黄土丘陵半干旱区刺槐、侧柏人工林耗水规律及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国黄土高原半干旱地区,降水少,蒸发强烈,水土流失严重,生态环境脆弱,解决区域水资源不足与植被建设之间的矛盾,实现人工植被的持续发展,是改善黄土高原地区生态环境的根本途径。本研究以黄土丘陵半干旱区的刺槐和刺柏人工林为研究对象,利用TDP树干边材液流测定系统对刺槐和侧柏的树干液流进行连续监测,并结合气象数据,分析了刺槐和侧柏树干边材液流动态及其影响因素,计算两树种的单木蒸腾耗水量。取得的主要研究结果如下:
     1.典型天气条件下,刺槐和侧柏树干边材液流通量密度的变化趋势相似。晴天,刺槐和侧柏的树干边材液流通量密度的日变化均呈单峰型曲线,并与光合有效辐射、水蒸气压差的变化规律相似。刺槐和侧柏的日平均树干液流通量密度分别为晴天>多云天>阴天。展叶初期,随着刺槐叶片的生长,边材液流通量密度值逐渐增大,呈单峰型曲线,同一时期侧柏的边材液流通量密度大于刺槐。生长盛期,刺槐边材液流通量密度的日变化呈宽峰型曲线,液流通量密度在达到峰值后有小幅的波动,侧柏液流通量密度的日变化为单峰型曲线,液流启动后迅速上升,达到峰值后急剧下降。刺槐落叶期,边材液流通量密度逐渐减小,侧柏则变化幅度较小,但夜间有明显的液流存在。
     2.展叶末期和生长盛期,刺槐边材液流通量密度均与光合有效辐射、水蒸气压差、空气温度、风速呈显著正相关,与相对湿度呈显著负相关,且相关程度的大小顺序为光合有效辐射>空气温度>水蒸气压差>相对湿度>风速。侧柏生长盛期边材液流通量密度与气象因子的相关性与同一时期的刺槐相同。
     3.刺槐的胸径和边材面积,侧柏的地径和边材面积之间均呈幂指数关系。单木的日蒸腾耗水量随着胸(地)径的增大而增大。生长季不同时期,刺槐和侧柏的单木月蒸腾耗水累积量呈明显的季节变化规律,刺槐春季和秋季耗水量小,8月的耗水量最大,侧柏的蒸腾耗水量则为5月最大,在整个生长季总体呈下降趋势。2009年和2010年刺槐和侧柏单株在整个生长季的总蒸腾耗水量相差较大。但各月的蒸腾耗水量占整个生长季总蒸腾耗水量的比例在不同年份间的变化较小。2009年和2010年刺槐林地生长季的蒸腾耗水总量分别为103.25mm和96.75mm,侧柏林地生长季的蒸腾好水总量分别为194.97mm和181.90mm。
     4.刺槐和侧柏的根系主要分布在0-60cm土层,平均有效根重密度分别为0.14mg?cm-3,0.29 mg?cm-3,侧柏是刺槐的2.07倍。刺槐的有效根系(直径≤1mm)主要分布在20-30cm土层,侧柏的有效根系主要分布在10-20cm土层。刺槐和侧柏林地0-30cm土层的土壤含水量随着土层深度的增加迅速下降,这主要与有效根系的分布有关,根系吸水导致土壤水分含量下降,侧柏林地的土壤含水量低于刺槐。30cm以下刺槐和侧柏林地土壤水分的变化趋势相似,随着土层深度的增加,含水量有极小幅度的增加,同一土层刺槐和侧柏林地的土壤含水量相近。
The semiarid region of Loess Plateau in China is characterized by low precipitation, strong evaporation, serious soil and water loss, and weak eco-environment. The improvement of eco-environment in the Loess Plateau is the basic approach to resolve the contradiction between insufficient water resource and vegetation construction and to realize the sustainable development of artificial vegetation in this area. With the thermal dissipation probe(TDP) sap flow measuring system and automatic meteorological station, the stem lever water use of Robinia pseudoacacia and Platycladus orientalis and related environment factors were monitored.The influencing factors of sap flow were analyzed systematically. The main results are as follows:
     1. Under typical weather conditions, R. pseudoacacia and P. orientalis have a similar trend in sap flux density. In sunny days, both the diurnal sap flux density variations of R. pseudoacacia and P. orientalis are shown as single-peak curves, which are in step with the changing patterns of photosynthetically active radiation (PAR) and vapor pressure differential (VPD), and the order of the sap flux density is sunny days> cloudy days> overcast days. In the early leaf frushing period, the sap flux density of R. pseudoacacia increases gradually with the growth of leaves, and it presents a single-peak curve in this stage. During the growing seaon, diurnal sap flux density variation process of R. pseudoacacia appears as a wide-peak curve; it reaches the peak at 11 o’clock in the morning and reduces with the decrease of solar radiation after that. While for P. orientalis, the diurnal sap flux density variation shows a single-peak curve whose shape is steep and narrow; it increases sharply in the beginning of growth stage and falls down significantly after getting to its maximum. In the deforliation period, the sap flux density of R. pseudoacacia declines gradually, while that of P. orientalis almost keeps stable, and there is an obvious rise during the night time.
     2. In the late leaf frushing period and the rapid growth period, sap flux density of R. pseudoacacia positively correlates with PAR, VPD, air temperature(T) and wind speed(Vs), while negatively correlates with relative humidity(RH). The order of the correlation degree is: PAR> T> VPD> RH> Vs. For P. orientalis, the correlativity between sap flux density and meteorological factors in the growth stage is the same with R. pseudoacacia in the corresponding period.
     3. There is a power exponent relationship between diameter at breast height (DBH) and sapwood area for R. pseudoacacia, and so is ground diameter and sapwood area for P. orientalis. Both the diurnal transpiration consumption per wood of R. pseudoacacia and P. orientalis increase as DBH (ground diameter) increases. In different growing seasons, the accumulative monthly water consumption per wood of these two species has clear seasonal characteristics. For R. pseudoacacia, the water consumption is relatively less in spring and autumn, but the most in August (280.11 L in 2009 and 238.32 L in 2010). While P. orientalis has the maximum transpiration consumption in May and June (238.21 L and 198.80 L respectively in 2009), the transpiration consumption decreases gradually during the whole growing season. There is a relatively big difference in total transpiration consumption per wood in the growing season between R. pseudoacacia and P. orientalis in 2009 and 2010. However, the monthly transpiration consumption presents stable ratios of the total transpiration consumption during the whole growing season in different years. The total transpiration consumption of R. pseudoacacia forest in the growing season is 103.25mm in 2009 and 96.75mm in 2010, and for P. orientalis forest, it is 194.97mm in 2009 and 181.90mm in2010.
     4. The root system of R. pseudoacacia and P. orientalis mainly distribute in the soil layer of 0-60 cm. The average effective root density of P. orientalis is as 2.07 times as that of R. pseudoacacia, and they are respectively 0.14 mg·cm-3 and 0.29 mg·cm-3. The effective root (diameter≤1mm) of R. pseudoacacia mainly distribute in the 20-30 cm layer, and 10-20 cm for P. orientalis. In the top 30 cm layer, soil moisture content of both R. pseudoacacia and P. orientalis decrease rapidly with soil depth, and that is because the most distributed effective root uptake a large amount of soil moisture. The soil moisture content of P. orientalis is lower than that of R. pseudoacacia in the 0-30 cm layer because of the higher effective root density in P. orientalis plantation. In the soil layer deeper than 30 cm, R. pseudoacacia and P. orientalis have a similar trend in soil moisture content which increases slightly with soil depth, and also similar moisture content values in same soil layers.
引文
白云岗,宋郁东,周宏飞,张江辉. 2007.热脉冲法对胡杨树干液流的监测与蒸腾过程的模拟.水土保持科学, 21(3): 188~192
    单长卷,梁宗锁,郝文芳. 2003.黄土高原刺槐林生长与土壤水分关系研究进展.西北植物学报, 23(8): 1341~1346
    邓东周,范志平,王红,孙学凯,高俊刚,曾德慧. 2008.林木蒸腾作用测定和估算方法.生态学杂志, 27(6): 1051~1058
    樊敏,马履一,王瑞辉. 2008.刺槐春夏季树干液流变化规律.林业科学, 44(1): 41~45
    郭成久,王莉,苏芳莉,尚佰晓,韩辉,王政. 2008.辽西樟子松树干液流运动规律.东北林业大学学报, 36(7): 3~5
    郭梦霞,毕华兴,刘鑫,李俊,郭超颖,林靓靓. 2006.树木蒸腾耗水研究进展[J]中国水土保持科学, 4(4): 114~120
    侯庆春,韩蕊莲,韩仕峰. 1999.黄土高原人工林草地“土壤干层”问题初探.中国水土保持, (5): 11~14
    侯庆春,韩蕊莲,李宏平. 2000.关于黄土丘陵典型地区植被建设中有关问题的研究:Ⅲ,乡土树种在造林中的意义.水土保持研究, 7(2): 119~123
    候庆春,韩蕊莲. 2000.黄土高原植被建设中的有关问题.水土保持通报, 20(2): 53~56
    黄锡荃. 1985.水分学[M].北京:高等教育出版社, 51~52
    蒋定生. 1997.黄土高原水土流失与治理模式.北京:中国水利水电出版社
    巨关升,刘奉觉,郑世锴,吴晓春,汝成祥. 2000.稳态气孔计与其它3种方法蒸腾测值的比较研究.林业科学研究, 13(4): 360~365
    李广德,贾黎明,孙俊杰. 2008.运用热技术检测树干边材液流研究进展.西北林学院学报, 23(3): 94~100
    李合生. 2001.现代植物生理学.北京:高等教育出版社
    李鹏,赵忠,李占斌,澹台湛. 2005.渭北黄土区刺槐根系空间分布特征研究[J ].生态环境, 14 (3) : 405~409
    李文华,李飞. 1996.中国森林资源研究.北京:中国林业出版社
    刘昌明. 1997.土壤-植物-大气连续体系统水分运行的界面过程研究.地理学报, 52(4): 366~373
    刘德良. 2008.油松树干边材液流空间变化规律.东北林业大学学报, 36(5): 15~18
    刘发民. 1996.利用校准的热脉冲方法测定松树树干液流的研究.甘肃农业大学学报, 31(2): 167~170
    刘奉觉,郑世楷,巨关升,王广举,卢永农. 1993.杨树树干液流时空动态研究.林业科学研究, 6(4): 368~372
    刘奉觉,郑世锴,巨关升,吴衍德. 1997.树木蒸腾耗水测算技术的比较研究.林业科学, 33(2): 117~126
    刘国彬,李敏,上官周平,穆兴民,谢永生,李占斌,梁银丽,张文辉,侯庆春. 2008.西北黄土区水土流失现状与综合治理对策.中国水土保持科学, 6(1): 16~21
    刘建立,程丽莉,余新晓. 2009.乔木蒸腾耗水的影响因素及研究进展.世界林业研究, 22(4): 34~40
    刘文国,刘玲,张旭东,袁玉欣. 2010.杨树人工林树干液流特性及其与影响因子关系的研究.水土保持学报, 24(2): 96~101
    马达. 2006.北京市主要绿化树种油松侧柏耗水规律研究. [硕士学位论文]北京:北京林业大学
    茹桃勤,李吉跃,孔令省,朱延林. 2005.刺槐耗水研究进展.水土保持研究, 12(2): 135~140
    沙爱民. 1997.稳定土的酸碱性作用原理研究.中国公路学报, (12): 4~10
    山仑,陈国良. 1993.黄土高原旱地农业的理论与实践.北京:科学出版社
    苏建平,康博文. 2004.我国树木蒸腾耗水研究进展.水土保持研究, 11(2): 177~179, 186
    孙慧珍,李夷平,王翠,周晓峰. 2005.不同木材结构树干液流对比研究.生态学杂志, 24(12): 1434~1439
    孙慧珍,李夷平,王翠周,晓峰. 2005.不同木材结构树干液流对比研究.生态学杂志, 24(12): 1434~1439
    孙慧珍,周晓峰,康绍忠. 2004.应用热技术研究树干液流进展.应用生态学报, 15(6): 1074~1078
    孙鹏森,马履一,王小平,翟明普. 2000.油松树干液流的时空变异性研究.北京林业大学学报, 22(5): 1~6
    孙一琳,王洪英,刘秀萍. 2007.黄土高原人工刺槐林土壤水分特征.青岛农业大学学报, 24(2): 123~126
    汤洁,林年丰. 1996.中国干旱半干旱区农业生态地址环境系统工程研究.长春地质学院学报, 26(1): 54~58
    陶大立,靳月华,林继惠. 1989.长白山树木蒸腾和气孔阻力的日变化.植物生理学通讯, (3): 22~25
    王华田,马履一,孙鹏森. 2002.油松、侧柏深秋边材木质部液流变化规律的研究.林业科学, 38(5): 31~37
    王华田,马履一,孙鹏森. 2002.油松、侧柏深秋边材木质部液流变化规律的研究.林业科学, 38(5): 31~37
    王华田,邢黎峰,马履一,孙鹏森. 2004.栓皮栎水源林林木耗水尺度扩展方法研究.林业科学, 40(6): 170~175
    王华田. 2002.北京市水源保护林区主要树种耗水性的研究.北京:北京林业大学
    王华田. 2003.林木耗水性研究述评.世界林业研究, 16(2): 23~27
    王介民,高峰,刘绍民. 2003.流域尺度ET的遥感反演.遥感技术与应用, 18(5): 332~338
    王力,邵明安,侯庆春,杨岗民. 2001.延安试区人工刺槐林地的土壤干层分析.西北植物学报, 21(1): 101~106
    王孟本,李洪建,柴宝峰. 1996.晋西小叶杨林水分生态的研究.生态学报, 16(3): 232~237
    王孟本,李洪建. 1991.晋西北河北杨林水分生态的研究.生态学报, 11(4): 313~317
    王沙生,高孚荣,吴贾明. 1991.植物生理学[M].第2版.北京:中国林业出版社, 1~32,192.
    王彦辉,张星耀,张守攻. 2002.我国林业生态环境的建设.科学对社会的影响, (3): 31~36
    王翼龙. 2010.黄土高原半干旱区两典型林分主要树种光合耗水特性及影响因素研究. [博士学位论文].北京:中国科学院研究生院
    王正秋. 2000.黄土高原造林中几个问题的思考.中国水土保持, (4): 37~39
    魏天兴,朱金兆,张学培. 1999.林分蒸散耗水量测定方法述评.北京林业大学学报, 21(3): 85~91
    吴钦孝,杨文治. 1998.黄土高原植被建设与继续发展.北京:科学出版社
    熊伟. 2003.六盘山北侧主要造林树种耗水特性研究. [博士学位论文].北京:中国林业科学研究院
    熊伟,王彦辉,于澎涛,刘海龙,徐丽宏,时忠杰,莫非. 2008.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学, 44(1): 34~40
    徐军亮,马履一. 2008.土壤温度对油松(Pinus tabulaeformis)树干液流活动的影响.生态学报, 28(12): 6107~6112
    许鹏辉. 2009.黄土丘陵半干旱区人工刺槐林退化特征及改造效果评价. [硕士学位论文].杨凌:西北农林科技大学
    杨新民,杨文治,马玉玺. 1994.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究.水土保持研究, 1(3): 31~35,42
    于占辉,陈云明,杜盛. 2009.黄土高原半干旱区人工林刺槐展叶期树干液流动态分析.林业科学, 45(4): 53~59
    于占辉,陈云明,杜盛. 2009.黄土高原半干旱区人工林刺槐展叶期树干液流动态分析.林业科学, 45(4): 53~59
    于占辉. 2009.黄土丘陵半干旱区典型人工林耗水动态研究. [硕士学位论文].北京:中国科学院研究生院
    岳广阳,张铜会,刘新平,移小勇. 2006.热技术方法测算树木茎流的发展及应用[J].林业科学, 42(8):102~108
    张继澍. 1999.植物生理学.西安:世界图书出版公司, 45~55
    张金屯. 2004.黄土高原植被恢复与建设的理论与技术问题.水土保持学报, 18(5): 120~124
    张小由,龚家栋,周茂先,司建华. 2003.应用热脉冲技术对胡杨和怪柳树干液流的研究闭.冰川冻土, 25(5): 585~590
    郑怀舟,朱锦懋,魏霞,李守中. 2007. 5种热动力学方法在树干液流研究中的应用评述.福建师范大学学报(自然科学版), 23(4): 119~123
    邹年根,罗伟祥. 1997.黄土高原造林学.北京:中国林业出版社
    周晓峰. 1999.中国森林与生态环境[M].北京:中国林业出版社, 95~99
    Angus DE, Watts PJ. 1984. Evaportranspiration-how good is the Bowen ratio method?[J]. Agric Water Manag, 8:133~150
    Braun P, Schmid J. 1999. Sap flow measurements in grapevines (Vitis vinifera L.) 1. Stem morphology and use of the heat balance method. Plant and Soil, 215: 39~45
    Campbell GS, Norman JM. 1998. Introduction of environmental biophysics. America: Second Edition Cermak J, Kucera J. 1987. Transpiration of mature stands of spruce(Picea abies(L.)Karst.) as estimated by the tree trunk heat balance method. In: Swanson R, Bernier P, Woodward P, editors. Proceedings of the Forest Hydrology and Watershed Management Symposium, Vancouver, Canada: IAHS-AISH Publ.No.167: 311~317
    Cermak J, Kucera J, Nadezhdina N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees-structure And Function, 18(5): 529~546
    Dugas WA, Wallace JS, Allen SJ, Roberts JM. 1993. Heatbalance, porometer, and deuterium estimates of transpiration from potted trees. Agricultural and Forest Meteorology, 64: 47~62
    Granier A. 1985. A new method of sap flow measurement in tree stems. Annalesdes Sciences Forestieres, 42(2): 193~200
    Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3(4): 309~320
    Granier A. 1987. Sap flow measurements in Douglas-fir tree trunks by means of a new thermal method. Annales des Sciences Forestieres, 44(1): 1~14
    Granier A, Biron P, Bréda N, Pontailler JY, Saugier B. 1996. Transpiration of trees and forest stands: Short and longterm monitoring using sapflow methods. Global Change Biology, 2(3): 265~274
    Greenwood EAN, Beresford JD. 1979. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique.I.Comparative transpiration from juvenile Eucalyptus above saline ground-water seeps[J]. Journal of Hydrology, 42(3-4):369-382
    Hatton TJ, Vertessy RA. 1990. Transpiration of plantation pines radiate estimated by the heat pulse method and the Bowen Ratio. Hydrological Processes, 4: 289~298
    Hatton TJ, WU HI. 1995. Scaling theory to extrapolate individual tree water use to stand water use. Hydrological Processes, 9: 527~540
    Hinckley TM, Brooks JR,Cermak J Ceulemans R, Kucera J Meinzer FC Robert DA. 1994. Water flux in a hybrid poplar stand[J].TreePhysiology, 14: 1005~1018
    Huber B. 1932. Observation and measurements of sap flow in plant. Berichte der Deutscher Botanishcen Ges-sellschaft, 50: 89~109
    James SA, Clearwater MJ, Meinzer FC Goldstein G. 2002. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology, 22(4): 277~283
    Kellomaki S, Wang KY. 1998. Sap flow in Scots pines growing under conditions of year-round carbon dioxide enrichment and temperature elevation. Plant Cell And Environment, 21(10): 969~981
    Knight DH, Fahey TJ , Running SW, Harrison AT, Wallace LL. 1981. Transpirationfrom 100-yr-old lodgepole pine forests estimated with wholetree potometers. Ecology, 62(3): 717~726
    Kumagai T, Katul GG, Saitoh TM. 2004. Water cycling in a Bornean tropical rainforest under current and projected precipitation scenario. Water Resources Research, 40: 01~04
    Ladefoged K. 1960. A Method for Measuring the Water Consumption of Larger Intact Trees. Physiologia Plantarum, 13(4): 648~658
    Ladefoged K. 1963. Transpiration of forest trees in closed stands. Physiologia Plantarum, 16(2): 378~414 Leyton L. 1967. Continuous recording of sap flow rates in tree stems. IUFRO Meetings: 240~49
    Lu P, Urban L, Zhao P. 2004. Granier's thermal dissipation probe(TDP)method for measuring sap flow in trees:Theory and practice. Acta Botanica Sinica, 46(6): 631~646
    Marshall DC. 1958. Measurement of sap flow in conifers by heat transport. Plant Physiology, 33 (6): 385~396
    Phillips N, Oren R, Zimmermann R. 1996. Radial patterns of xylem sap flow in non-diffuse-and ring-porous tree species[J]. Plant Cell And Environment, 19(8): 983-990
    Roberts JM. 1977. The use of tree-cutting technique in the study of water relation of mature Pinus sylvestris L. Journal of Experinental Botany, 28: 751~767
    Smith DM, Allen SJ. 1996. Measurement of sap flow in plant stems. Journal Of Experimental Botany, 47(305): 1833~1844
    Splittlehouse DL, Black TA. 1980. Evaluation of the Bowen ration / energy balance method for determining forest evapotranspiration. Atmosphere-Ocean, 18: 98~116
    Stan DW, Anthony WK. 2001. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiology, 20: 511~518
    Swanson RH, Whitfield DWA. 1981. A numerical analysis of heat pulse velocity theory and practice. Journal Of Experimental Botany, 32(126): 221~239
    Vertessy RA , Benyon RG, O’Sullivan SK, Gribben PR. 1995. Relationships between stem diameter, sapwood area , and transpiration in a young mountain ash forest. Tree Physiology, 15: 559~567
    Werk KS, Oren R, Schulze ED, Zimmermann R. 1988. Performance of two Picea abies(L.) Karst stands at different stages of decline 3 Canopy transpiration of green trees. Oecologia,76(4): 519~524
    Wullschleger SD, Meinzer FC, Vertessy RA. 1998. A review of whole-plant water use studies in trees. Tree Physiology, 18(8-9): 499~512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700