
    112 J. Hopcroft, G. Wilfong. Motion of Objects in Contact. The International Journal of Robotics Research. 1986, 4(4): 32~46
    113郑大钟,郑应平.离散事件动态系统理论:现状与展望.自动化学报. 1992, 18(2): 129~142
    114郑大钟,赵千川.离散事件动态系统.清华大学出版社. 2003: 409~471
    115 J. Brenan, B. McCarragher. Petri Net Modeling for Robotic Assembly and Trajectory Planning. IEEE Transactions on Industrial Electronics. 1994, 41(6): 631~640
    116 T. Cao, A. Sanderson. Sensor-Based Error Recovery for Robotic Task Sequences Using Fuzzy Petri Nets. Proceedings of the IEEE International Conference on Robotics and Automation, 1992: 1063~1069
    117张伟军,魏长青,杨汝清.机器人装配状态变迁控制的同步Petri网模型.机械工程学报. 2001, 37(4): 33~37
    118高胜,赵杰,蔡鹤皋.机器人装配接触状态识别与规划的模糊Petri网模型.机械工程学报. 2006, 42(2): 43~50
    119邱涛.弧焊机器人柔性加工单元系统集成及优化技术研究.哈尔滨工业大学博士学位论文. 2001: 95~97
    120袁崇义. Petri网原理.电子工业出版社. 1998: 34~54
    121吴哲辉. Petri网导论.机械工业出版社. 2006: 259~263
    122林闯.随机Petri网和系统性能评价.第二版.清华大学出版社. 2005: 1~18
    123 B. McCarragher, H. Asada. Qualitative Template Matching Using Dynamic Process Models for State Transition Recognition of Robotic Assembly. Journal of Dynamic Systems, Measurement and Control. 1993, 115(2): 261~269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700