艾比湖湿地土壤有机碳及其组分含量垂直分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了厘清干旱气候区湿地土壤有机碳及其不同组分含量的分布特征,并揭示其主要影响因子,本文以艾比湖湿地为研究区域,选取6种典型生境(奎屯林间洼地、阿其克苏河芦苇沼泽、石头房子干涸湖床、精河河口漫滩、艾比湖湖滨、博河河口漫滩),对其土壤有机碳及不同组分含量的垂直分布特征及其影响因子进行了分析,研究结果表明:
     (1)艾比湖湿地6种典型生境土壤有机碳、轻组有机碳(仅奎屯林间洼地、阿其克苏河芦苇沼泽、艾比湖湖滨20~50cm土层存在)、可溶性有机碳、微生物量碳和易氧化态碳含量都较低,分别为1.08~11.49g·kg-1、0.019~0.111g·kg-1、41.6~151.3mg·kg-1、8.23~609.58mg·kg-1和0.06~2.38g·kg-1,平均值分别为4.73g·kg-1、0.074g·kg-1、81.0mg·kg-1、134.01mg·kg-1和0.70g·kg-1,变异系数分别为61.6%、27.3%、39.6%、100.41%和87.9%;
     (2)总体来看,6种典型生境中,奎屯林间洼地的土壤有机碳及其不同组分的含量较高,博河河口漫滩较低;
     (3)6种典型生境土壤有机碳密度介于0.08~2.04kg·m-2,平均含量为0.74kg·m-2,变异系数为66.6%,奎屯林间洼地有机碳密度最大,博河河口漫滩有机碳密度最小;
     (4)土壤有机碳及其不同组分之间均呈极显著正相关(p<0.01),粘粒含量、含水量和全氮含量对土壤有机碳及其不同组分含量具有极显著的影响(p<0.01)。
To clarify the distrubution regular of soil organic carbon, soil organic carbon fractions and the influencing factors, six typical of habitas in Ebinur Lake Wetland were choosen. The six typical habitas were Kuitun wetland,Aqikesu wetland,Shitoufangzi wetland,Jing river wetland,Ebinur lakefront wetland and Bo river wetland.The vertical distribution and its influencing factors of the soil organic carbon and its fractions were analyzed. The results showed:
     (1) The soil organic carbon,light fraction organic carbon(only exists in Kuitun wetland, Aqikesu wetland and 20-50cm of Ebinur lakefront wetland),dissolved organic carbon,soil microbial biomass carbon and easy oxidation state carbon of the six typical habitas in Ebinur Lake Wetland were all low. The contents were 1.08~11.49g·kg-1、0.019~0.111g·kg-1、41.6-151.3mg-kg-1、8.23~609.58mg·kg-1 and 0.06~2.38g·kg-1.The average contents were 4.73g-kg-1、0.074g·kg-1、81.0mg·kg-1、134.01mg·kg-1 and 0.70g~kg-1. The variation were 61.6%、27.3%、39.6%、100.41% and 87.9%.
     (2) In the whole, the content of soil organic and its fraction in Kuitun wetland was higher than others, and the Bo river wetland was the lowest of all.
     (3) The organic carbon reserves of the six typical habitas was 0.08 to 2.04 kg·m-2. The average soil organic carbon content was 0.74kg·m-2, and the averge variation was 66.6%. The organic carbon reserves of Kuitun wetland was the highest and the Bo river wetland was the lowest.
     (4) There were significant correlation between soil organic and its fractions(p<0.01). Soil moisture content,the silt content and the total nitrogen were all significantly influencing on the soil organic carbon and its fractions(p<0.01).
引文
[1]Batjes N H. Total carbon and nitrogen in soils of the world[J]. European Journal of Soil Science,1996,47:151-163.
    [2]Eswaran H, Van Den Berg E, Reich P, et al. Organic carbon in soils of the world[J]. Soil Sci. Soc. Am. J.,1993,57:192-194.
    [3]Su Y Z, Zhao H L. Advances in researches on soil organic carbon storage, affecting factors and its environment effects. Journal of Desert Research,2002,22(3):220-228.
    [4]Allan Crowe Quebec 2000:Millennium Wetland Event Program with Abstracts[C]. Quebec, Canada, Elizabeth MacKay,2000:1-256.
    [5]Mathew S E,Fung I Y.Methane emissions from natural wetlands:global distribution, area environmental characteristics of sources [J].Global biogeochemical Cycle,1987, 1:61-86.
    [6]刘子刚.湿地生态系统碳储存和温室气体排放研究[J].地理科学,2004,24(5):634-640.
    [7]WBGU(German Advisory Couneil on Global Change).The accounting of biological sinks and sources under the Kyoto Protocol:A step forwards on backwards for Global Environmental Protection [R].Special Report, Bremerhaven, Germany,1998.
    [8]IPCC.Land use, Land-use Change, and Foresty[R].Cambridge and New York: Cambridge University Press,2000.
    [9]Blair BJ, Lefroy RD. Soil carbon fractions based on their degree of oxidation and the developments of a carbon management index for agricultural systems. Aust J AgricRes,1995,46:1456-1466.
    [10]白军红,邓伟,朱颜明.湿地生物地球化学过程研究进展[J].生态学杂志,2002,21(1):53-57.
    [11]王国平,刘景双.湿地生物地球化学研究概述[J].水土保持学报,2002,16(4):144-148.
    [12]田应兵,宋光煜,艾天成.湿地土壤及其生态功能[J].生态学杂志,2002,21(6):36-39.
    [13]姜明,吕宪国,杨青.湿地土壤及其环境功能评价体系[J].湿地科 学,2006,4(9):168-174.
    [14]朱鹤健,何宜庚主编.土壤地理学[M].北京:高等教育出版社,1992.
    [15]Doran J W, Jones A J, Arshad M A, et al. Determinants of soil quality and health [A]. Soil Quality and Soil Erosion[C]. CRC Press,1999.17-36.
    [16]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-229.
    [17]Babu CP, Brumsack HJ, Schnetger B. Distribution of organic carbon in surface sediments along the eastern Arabian Sea:a revisit[J].Marine Geology 1999,162:91-103.
    [18]Chen R H, Twiley R R. A simulations model of organic matter and nutrient accumulation in mangrove wetland soils[J]. Biogeochemistry,1999,44:93-118.
    [19]Vaithiyanathan P, Richardson C J. Biogeochemical characteristics of the everglades sloughs[J].Journal of Environmental Quality,1998,27:1439-1450.
    [20]Isla E, Masque P, Palanques A, et al. Sediment accumulation rates and carbon burial in the bottom sediment in a high—productivity area:Gerlache Strait(Antarctica)[J]. Deep-Sea Reasearch II,2002,49:3275-3287.
    [21]张文菊,吴金水,肖和艾,等.三江平原典型湿地剖面有机碳分布特征与积累现状[J].地球科学进展,2004,19(4):558-563.
    [22]石福臣,李瑞利,王绍强,等.三江平原典型湿地土壤剖面有机碳及全氮分布与积累特征[J].应用生态学报,2007,18(7):1425-1431.
    [23]高俊琴,欧阳华,张锋,等.若尔盖高寒湿地表层土壤有机碳空间分布特征[J].生态球环境,2007,16(6):1723-1727.
    [24]彭佩钦,张文菊,童成立,等.洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J].应用生态学报,2005,16(10):1872-1878.
    [25]彭佩钦,张文菊,童成立,等.洞庭湖湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):49-53.
    [26]贾瑞霞.闽江河口湿地沉积物碳、氮、磷含量及储量特征[D].福建师范大学硕士论文,2009.
    [27]迟传德,许信旺,吴新民,等.安徽升金湖湿地土壤有机碳储存及分布[J].地球与环境,2006,34(3):59-64.
    [28]刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报,2003,17(3):5-9.
    [29]吕国红,周莉,赵先丽,等.芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J].应用生态学报,2006,17(3):384-389.
    [30]Paton W J, Schimel D S, Cole C V,et al. Analysis of factors controlling soil organic matter levels in Great Plain Grasslands[J]. Soil Sci. Soc. Am.J,1987,51:1173-1179.
    [31]McLauchlan K K, Hobbie S E.Comparison of labile soil organic matter fractionation techniques [J]. Soil Society of America Journal,2004,68:1616-1625.
    [32]徐明岗,于荣,王伯仁.土壤活性有机质的研究进展[J].土壤肥料,2000(6):3-7.
    [33]Elzein A, Balesdent J,Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils Soil Sci Soc Am J,1995,59:1328-1335.
    [34]Kucharik C J, Foley J A,Delire C,et al. Testing the performance of a dynamic global ecosystem model:Water balance, carbon balance and vegetation structure. Glob Biogeochem cycle,2000,14(3):795-825.
    [35]宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学,2004,25(3):150-154.
    [36]辛刚,颜丽,汪景宽,等.不同开垦年限黑土有机质变化的研究[J].土壤通报,2002,33(5):332-335.
    [37]吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28(5):657-664.
    [38]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.
    [39]Oades J M, Ladd J N. Biochemical properties:carbon and nitrogen metabolism. In: Russell J S and Greacen E L. ed. Soil Factors in Crop Production in a Semi-arid Environment[C]. University of Queensl and Press. StLucia.1977:127-160.
    [40]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,365(4):502-506.
    [41]Logninow W, Wisniewski W, Strony W, et al. Fractionation of organic carbon based on susceptibility to oxidation. Polish J.Soil Sci,1987,20:47-52.
    [42]Polglase P J, Jokela E J, Comerford N B. Phosophorus, nitrogen and carbon fractios in litter and soil of southern pine plantations[J]. Soil Sci.Soc. Am,J.1992, 56:566-572.
    [43]Woods L R Active organic matter distribution in the surface 15cm of undisturbed and cultivated soils[J]. Biology and Fertility of soils.1989,8:271-278.
    [44]谢锦升,杨玉盛,解明曙,等.土壤轻组有机质研究进展[J].福建林学院学报,2006,26(3):281-288.
    [45]Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc, Am.J.1992,56:1799-1806.
    [46]Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations. Can J. Soil Sci,1987,67:845-856.
    [47]易文利,王圣瑞,金相灿,等.长江中下游浅水湖沉积物中有机质及其组分的赋存特征[J].西北农林科技大学学报,2008,36(5):141-148.
    [48]钟春棋.土地利用变化对闽江口湿地土壤有机碳的影响研究[D].福建师范大学硕士论文,2009.
    [49]吕国红,周广胜,周莉,等.土壤溶解性有机碳测定方法与应用[J].气象与环境学报,2006,22(2):51-54.
    [50]Mcgill W B, Hunt H W, Woodmansee R G, et al. Phoenix, a model of the dynamics of carbon and nitrogen in grassland and soils[J]. Ecol Bull,1981,33:49-115.
    [51]倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态与环境,2003,12(1):71-75.
    [52]Zsolnay A. Dissolved humus in soil waters. In:Piccolo A(ed) Humic substances in terrestrial ecosystems. Elsevier Science B V, Amsterdam, NL,171-223.
    [53]李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展[J].土壤与环境,2002,11(4):422-429.
    [54]杨继松,刘景双,于君宝,等.草甸湿地土壤溶解有机碳淋溶动态及其影响因素[J].应用生态学报,2006,17(1):113-117.
    [55]郗敏,孔范龙,吕宪国,等.三江平原典型岛状林湿地土壤水DOC质量浓度分布特征[J].辽宁工程技术大学学报(自然科学版),2009,28(2):322-325.
    [56]Zogg G P, Zak D R, Pregitzer K S, et al. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology,2000,81: 1858-1866.
    [57]Dilly O, Blume H P, Sehy U, Jimenez M, et al. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices. Chemosphere,2003,52:557-569.
    [58]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    [59]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173.
    [60]Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem.,1987,19:703-707.
    [61]Tate K R, Ross D J, Feltham C W. A direct extraction method to estimate soil microbial biomass C:Effects of experimental variables and some different calibration procedures. Soil Biol.Biochem.,1988,20:329-335.
    [62]彭佩钦,吴金水,黄道友,等.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响[J].生态学报,2006,26(7):2261-2267.
    [63]陈果,刘岳燕,姚槐应,等.一种测定淹水土壤中微生物生物量碳的方法:液氯熏蒸浸提—水浴法[J].土壤学报,2006,43(6):981-988.
    [64]张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学,2006,26(3):340-344.
    [65]黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
    [66]Biederbeck B O. Labile soil organic matter as influenced by cropping practices in an arid environment [J]. Soil Biol.Biochem.,1994,26(12):1656-1674.
    [67]Logninow W, Wisniewski W, Strony W M, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science,1987,20: 47-52.
    [68]Blair G J,Lefroy R D B, Lisle L. Labile soil carbon fractions based on the degree of oxidation and the development of carbon management index for agricultural systems[J]. Aust.J.Agric. Res.Ecol,1995,46:1456-1466.
    [69]Lefroy R D B,et al. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993,155/156:399-402.
    [70]杨利普,杨川德.新疆艾比湖流域水资源利用与艾比湖演变[J].干旱区地理,1990,13(4):1-14.
    [71]交振旺等.新疆土壤地理[M].科学出版社,北京:科学出版社,1965.
    [72]刘华训等.中国名湖志典[M].北京:中国旅游出版社,1990:205-207.
    [73]阎顺,穆桂金,远藤邦彦.2500年来艾比湖的环境演变信息[J].干旱区地理,2003,26(3):227-232.
    [74]吉力力·阿不都外力,徐俊荣,穆桂金,等.艾比湖盐尘对周边地区土壤盐分及景观变化的影响[J].冰川冻土,2007,29(6):928-939.
    [75]巴德玛拉等.艾比湖湿地自然保护区总体规划[R].2007.
    [76]于恩涛.艾比湖流域大气水汽输送及植被变化气候响应研究[D].新疆大学,2008,5.
    [77]李虎,高俊峰,王晓峰,等.新疆艾比湖湿地土地荒漠化动态监测研究[J].湖泊科学,2005,17(2):127-132.
    [78]袁月,傅德平,吕光辉.新疆艾比湖湿地植被优势种种间关系研究[J].湿地科学,2008,6(4):486-491.
    [79]鲁如坤.土壤化学农业分析方法[M].北京:中国农业科技出版社,1999.
    [80]Janzen H H,Campbell C A,Brandt S A,et al.Light fration organic matter in soils from long-term crop rotations [J].Soil Society of America Journal,1992,56:1799-1806.
    [81]Besnard E,Chenu C,Balesdent J,et al.Fate of particulate organic matter im soil aggregates during cultivation [J].European Journal of Soil Science,1996,47:495-503.
    [82]解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):836-839.
    [83]Post W M,Emanuel W R,Zinke P,et al. Soil carbon pools and world life zones. Nautre,1982,298(8):156-159.
    [84]徐艳,张凤荣,段增强,等.区域土壤有机碳密度及碳储量计算方法探讨[J].土壤通报,2005,36(6):836-839.
    [85]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
    [86]Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon[A]. In:Powlson D S, et al eds. Evaluation of Soil Organic Matter Models[C]. Berlin, Heidelberg:Springer Verlag,1996:201-224.
    [87]刘景双.湿地生物地球化学研究[J].湿地科学,2005,3(4):302-309.
    [88]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [89]马安娜,陆健健.湿地生态系统碳通量研究进展[J].湿地科学,2008,6(2):116-123.
    [90]曹丽花,赵世伟.土壤有机碳库的影响因素及调控措施研究进展[J].西北农林科技大学学报(自然科学版),2007,35(3):177-183.
    [91]Davidon E A, Trumbore S E, Amundson R. Soil warming and organic carbon content[J]. Nature,2000,408(14):789-790.
    [92]黄昌勇.土壤学[M].北京:中国家业出版社,2000.
    [93]王宪礼.我国自然湿地的基本特点[J].生态学杂志,1997,16(4):64-67.
    [94]白军红,邓伟,朱颜明,等.湿地土壤有机质和全氮含量分布特征对比研究—以向海与科尔沁自然保护区为例[J].地理科学,2002,22(2):232-237.
    [95]李鸿博,史锟.不同植物过程土壤剖面有机碳含量和含水量研究[J].大连铁道学院学报,2005,26(1):92-95.
    [96]王红,范志平,邓东周,等.不同环境因子对樟子松人工林土壤有机碳矿化的影响[J].生态学杂志,2008,27(9):1469-1475.
    [97]Lynch D L, Cotnoir L J. Soil Sci, Soc. Am. Proc,1956,20:367-370.
    [98]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000,1:11-17.
    [99]张文菊,彭佩钦,童成立,等.洞庭湖湿地有机碳垂直分布与组成特征[J].环境科学,2005,26(3):56-60.
    [100]Avnimelech Y, Gad R, Leon E M, et al. Water content, organic carbon and dry bulk density in flooded sediments[J]. Aquacultural engineering,2001,25 (1):25-33.
    [101]廖利平,高洪等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1)34-39.
    [102]Christ J. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J]. Soil Biol Biochem.1996,28(9):1191-1199.
    [103]陶澍.引滦水中不同形态天然有机物的卤代活性[J].环境科学学报,1994,14(1):19-23.
    [104]Kalbita K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Sci,2000,165(4):277-304.
    [105]郗敏,孔范龙,吕宪国,等.三江平原典型岛状林湿地土壤水DOC质量浓度分布特征[J].辽宁工程技术大学学报(自然科学版),2009,28(2):322-325.
    [106]胡亚林,曾德慧,范志平,等.半干旱区沙质退化草地造林对土壤质量的影响[J].应用生态学报,2007,18(11):2391-2397.
    [107]Jenkinson D S, Ladd J N. Microbial biomass in soil:Measurement and turnover. In: Paul E A, Ladd J N eds. Soil Biochemistry. Marcel Dekker, Inc., New York.1981. 415-471.
    [108]Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels [J]. soil. Biol. Rev.,1992,67:321-358.
    [109]徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-95.
    [110]Fisher F M, Gosz J R. Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest[J]. Biology and Fertility of Soils,1986,2:35-42.
    [111]Arnold S S, Fernandez I J, Rustad L E. Microbial response of and acid forest soil to experimental soil warming[J]. Bioloty and Fertility of Soil,1999,30:239-244.
    [112]徐侠,王丰,栾以玲,等.武夷山不同海拔植被土壤易氧化碳[J].生态学杂志,2008,27(7):1115-1121.
    [113]沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    [114]史作民,刘世荣,程瑞梅.内蒙古鄂尔多斯地区四个植物群落类型的土壤碳氮特征[J].林业科学,2004,40(2):21-27.
    [115]吴敬禄,刘建军,王苏民,等.近1500年来新疆艾比湖同位素记录的气候环境演化特征[J].第四纪研究,2004,24(5)585-590.
    [116]Van Veen J A, Ladd J N, Martin J K, Amato M. Turnover of carbon, nitrogen and phosphorus through the microbial biomass in soils incubated with 14C,15N and 32P labeled bacterial cells[J]. Soil Biol. Biochem.,1987,19:559-565.
    [117]Van Veen J A, Merckx R, van de Geijn S C. Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass[J]. Plant and Soil, 1989,115:179-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700