用于遥控焊接的管道全位置自动焊技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核环境中的设备维修任务涉及大量管道全位置焊接。由于恶劣的工作环境和对焊接质量的高要求,机器人遥操作及相关技术是解决核环境下管道检测、维修等工作的重要途径,而目前通用的管道全位置焊接机无法满足遥控焊接系统的要求。本文根据遥控焊接的需要和管道全位置自动焊接的特点,从实用化角度出发,研制了一套针对核环境中小口径管道的全位置自动焊接装置,完成了与遥操作机器人焊接系统的集成,实现了管道的遥控焊接。
     本文首先对装置的硬件进行了设计。硬件系统采用“模块化”的设计思想,主要包括工具自动夹紧装置、机械传动机构、专用焊枪及焊枪微调系统、机器人末端工具快速更换器接口的预留等设计。利用计算机软件完成系统的硬件设计和运动模拟,建立管道全位置自动焊接装置的硬件系统。
     然后,对全位置自动焊接装置编写了控制软件。根据工作环境和管道焊接任务的要求,该控制软件以工业控制计算机为核心,结合多功能运动控制卡组成驱动控制系统。系统软件的控制功能主要包括对管道气动夹紧装置的控制,以实现装置的自动夹紧和拆卸;对机械传动机构的控制,以实现焊接速度的控制、焊枪行走轨迹控制及焊接周向位置的控制;对焊枪微调电机的控制,以实现焊枪的轴向位置调整和法向焊枪高度调整。
     最后,本文通过实验验证了所研制的管道全位置自动焊接装置的各项性能。分别进行了系统夹紧固定、焊接平稳性、焊枪旋转同心度、焊枪调节、焊枪性能等一系列实验。进一步完成了与遥控操作机器人系统的集成实验,包括与机器人系统的对接操作、装置与管道装配操作、管道焊接操作的综合性实验。实验表明,本文研制的装置能够完成小口径管道的全位置自动焊接,可满足遥控焊接系统的特殊要求。
All-position pipeline welding task is heavily involved in equipment maintenance in nuclear environment. Due to execrable work environment and requirement of high welding quality, tele-operation of robot and related techniques are important approaches to solve the pipeline inspection and maintenance in nuclear environment. However, at the present time, the general all-position automatic welding device can not satisfy the need of tele-operated welding system. According to the need of remote welding and characteristic of all-position automatic welding, from a practical perspective, the thesis have developed an all-position automatic welding device for small-diameter pipeline in nuclear environment. The device is integrated with the tele-robotic welding system and accomplishes the remote welding for pipeline.
     Firstly,designed the hardware of the all-position automatic welding device. The hardware system used“modularization”design idea and included automatic clamping device, mechanical transmission, special welding torch, fine-tuning system and the replacement interface of robot end effectors, etc. Using computer software,the all-position automatic pipeline welding device was constructed and the motion of the device was simulated.
     Secondly, according to the working environment particularity and the tasks needs programmed the multi-function driver control system. The system was constituted of industrial personal computer and the industrial card system. It mentioned to the pneumatic clamping device control system using in the automatic clamping and demolition, the mechanical transmission control system to get the welding speed, welding path and the circular position of the welding torch, fine-tuning control system for the axial position and the normal high degree of the torch.
     Finally, by a series of experiments, the performances of the device was verified, such as clamping to fix, welding movement smoothly, torch rotating concentrically, the torch welding performances. Moreover, the integration experiment with the tele-robotic welding system was completed, including the abutting joint with the robot operating system, the assembly operations of the pipeline welding device and the welding actions of the comprehensive system. Results show that the device realizes the demand of tele-robotic welding system and can be used in remote welding.
引文
1 G. Hirzinger, B. Brunner, J. Dietrich, et al. Rotex The first remotely controlled robot in space. IEEE Robotics and Automation. 1994, 10(3): 2604~2611
    2 C.E. Garcia, R. Carelli, J. F. Postigo, et al. Supervisory control for a telerobotic system: a hybrid control approach. Control Engineering Practice. 2003, 11(7): 805~817
    3 G. Z. Grudic. Human-to-robot skill transfer via teleoperation. ICRA. 1995: 2109~2114
    4 J.D. Geeter, M. Decreton, E. Colon. The challenges of telerobotics in a nuclear environment. Robotics and Autonomous Systems. 1999, 28(1): 5~17
    5吴林,张广军,高洪明.焊接机器人技术.中国表面工程. 2006, 19(5): 29~35
    6曾庆军,黄惟一.智能遥控作业器——下一代机器人发展的重要生长点.机器人技术与应用.1998, 3: 15~18
    7林尚扬,陈善本,李成桐.焊接机器人及其应用.机械工业出版社, 2000: 188~212
    8 Wu. Huapeng, Heikki. Handroos, Pekka. Pessi, et al. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum. Fusion Engineering and Design. 2005,75:625~681
    9 Richard A. Hildner. A remote welding technique for high explosives containers. Journal of Hazardous Material. 1997,2(2):183~187
    10 T. B. Sheridan,“Space teleoperation though time delay: review and prognosis”. IEEE Transactions on Robotics and Automation. 1993, 9: 592~606
    11 Sun Hua, Wu Lin, Gao Hong Ming. Remote welding robot system. Proceedings of the Fourth International Workshop on Robot Motion and Control, RoMoCo04, 2004:317~320
    12 J. J. Conrath. Remotely controlled repair of piping at douglas point. International Conference on Robotics and Remote Handling in the NuclearIndustry, Toronto, Canada. 1984: 112~121
    13尤函.切尔诺贝利核电站爆炸泄漏事故概况及启示.国防科技工业. 2006, 4: 50
    14胡建磊,黄伟奇,张海红.从切尔诺贝利事故浅谈我国核应急准备工作.全国第一届核技术与公共安全学术研讨会论文集. 2007: 102~106
    15王恒德,切尔诺贝利核事故及其后果,辐射防护通讯. 2000, 4/5: 38~41
    16李海超,吴林,高洪明,等.基于机器人遥操作的遥控焊接最新研究进展.焊接学报.2006, 27(6): 108~109.
    17 T. Raimondi. Remote handling in the joint european tonus (JET) fusion experiment. Proceedings of the 24th Conf. on Remote System Technology, USA. 1976: 188~195
    18 J.E. Agapakis, K. Masubuchi. Fundamental and advances in the development of remote welding fabrication system. Welding Journal. 1986, 65(9): 21~34
    19 S.B. Hosegood. CEGB work on in-reactor maintenance techniques. Proceedings of the 29th Conference on Remote System Technology, USA. 1981, 2: 155~162
    20 J.P. Launary. Teleoperation and nuclear services advantages of computerized operator-assistance tools. Nuclear Engineering and Design. 1998, 180: 47~52
    21 H. Trevor, L. Trevor. Arm and rovsim: extending our reach. Industrial Robot.1999, 26(3): 202~208
    22 T.J. Larkum, D.R. Broome. Advanced controller for an underwater manipulator. Proceedings of 3rd IEEE Conference on Control Application, Glasgow, Scotland, U.K.. 1984: 112~121
    23 B.S. Herschel, R.T. Charles. Complex intelligent machines. Proceedings of
    18th Symposium on Energy Engineering Sciences: DOE-BES, Argonne National Lab., USA. 2000: 667~674
    24 Robot task scene analyzer. Technical Report. US Department of Energy. 2008.8
    25 International conference on innovative technologies for nuclear fuel cycles and nuclear power. International atomic energy agency, Vienna. 2003, 6: 23~26
    26樊滨温,张炯,吕伟新,等.遥操作空间机器人系统研究.哈尔滨工业大学学报. 1999, 31(1): 111~114
    27石锦,曾庆军.网络遥操作机器人系统视频传输及同步技术.江苏科技大学学报(自然科学版). 2007, 21(2): 52~55
    28王世华,胥布工,刘云辉,等.多信息感知辅助的网络遥操作机器人系统.机器人. 2008, 30(1): 48~55
    29何晋,赵杰.基于Internet机器人遥操作系统的实现.湖南科技大学学报(自然科学版). 2007, 22(4): 38~41
    30张惠斌,周振丰,吴林,等.遥控焊接机器人系统.焊接学报. 1995, 16(3): 153~157
    31吕伟新,张炯,樊滨温,等.面向空间应用的主从与自主式遥操作系统研究.高技术通讯. 1997, (1): 27~30
    32 M. Hou, S.H. Yeo, L. Wu, et al. On teleoperation of an arc welding robotic system. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota. 1996: 1275~1280
    33吕伟新.遥控弧焊运动控制新方法研究.哈尔滨工业大学博士学位论文. 1997:25~30
    34张连新.基于多智能体技术的机器人遥控焊接系统研究.哈尔滨工业大学博士学位论文. 2006: 22~24
    35刘立君,高洪明,张广军,等.基于力觉遥控焊接遥示教焊缝辨识技术.焊接学报. 2006, 27(11): 73~76
    36刘立君,高洪明,吴林.遥控焊接力觉遥示教点间变迁控制技术.焊接学报. 2007, 28(1): 57~59
    37魏秀权,李海超,高洪明,等.机器人遥控焊接力觉传感与控制进展.焊接学报. 2007, 28(11): 108~111
    38梁志敏,高洪明,张广军,等.遥控焊接中立体视觉系统标定.焊接学报. 2006, 27(9): 103~108
    39高胜,吴林,张保龙.遥控焊接宏观环境建模技术.大庆石油学院学报. 2006, 30(5): 75~78
    40魏秀权,高洪明,李海超,等.机器人遥控焊接虚拟环境标定实验研究.机器人. 2006, 28(6): 582~592
    41高洪明,梁志敏,董娜,等.基于立体视觉的遥控焊接机器人任务空间三维建模.焊接学报. 2007, 28(11): 5~9
    42周振丰,张文钱.焊接冶金与金属焊接性.机械工业出版社,1980: 1~10
    43杨俊伟,李岩.全位置自动焊接在管道建设中的应用.油气储运. 2001,20(12): 27~28
    44顾纪清,阳代军.管道焊接技术.北京化学工业出版社、工业装备与信息工程出版中心出版, 2005:87~121
    45 http://www.huahengweld.com/cpjs/ghj/gg_AUTOCAR.htm
    46唐德渝,冯标,李春润,等.长输管道全位置自动封底焊机的研制.焊接技术. 2006, 35(s0): 55~58
    47林三宝,黎明,吴林.计算机在焊接中的应用现状及发展前景.焊接. 1998,(1):2~4
    48刘立君,吴林.管道弧焊机器人国产化专用测控软件.电焊机. 2004, 34(11): 15~17
    49 http://www.polysoude.com/?spg=products/orbitalwelding/openheads.asp&lang=en
    50 http://www.orbimatic.com/index2.php?option=com_content&do_pdf=1&id=17
    51 S. S. Glickstein. Unique ways to apply the computer to welding. Welding Journal. 2000, 79(6):79~82
    52张锋,詹华,于金柱.大口径双焊炬管道全位置自动焊机.管道技术与设备. 2004, (4), 22~25
    53石凯,奚运涛,周勇,等.小口径钢管全位置脉冲TIG焊的成形控制及组织调控.焊管. 2004, 27(1): 21~24
    54霍孟友,张忠厚.基于PMAC的椭球面封头接管自动焊接装置.焊接学报. 2005, 26(1): 74~77
    55刘勇,兰立晓,杨臣文. POLYSOUDE 600PC热丝TIG焊机在生产中的应用.中西南十省区(市)焊接学会联合会第九届年会论文集. 2006: 142~146
    56 Mehrdad. Bahrami-Samani, Maryam. Agahi, S. Ali. A. Moosavian. Design and analysis of a welding robot. International Conference on Automation Science and Engineering. IEEE, 2006. 454~459
    57全位置管管在电子/医药不锈钢管路上的应用.昆山华恒焊接设备技术有限公司. http://www.huahengweld.com/xz/dzyy.pdf
    58贾剑平,张华,徐健宁.电弧传感器的研究现状与展望.焊接. 2005, (11):14~15
    59高翔,黄呜风,曹浪波,等.开口齿轮传动机构设计探讨.石油矿场机械.2003, 32(6): 37~39
    60 SMC(中国)有限公司.现代实用气动技术.第二版.机械工业出版社, 2003:5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700