遥控焊接力觉遥示教技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在核设施修复、空间站装配和海洋工程建设等需要焊接环境,人类的生存条件十分恶劣,需要有人参与进行遥控焊接,遥控示教是遥控焊接的关键技术之一。传统的焊接机器人示教通常是利用示教盒(或示教棒)进行在线示教,这种在线示教法比较直观,但在遥控焊接环境操作人员无法到达焊接现场,通过立体视觉辅助示教,由于视觉误差,示教精度较低,不能满足遥控焊接工艺要求。激光视觉传感能够获取焊缝轮廓信息,反馈给机器人控制器实时调整焊枪位姿跟踪焊缝。但也无法适应所有遥控焊接环境,如工件表面状态对激光辅助示教有一定影响,不规则焊缝特征点提取困难,所以希望开发新的遥示教方法,以便解决不同遥控焊接条件下遥示教问题。
     将力觉引入遥控焊接遥示教中,与立体视觉配合,能够完成遥控焊接遥示教任务,且信息处理不复杂,不受环境(光、烟、气雾、色彩等)的干扰,在激光视觉遥示教看不清场合仍可能“摸”得出,系统结构简单,成本低,反应灵敏度高,力觉传感与焊缝直接接触,示教精度高,为此本文提出了“遥控焊接力觉遥示教技术”的研究,通过力觉遥示教焊缝辨识模型和自适应控制模型,实现遥示教局部自适应控制,通过共享技术和视觉临场感实现人对遥控焊接遥示教宏观全局监控。
     通过对激光辅助传感遥示教分析,提出建立力觉遥示教必要性,建立力觉遥示教硬件系统,提出了六维力传感器探针选择原则,分析了六维力传感器解耦原理,通过力传感器空间位置变化六维力值测定,确定六维力传感器空间变化盲区和焊缝辨识六维接触力阈值,完成了六维力传感器标定,为力觉遥示教创造条件。
     为解决探针与工件接触力调整稳定性问题,建立了遥示教接触力仿人柔性控制模型。通过对遥示教的探针与焊接环境接触力分析,提出了遥控焊接接触力分段控制策略,异常情况的接触力稳定性监控决策算法,任务自适应仿人智能算法;实现了遥示教接触力仿人智能控制特征辨识、特征记忆、多模态控制和多目标决策,减小接触力振荡幅值,缩短接触力稳定时间,提高了遥示教探针与焊接工件之间力交互作用下的操作稳定性。
     为克服由于机器人的振动、焊缝表面粗糙不平和电磁场干扰等因素,造成焊缝辨识力信号不稳,根据焊缝辨识受力信号变化分析,提出了用卡尔曼滤波递推方法对焊缝辨识受力信号进行的滤波处理,建立焊缝受力信号滤波
The remote welding is needed in space station assembly, ocean project construction and nuclear power equipment repairing. The tele-teaching is the key of remote welding. The teaching box is used to teach on line in traditional teaching. Because the operator can’t arrive the remote welding site, the vision sensing is used to teach robot assistantly. Owing to the error of vision, the teaching precision is too lower to meet the remote welding process. The robot controller can adjust real-time the position and pose of welding torch to track welding seam by its outline information obtained by laser vision in structured environment. But the method is not used in all remote welding environment. For example, it is difficult to extract the feature points based on laser vision in irregular or bright welding seam . So a new tele-teaching method is developed to be used in different remote welding environment.
     The force sensing is introduced into tele-teaching. Cooperating with stereoscopic vision, it overcomes the difficult problem of the feature point extraction of welding seam. The force sensing information is easily processed. It is not disturbed by light, smoke, inhalator and color. The force sensing can touch the welding seam that can not be identified by the laser vision. The tele-teaching system based on force sensing has simple structure, low cost, high sensitivity and teaching precision.The tele-teaching base on force sensing is brought forward to improve the efficiency and precision of tele-teaching in remote welding. It includes two projects developed, such as using welding seam identifying model (WSIM) and adaptive control model to carry out local autonomous tele-teaching, and using sharing technology and vision telepresence to fulfill whole tele-teaching.
     By analyzing tele-teaching based on laser vision, there is need to found tele-teaching system based on force sensing. It includes the hardware system, the probe select principle , the decoupling principle, and the calibration of threshold and blind section of 6 dimensional (6D) force in different space position.
     The soft control model of human-simulation intelligent control (HSIC) is founded to solve the adjusting stability of touch force between probe and
引文
1 R. Maa, V. Zahn, M. Dapper, et al. Hard Contact Surface Tracking for Industrial Manipulators with (SR) Position Based Force Control. In Proc IEEE Int Conference on Robotics and Automation, Detroit, Michigan, 1999: 1481-1486
    2 D.M. Lane, J.B.C. Davies, G. Robinson. The AMADEUS Dextrous Subsea Hand: Design, Modeling, and Sensor Processing. IEEE J Of Oceanic Eng, Piscataway, NJ, USA, 2000, 24(l): 96-111
    3 B. Rooks. The Harmonious Robot. Industrial Robot. 2006, 33(2): 125-130.
    4 J.W. Lee, S. Lee. A New Data Fusion Method and Its Application to State Estimation of Nonlinear Dynamic Systems. In Proc IEEE Int Conference on Robotics and Automation, San Francisco, California, 2000: 3525-3530
    5 C. Natale, R. Koeppe, G. Hirzinger. An Automatic Procedure for Force Controller Design. IEEE/ASME International Conf on Advanced Intelligent Mechanics, Atlanta, GA, USA, 1999: 19-22,
    6 W. L. Jin, C. D. Mote. A Six-component Silicon Micro Force Sensor. Sensors and Actuators .1998, (6): 109-115
    7 W. L. Jin, C. D. Mote. Development and Calibration of a Sub-millimeter Three-component Force Sensor. Sensors and Actuators. 1998, (6): 89-94
    8 L.F. Penin, K. Matsumoto, S. Wakabayashi. Force Reflection for Time-delayed Teleoperation of Space Robots, Proceedings Of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 2000: 3120 -3125
    9 Q. Hirzinger, K. Landzettel and C. Fagerer. Telerobotics with Large Time Delays-the ROTEX Experience. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA, 1994: 571 -578
    10 A. Rovetta, F. Cosmi, L. M.Tosatti. Teleoperator Response in A Touch Task with Different Display Conditions. IEEE Tran. Systems, Man and Cybernetics. 1995, 25(5): 878-881,
    11 F.T. Buzan and T.B. Sheridan. A Model-based Predictive Operator Aid forTelemanipulators with Time Delay. In: Proc of IEEE Int Conf on System Man and Cyb, Cambridge, MA, USA ,1989, 138-143
    12 W.S. Kim, A.K. Bejczy. Graphic Displays for Operator Aid in Telemanipulation. In Troc of IEEE Int Conf on Rob and Auto, Charlottesville, VA, USA, 1991: 1059-1067
    13 T. Kotoku,K. Komoriya. A Force Display for Virtual Environments and its Evaluation. IEEE Int Workshop on Robot and Human Communication, Tokyo, Japan, 1992: 246-251
    14 G. Hirzinger, J. Heindl. Multisensory Shared Autonomy and Tele-Sensor Programming - Key Issues in the Apace Robot Technology Experiment ROTEX. 1993 International Conference on Intelligent Robots and Systems, Yokohama, Jpn, 1993: 2123-2139
    15 L. Rosenberg . Use of Virtual Fixtures to Enhance Telemanipulation with Time Delay. American Society of Mechanical Engineers, Dynamic Systems and Control Division DSC, Advances in Robotics, Mechatronics and Haptic Interfaces, New Orleans, LA, USA, 1993 (49): 29-36
    16 L. Rosenberg. Virtual Fixtures: Perceptual Overlays Enchance Operator Performance in Telepresence Tasks. Ph D Thesis, Stanford Univ, Stanford, CA, 1994: 214-217
    17 M. Bergamasco, B. Allotta. An Arm Excskeleton System for Teleoperation and Virtual Environments Applications. In: Proc of IEEE Int. Conf on Rob and Auto, San Diego, CA, USA , 1994: 1449-1454
    18 K. Kosuge, K. Takeo. Unified Approach for Teleoperation of Virtual and Real Environment for Skill Based Teleoperation. In: Proc of IEEE Int Conf on Rob and Auto, San Diego, CA, USA , 1994: 1242-1247
    19 H. Morikawa, N. Takanashi. Ground Experiment System for Space Robots Based on Predictive Bilateral Control. In: Pros of IEEE Int Conf on Rob and Auto, Minneapolis, MN, USA, 1996: 64-69
    20 Y. Tsumaki, Y. Hoshi. Virtual Reality Based Teleoperation which Tolerates Geometrical Modeling Errors. In: Proc of IEEE/ RSJ Int Conf. on Intelligent Robots and Systems, Osaka, Jpn,1996: 1023-1030
    21 Y. Tsumaki, M. Uchiyama. A Model-Based Space Teleoperation System with Robustness against Modeling Errors. In Proc of IEEE Int Conf on Rob andAuto, Albuquerque, NM, USA , 1997: 1594-1599
    22 M. Ching, W. L .David. A Five- bar Linkage Force Reflecting Interface for a Virtual Reality System. In: Proc of IEEE Int Conf on Rob .and Auto, Albuquerque, NM, USA , 1997: 3012-3017
    23 P. Kammermeier, M.Buss. Multi-Model Sensory Feedback Based on a Mathematical Model of Human Perception. In Proc of IEEE/ RSJ Int Conf on Intelligent Robots and Systems, Kyongju, South Korea , 1999: 1537-1542
    24 R. Davaid. Advanced Telerobotic Controller. Oceans Conference Record (IEEE), Brest, Fr, 1994: 157-162
    25 Murakami and Tsudoi. Application of Off-line Teaching System for Arc Welding Robots. Technology Review. 1990, (9): 58-61
    26 S.W Glass. In-air and Underwater Robotics and Tools for Inspection and Repair of Reactor Vessel Head and Bottom Mounted Nozzle Penetrations.
    10th International Conference on Robotics and Remote Systems for Hazardous Environments, Gainesville, FL, United States, 2004: 178-182
    27 H. Myoung. Force/moment Direction Sensor and Its Use for Human-robot Interface in Robot Teaching. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 2000: 2222-2227
    28 A. Marcelo, H. Jr. Industrial Application of Control of Dynamic Behavior of Robots - A Walk-through Programmed Welding Robot. Proceedings - IEEE International Conference on Robotics and Automation, San Francisco, CA, USA , 2000: 2352-2357
    29 J. Mako, U. Mich. Teaching-less Robot System for Finishing Workpieces of Various Shapes Using Force Control and Computer Vision. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, South Korea, 1999: 573-578
    30 张惠斌, 周振丰, 吴林, 等. 遥控弧焊机器人系统. 焊接学报. 1995, 16(3): 153-157
    31 吴威, 赵杰, 王晓东, 等. 焊接机器人在线示教. 焊接学报. 1995, 16(1): 16-19
    32 吴威, 蔡鹤皋, 吴娟. 主从式焊接机器人力觉临场感技术.焊接学报.1996, 17(2): 122-127
    33 吴威, 刘丹军, 尤波, 等. 触觉式机器人焊缝跟踪方法. 焊接学报. 1995, 16(3): 158-161
    34 董春, 樊滨温, 富历新. 机器人多层多道焊圆弧轨迹的一种算法. 哈尔滨工业大学学报. 2000, 32(3): 111-114
    35 赵东波, 熊有伦, 黄楼林. 对未知环境的机器人力控自律跟踪及建模. 机器人. 1995, 17(1): 8-12
    36 周鲲, 邵华. 焊接机器人的示教轨迹优化. 机械设计与制造. 2003, (4): 46-47
    37 乔兵, 吴洪涛, 朱剑英, 等. 面向位控机器人的力/位混合控制. 机器人. 1999, 21(3): 218-222
    38 席文明, 颜景平, 罗翔. 位置/力反馈和视觉融合控制的机器人轴孔装配. 制造业自动化. 2001, 23(5): 43-47
    39 席文明, 朱剑英. 基于预测的立体视觉/力反馈研究. 仪器仪表学报. 2004, 15(1): 48-52
    40 韩建达, 成海, 谈大龙. 一种基于运动状态反馈的机器人接触力控制. 机器人. 1997, 19(6): 412-419
    41 张庆, 陈明法. 与环境非弹性碰撞时腕力传感器的动态特性分析. 机器人. 1995, 17(2): 70-74
    42 徐亚庆, 李祖枢. 一种新型仿人智能控制器的设计方法.自动化学报. 1994, 20(5): 616-621
    43 苏宇峰, 李祖枢. 一种新的参数在线自校正仿人智能控制算法. 工业控制计算机. 2003, 16(11): 29-31
    44 张爱红, 张秋菊. 基于虚拟现实技术的机器人示教方法. 江南大学学报. 2003, 2(3): 258-261
    45 K.H. Goh, J.E. Middle. WRAPS—Welding Robot Adaptive Off-line Programming and Expert Control System. Proceeding of the Second International Conference in Automated and Robotic Welding, London, U.K. 1987: 33-42
    46 陈俊杰, 黄惟一, 宋爱国. 虚拟现实力觉临场感遥控作业系统的研究进展. 传感技术学报. 2001, (3): 230-236
    57 赵春霞, Y. F. Li, 王树国, 等. 虚拟现实的发展及在机器人系统中的应用研究. 机器人. 1999, 21(5): 395-400
    48 Y. Kunii, H. Hashimoto. Tele-teaching by Human Demonstration in Virtual Environment for Robotic Network System. Proceedings - IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 1997: 405-410
    49 M.H. Choi, W.W. Lee. Quantitative Evaluation of An Intuitive Teaching Method for Industrial Robot Using a Force / moment Direction Sensor. International Journal of Control, Automation and Systems. 2003, 1(3): 395-400
    50 C.M. Yuan , D.Z.li. A Centralized Tele-teaching System for Industrial Robots Using Virtual Reality. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and automation , Kobe, Japan, 2003: 16-20
    51 E. Sanchez, A. Rubio. An intuitive force feed-back to avoid singularity proximity and workspace boundaries in bilateral controlled systems based on virtual springs. IEEE International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002: 1302-1307
    52 李海超, 吴 林, 高洪明, 等. 应用于遥控焊接的激光视觉传感辅助遥控示教. 焊接学报. 2006, 27(5): 39-42
    53 F Lange, G. Hirzinger. Learning Accurate Path Control of Industrial Robots with Joint Elasticity. In Proc IEEE Int Conference on Robotics and Automation, Detroit, Michigan, 1999: 2084-2089
    54 D. Maneesh, M. Panadda, O, Allison, et al. Feeling is Believing: Using a Force-feedback Joystick to Teach Dynamic Systems. Journal of Engineering Education. 2002, 91(3):345-349
    55 N. Shintaro,T. Mikio, K. Masakazu et al. Development of a Force Controlled Finishing Robot System and Its Applications. Proceedings of the Japan/USA Symposium on Flexible Automation, Boston, MA, USA, 1996: 217-220
    56 P. Heon ,L. J. yang. Adaptive Impedance Control of a Haptic Interface. Mechatronics. 2004, 14(3): 237-253
    57 C.S. Ouk, O. Allison. Impedance-reflecting Teleoperation with A Real-time Evolving Neural Network Controller. 2004 IEEE/RSJ International
    Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 2004: 2241-2246
    58 S. Zhao, K.K. Tan. A daptive Feedforward Compensation of Force Ripples in Linear Motors. Control Engineering Practice. 2005, 13(9): 1081-1092
    59 H. I. Chul, H.M. Chul. Robust Hybrid Position/force Control with Adaptive Scheme. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing. 2004, 47(4): 1161-1165
    60 Y.T. Shen, X. Ning, Y.J. We. Infinite Dimension System Approach for Hybrid Force/position Control in Micromanipulation. 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, United States, 2004: 2912-2917
    61 G. Duchemin, P. Maillet, P. Poignet et al. A hybrid Position/force Control Approach for Identification of Deformation Models of Skin and Underlying Tissues. IEEE Transactions on Biomedical Engineering. 2005, 52(2): 160-170
    62 W. Gao, S. Genda, Y. Kudo, et al. A hybrid Nano-probe for Precision Nanofabrication of Complex Surfaces. ICARCV 2004 - Proceedings of the
    8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004: 173-177
    63 C.H. Chung, G.G. Leininger. Task-level Adaptive Hybrid Manipulator Control. International Journal of Robotics Research. 1990, 9(3): 63-73
    64 T.Y. Kuc, J.S. Lee, B.Y. Park. Adaptive Hybrid Force and Position Learning Control of Robot Manipulators. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 1994, 3(5): 2057-2062
    65 B. Sebastian, R. Mikut, A. Lehmann, et al. Model-based Control and Object Contact Detection for A Fluidic Actuated Robotic Hand. Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States, 2003: 6369-6374
    66 L.G. Huang, T.H. Lee. Adaptive Position/force Control of An Uncertain Constrained Flexible Joint Robots-Singular Perturbation Approach. Proceedings of the SICE Annual Conference, SICE Annual Conference, Sapporo, Japan, 2004: 1693-1698
    67 P.N. Brett, Z. Li. Tactile Sensing Surface for Artificial Neural Network Based Automatic Recognition of the Contact Force Position. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2000, 214(3): 207-215
    68 W. Shuhuan, W. Hongrui. Force/motion Control of Robots Using Neural Network and Predictive Control. Proceedings of the Second International Symposium on Instrumentation Science and Technology, Jinan, China, 2002: 796-798
    69 Y.D. Touati, Y. Amirat. Neuro-Fuzzy Based Approach for Hybrid Force/ position Robot Control. Integrated Computer-Aided Engineering. 2004, 11(1): 85-98
    70 Y.H. Yin, J.Y. Zhu, Z.X. Wei, et al. Intelligent Strategy of Force & Position Parallel Control for A Robot. Manufacturing Technology. 1997, 46(1): 279-282
    71 W. Shuhuan, Q.G. Zhu, J.X. Cai. The Study of Intelligent Control Arithmetic and Its Application on Uncertain Robot. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Hangzhou, China, 2004: 4980-4982
    72 Z.Z. Han, C.X. Shang. Analysis of Contact Localization of Dexterous Robot Hand Using Force/torque Measurement. Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004: 1303-1308
    73 H. Gerhard. An Algorithm for Compliant Contact between Complexly Shaped Bodies. Multibody System Dynamics. 2004, 12(4): 345-362
    74 D. Renzo, D.M. Alberto. Comparison of Contact-force Models for the Simulation of Collisions in DEM-based Granular Flow Codes. Chemical Engineering Science. 2004, 59(3): 525-541
    75 L. Eunjeong, P. Juyi, P. H. Chang, et al. Hybrid Impedance/Time-Delay Control from Free Space to Constrained Motion. Proceedings of the American Control Conference, Denver, CO, United States, 2003: 2132-2137
    76 C. H. Xiong, M.Y. Wang, Y. Tang. On the Prediction of Passive Contact Forces of Workpiece-fixture Systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2005,219(3): 309-324
    77 F.F. Xi, Z. David. Modeling Surface Roughness in the Stone Polishing Process.International Journal of Machine Tools and Manufacture. 2005, 45(5): 365-372
    78 J.C. Hyland. An Iterated-extended Kalman Filter Algorithm for Tracking Surface and Sub-surface Targets. Oceans Conference Record (IEEE), Mississippi, MS, United States, 2002: 1283-1290
    79 S. Ahmad, C.N. Lee. Shape Recovery from Robot Contour-Tracking with Force Feedback. Advanced Robotics. 1991, 5(3): 257-273
    80 K.T. Youcef, D. Li. Force Control of Direct-Drive Manipulators for Surface Following. Advanced Robotics. 1991, 5(2): 183-205
    81 M. Blauer, P.R. Belanger. State and Parameter Estimation for Robotic Manipulators Using Force Measurement. IEEE Trans. Automatic Control. 1987, 32(9): 1055-1066
    82 R. Araujo, U. Nunes, A.T. Almeida. Robot 3D Force-based Surface-tracking. IECON Proceedings, Industrial Electronics Conference, Bologna, Italy, 1994: 788-793
    83 G. Hirzinger, K. landzettel. Iterative Self-Improvement of Force Feedback Control in Contour Tracking. Proceedings - IEEE International Conference on Robotics and Automation, Nice, Fr, 1992: 1399-1404
    84 J. Seul, J.E. Soo. Collision Avoidance and Control of A Mobile Robot Using a Hybrid Force Control Algorithm. IECON 2004 - 30th Annual Conference of IEEE Industrial Electronics Society, Busan, South Korea, Nov , 2004:413-418
    85 O. Eijiro, A. Takahiro, T. Toshiaki. Collision Avoidance Method of Humanoid Robot with Arm Force. 2004 IEEE International Conference on Industrial Technology, Hammamet, Tunisia, 2004: 1057-1062
    86 S. Liying, T. Min. A Virtual Centrifugal Force Based Navigation Algorithm for Explorative Robotic Tasks in Unknown Environments. Robotics and Autonomous Systems. 2005, 51(4): 261-274
    87 侯春望, 李树荣. 机器人碰撞问题中的微分对策方法. 石油大学学报. 2005, 29(5): 135-138
    88 L.F. Penin, S. Wakabaya. Force Reflection for Time-delayed Teleoperationof Space Robots. In. IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 2000: 3120-3125
    89 殷跃红, 朱剑英. 智能机器力觉及力控制研究综述. 航空学报. 1999, 20(1): 1-7
    90 陈卫东, 蔡鹤皋, 席裕庚, 等. 具有力觉临场感主从机器人在遥装配作业中的应用. 上海交通大学学报. 1997, 31(12): 57-68
    91 程远楚, 傅闯, 叶鲁卿, 等. 水轮机调速器的仿人智能 PID 控制. 电力系统自动化. 2002, 26(13): 56-59
    92 N. Matsuhira, M. Asakura, H. Bamba. Manoeuvra-bility of A Master-slave Manipulator with Different Configurations and Its Evaluation Tests. Advanced Robotics. 1994, 8(2): 185-203
    93 彭志, 边广韬. 焊接机器人在三维空间的无碰撞轨迹规划. 沈阳工业大学学报. 2004, 26(3): 241-243
    94 陈甫, 李戈, 王春钢, 等. 一种基于多 CCD 的碰撞检测新方法. 机械与电子. 2004, (7): 33-36
    95 邱士安, 李刚俊. 基于碰撞检测的机器人运动仿真系统. 机械传动. 2006, 30(2): 7-16
    96 李刚俊. 冗余度机器人的运动规划碰撞算法. 电子科技大学学报. 2005, 34(6): 828-831
    97 谢敬, 傅卫平, 杨静. 基于碰撞危险度和运动预测的多移动机器人避碰规划. 西安理工大学学报. 2004, 20(2): 171-174
    98 李平, 孟庆鑫, 王立权. 双机器人松协调规划中的碰撞问题分析. 中国机械工程. 2005, 16(13): 1150-1153
    99 朱庆保. 动态复杂环境下的机器人路径规划蚂蚁预测算法. 计算机学报. 2005, 28(11): 1898-1906
    100 X.Y. Qing, L.Z. Shu. Design Method for a Novel Human Simulating Intelligent Controller. Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, Beijing, China, 1997: 616-621
    101 B.Z. Hussain, H. Abid. Intelligent Sensing and Force Control of A Robotic Arm Manipulator. IEEE Instrumentation and Measurement Technology Conference, Washington, DC, USA , 1989: 114-121
    102 H.Y. Ru , G. berg, A. Andrew. Motion and Force Control of MultipleCoordinated Redundant Manipulators. Proceedings of the 1990 American Control Conference, San Diego, CA, USA, 1990: 2325-2330
    103 张满生, 刘苗生, 张学庄.张力测控系统及其在瓦楞纸生产线上的应用. 仪表技术与传感器,2003, 38(11): 45-51
    104 X.D. Gao, S.J. Na. Detection of Weld Position and Seam Tracking Based on Kalman Filtering of Weld Pool Images. Journal of Manufacturing Systems. 2005, 24(1): 1-12
    105 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理. 西安: 西北工业大学出版社, 1998: 98-101
    106 邱涛. 智能化弧焊机器人系统控制器设计研究. 哈尔滨工业大学博士学位论文. 1998: 16-22
    107 吴林, 孔宇. 焊接位置与焊丝方位定义的讨论及几何建模研究. 机械工程学报. 1997, 33(5): 49-53
    108 马香峰. 机器人机构学. 北京: 机械工业出版社, 1991: 87-102
    109 李华忠, 杨维萍, 柳长安. 基于虚拟现实的空间机器人共享控制系统及其仿真. 2000, 21(3): 100-105
    110 李华忠, 洪炳熔, 柳长安. 空间站大臂机械手共享控制系统及其仿真. 高技术通讯. 1999, 9(2): 15-21
    111 C.J. Shi, S.Z. Qi. L.Ping.Visual Technologies in Shared Control Mode of Robot Teleoperation System. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Shanghai, China, 2002: 3088-3092
    112 H. Gilgueng, S.P. Tamas, A. Noriaki. A Human-robot Shared Control in Single-master Multi-slave Tele-micromanipulation System. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Meguro-ku, Japan, 2005: 301-306
    113 J.Y. Lew, Y.T. Jou, H. Pasic. Interactive Control of Human/robot Sharing Same Workspace. IEEE International Conference on Intelligent Robots and Systems, Takamatsu, 2000: 535-540
    114 S. You, T.M. Wei, F.L. Yang. Share Control in Intelligent Arm/hand Teleoperated System. International Conference on Robotics and Automation (ICRA '99), Detroitd, Michigan, 1999: 2489-2494
    115 H.J. Caulfield. Intelligent Load Sharing between Man and Robot. 2005 IEEE International Workshop on Robot and Human Interactive Communication (RO-MAN),Nashville, TN, USA, 2005: 446-449
    116 N. Hildreth, P. Lim, J. Yang. Integration of User/robotic Tasks Using Shared Telerobotic Control. 7th World Multiconference on Systemics, Cybernetics and Informatics Proceedings, Orlando, FL, USA, 2003: 277-282
    117 L. E. Parker, M. Chandra, F. Tang. Enabling Autonomous Sensor-sharing for Tightly Coupled Cooperative Tasks. 3rd International Workshop on Multi-Robot Systems, Washington, USA, 2005: 119-130
    118 F. Kobayashi, S. Sakai, F. Kojima. Sharing of Exploring Information Using Belief Measure for Multi-robot Exploration. IEEE International Conference on Fuzzy Systems,Honolulu, Hawii, 2002: 1544-1549
    119 张惠滨. 主从遥控弧焊机器人实验系统建立和操作特性研究. 吉林工业大学博士学位论文. 1994:12-40
    120 M. Hou. On Tele-operation of an Arc Welding Robotic System. Proceedings- IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 1996: 1275-1280
    121 吕伟新. 遥控弧焊运动控制新方法研究. 哈尔滨工业大学博士学位论文. 1997: 1-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700