血管内皮细胞生长因子165基因转染人骨髓间充质干细胞构建组织工程皮肤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重创伤、大面积烧伤、肿瘤摘除、整形术后的创面覆盖一直是困扰临床医生的难题。目前常规的治疗方法有自体、异体或异种皮移植。自体皮肤来源极为有限,而且存在着形成新创面的缺陷;异体或异种皮肤移植解决了自体皮源不足的问题,但由于难以克服的免疫排斥反应,目前只能用作暂时封闭创面的覆盖物。近年来,组织工程皮肤的构建与应用为皮肤缺损的修复提供了极具发展潜力的治疗途径。但现阶段各种组织工程化皮肤移植存活率明显低于自体断层皮片,其首要原因之一是组织工程化皮肤移植后缺乏足够的血管化而导致低灌注和缺血损伤。因此,如何促进移植皮肤的血管化,成为组织工程皮肤临床推广应用研究的关键。
     研究表明,利用转基因技术,将血管生成调控因子基因导入目的细胞,使其表达某些调控因子,可有效促进血管生成。
     骨髓间充质干细胞(bone mesenchymal stem cells , MSCs )是一种具有多向分化潜能的成体干细胞,在不同的诱导条件下可向骨细胞、脂肪细胞、神经细胞、肌细胞和内皮细胞等各种细胞系转化,由于骨髓间充质干细胞属未分化的前体干细胞,表型分化尚不成熟,免疫原性小,所以移植后无排斥反应或反应较弱,而且,骨髓间充质干细胞还具有取材方便、体外扩增容易、体外增殖能力强、易于基因操作等独特的优点,逐渐成为基因治疗适宜的细胞载体。血管内皮细胞生长因子(Vascular endothelial growth factor ,VEGF)是目前已知的最强的促血管再生因子,近年来应用血管内皮细胞生长因子165基因(VEGF165)转染骨髓间充质干细胞,用于心肌缺血或肢体缺血性疾病的实验及临床研究已取得了令人瞩目的成就,但将其应用于组织工程皮肤构建的研究尚未见报道,因此,采用基因转移技术将hVEGF165基因转入骨髓间充质干细胞中,使其有效表达目的基因和蛋白,构建活性组织工程皮肤,植入皮肤创面后使骨髓间充质干细胞在局部短期内分泌VEGF蛋白,从而促进组织工程皮肤的早期血管化,有可能为解决组织工程皮肤血管化这一问题提供新的方法与思路。
     本研究采用脂质体介导hVEGF165基因转染人骨髓间充质干细胞,观察VEGF165基因mRNA转录、蛋白的表达情况及转染后对骨髓间充质干细胞的影响,并接种转染VEGF165基因的骨髓间充质干细胞于同种异体脱细胞真皮支架上构建VEGF基因修饰的活性皮肤替代物,移植修复动物全层皮肤缺损创面,观察其在皮肤结构和功能重建中的作用及其转归,比较缺损创面移植皮肤的血管化情况,为加速组织工程皮肤移植后血管化、提高其临床移植成功率探索新的途径。
     基于这种认识,我们开展了以下一系列研究:
     第一部分人骨髓间充质干细胞的分离、培养和鉴定
     目的:建立一种分离纯化和培养人骨髓间充质干细胞的方法,为利用骨髓间充质干细胞进行基因治疗提供实验基础。
     方法密度梯度离心和贴壁培养相结合,分离纯化人骨髓间充质干细胞。倒置相差显微镜下观察人骨髓间充质干细胞形态学变化;流式细胞仪检测人骨髓间充质干细胞的表面标记以及细胞周期;绘制人骨髓间充质干细胞的生长曲线;透射电镜观察人骨髓间充质干细胞的超微结构。
     结果:密度梯度离心结合贴壁法能分离培养出纯度较高的人骨髓间充质干细胞。流式细胞仪检测人骨髓间充质干细胞CD90、CD29、CD44、CD34、CD45阳性表达细胞比率分别为98.48%、98.74%、97.41%、0.36%、0.64%。人骨髓间充质干细胞的生长曲线呈S形。透射电镜示细胞核浆比大,可见部分细胞器和蛋白分泌物。
     结论采用密度梯度离心和贴壁培养相结合,可获得纯度较高和活性骨髓MSC,是简便有效实用可行的方法。
     第二部分血管内皮细胞生长因子165基因转染人骨髓间充质干细胞的实验研究
     目的:观察人骨髓间充质干细胞转染VEGF165基因后外源性基因及其蛋白的表达,探讨其促进组织工程皮肤移植后血管化的可能性。
     方法体外分离、培养人骨髓间充质干细胞,采用脂质体介导方法将pShuttle-CMV/VEGF165质粒转染人骨髓间充质干细胞,并设立空质粒对照组(转染pShuttle-CMV载体)、脂质体对照组(转脂质体)和正常对照组(无特殊处理),用RT-PCR、ELISA和Western Blot检测人骨髓间充质干细胞VEGF165 mRNA及其蛋白的表达情况,MTT法及流式细胞仪检测VEGF质粒转染对骨髓间充质干细胞活性的影响。
     结果:RT-PCR检测结果显示:质粒转染实验组、空质粒对照组、脂质体对照组和正常对照组VEGF165基因mRNA表达量分别为0.89±0.03、0.34±0.04、0.40±0.03、0.30±0.03。质粒转染实验组骨髓间充质干细胞mRNA转录较三个对照组均显著上调(P <0.01)。ELISA检测质粒转染实验组、空质粒对照组、脂质体对照组和正常对照组处理后24h细胞上清hVEGF的浓度分别为778.39±35.21 pg/ml、543.55±24.32pg/ml、561.45±28.08pg/ml、571.53±22.73pg/ml,质粒转染实验组与其他对照组相比具有统计学差异(P<0.01)。质粒转染后第7天表达达到最高,以后再逐渐降低。Western Blot检测结果显示转染组条带明显增强(P<0.01)。MTT法及凋亡检测结果显示VEGF质粒转染对骨髓间充质干细胞增殖无影响。
     结论实现了VEGF165基因对人骨髓间充质干细胞的成功转染,并有效表达目的基因及其蛋白,具有促进组织工程皮肤移植后血管化的应用前景。第三部分血管内皮细胞生长因子165修饰骨髓间充质干细胞复合脱细胞真皮基质构建活性组织工程皮肤
    
     目的:以VEGF修饰的骨髓间充质干细胞复合脱细胞真皮基质构建活性组织工程皮肤,为进一步临床应用奠定基础。
     方法:体外培养人骨髓间充质干细胞,以脂质体介导pShuttle-CMV/ VEGF165质粒转染骨髓间充质干细胞后,将其接种于制备好的脱细胞真皮支架上,构建组织工程皮肤,观察细胞生长情况及其与支架材料的相容性。
     结果:脱细胞真皮基质去细胞完全,组织相容性好,转基因骨髓间充质干细胞在脱细胞真皮基质中生长良好,可体外构建组织工程皮肤。
     结论:利用VEGF修饰骨髓间充质干细胞及制备的脱细胞真皮基质可以体外联合构建活性组织工程皮肤。
     第四部分含基因骨髓间充质干细胞的活性皮肤移植促进组织工程皮肤血管化的初步研究
     目的:探讨含基因骨髓间充质干细胞的活性皮肤移植促进组织工程皮肤血管化的基因治疗的可行性。
     方法:新西兰白兔26只,于兔背部两侧常规全层皮肤缺损创面4个,随机分为四组:A组(以含VEGF基因骨髓间充质干细胞复合脱细胞真皮构建的组织工程皮肤修复创面,hVEGF165-MSCs+ADM实验组),B组(以骨髓间充质干细胞复合脱细胞真皮构建的组织工程皮肤修复创面,MSCs+ADM对照组),C组(以不含细胞的脱细胞真皮修复创面,单纯ADM对照组)和D组(创面不做处理),观察局部组织微血管密度变化及创面愈合情况。
     结果:移植术后一周, hVEGF165-MSCs+ADM实验组创面的毛细血管密度较MSCs+ADM对照组、单纯ADM对照组明显增高(P < 0.01),两周时三组中hVEGF165-MSCs+ADM实验组的血管密度仍最高,但三组数据无统计学差别。术后2周、3周hVEGF165-MSCs+ADM实验组移植物成活率较MSCs+ADM对照组、单纯ADM对照组高(P < 0.01),hVEGF165-MSCs+ADM实验组创面收缩率较MSCs+ADM对照组、单纯ADM对照组高低(P < 0.01)。
     结论:含基因骨髓间充质干细胞的活性皮肤移植可有效促进组织工程皮肤的早期血管化及改善创面愈合。
Severe trauma, extensive burns, tumor removal, plastic surgery wound coverage has been plagued clinicians problems. At present, conventional treatment methods have autologous, allogeneic or xenogeneic skin transplantation,Source of autologous skin is extremely limited, and there are defects in the formation of a new wound; Allogeneic or xenogeneic skin graft resolve the problem of inadequate sources, but because it is difficult to overcome immune rejection, could only be used for temporary closure of wound coverings. Thus to carry out search for wound healing of skin substitutes research, have important clinical significance. In recent years, tissue engineered skin substitutes provide an alternative to skin autografts for treatment of nonhealing wounds that often develop in patients with extensive burns and with vascular insufficiency such as venous stasis or diabetes or in the elderly. In present tissue engineered skin has been a hot spot in repair of wounds. While skin substitutes such as Apligraf promote healing, they usually do not stably engraft and significant numbers of patients receiving bioengineered skin substitutes require additional interventions as a result of graft failure. Various obstacles have delayed the widespread use of composite skin substitutes. Insufficient vascularization has been proposed as the most likely reason for their unreliable survival. So how to stimulating vascularization of tissue - engineered skins grafting becomes a critical question and a urgent problem need to address either.
     Study shows that transgenic technology can import angiogenesis regulatory factor gene into target cells to express certain regulatory factor protein and contribute to angiogenesis.
     Bone mesenchymal stem cells ( MSCs ) are isolated from bone marrow mononuclear cells and can be expanded ex vivo. Under appropriate culture conditions, human bone marrow mesenchymal stem cells have the capacity to differentiate into cells such as bone, cartilage, adipocytes, myocytes, and even cardiomyocytes. Bone marrow mesenchymal stem cells also have immunomodulatory and anti-inflammatory effects, but only evoke little immune reactivity. Moreover, bone marrow mesenchymal stem cells are amenable to genetic manipulation, thus, these cells are currently being tested for their potential use in cell and gene therapy . Over the past two decades as in-depth study of biological materials and tissue engineering technology, constant improvement of the skin tissue engineering research and applications for clinical repair of various skin defects providing a new way. Vascular endothelial growth factor (VEGF) is the strongest known angiogenesis-promoting factor, In recent years the application of VEGF165 gene transfection of bone marrow mesenchymal stem cells for myocardial ischemia or limb ischemic disease of experimental and clinical studies have achieved initial success. So far, the research about construction tissue - engineered skins by transfection hVEGF165 gene into human bone marrow mesenchymal stem cells has not been reported. Therefore, the use of gene transfer technology to transfected VEGF gene into into bone marrow mesenchymal stem cells and to construct tissue - engineered skin with VEGF- modified human bone marrow mesenchymal stem cells, and covered the skin wound by constructed tissue - engineered skin, so the bone marrow mesenchymal stem cells could endocrine VEGF protein in the local in short-term, thereby contributing to tissue-engineered skin early neovascularization , it is possible to provide a novel gene therapentic strategy for neovascularization which can possibly apply for clinic usage.
     This study is intended to transfect hVEGF165 gene into human bone marrow mesenchymal stem cells with liposome, Observe VEGF expression in vitro and detect the effect of transfection on human bone marrow mesenchymal stem cells and to construct tissue - engineered skin with VEGF- modified hMSCs as well as acellular dermal and then graft tissue - engineered skin to full thickness dermal wounds of animals, Observed its role in the reconstruction of skin structure and function and its prognosis, compared vascularization of wound defect, to speed up tissue-engineered blood vessels after transplantation of skin, to explore new avenues to accelerate neovascularization of tissue - engineered skin and improve its success rate of clinical transplantation.
     Therefore, a series of experiment studies were performed as follows:
     Part I Isolation, cultivation and biological identification of human bone marrow mesenchymal stem cells
     OBJECTIVE:The aim of this study is to research on the method to isolate and purify human bone marrow mesenchymal stem cells and provides basis for the amendment of tissue defects by tissue engineering.
     METHODS:Human bone marrow mesenchymal stem cells were isolated by combining density gradient centrifugation with plastic adherence . Morphological observations were performed with phase contrast microscope; growth curves of the cells were drawn by cytometry method; cell phenotype and generation cycle were detected by flow cytometry; cell ultrastructures were determined by transmission electron microscope.
     RESULTS:Higher purity of hBMSCs could be achieved by density gradient centrifugation. The positive expression rates of cell phenotypes were various as followings respectively: CD90,98.48%; CD29,98.74%;CD44,97.41%; CD34,0.36%; CD45,0.64%. The growth curve of human bone marrow mesenchymal stem cells was“S”shaped. The ratio of cells in S+G2+M stage of the5th passages was 15.26%. The ratio of nucleus to cytoplasm was large and some organelle and protein secretion could be seen in cytoplasm.
     CONCLUSION:Higher purity of hBMSCs can be isolated and cultured by combining density gradient centrifugation with plastic adherence.
     Part II Experimental Study of the transfection of Vascular endothelial growth factor 165 gene into human bone mesenchymal stem cells in vitro
     OBJECTIVE:To observe the expression of exogenous gene and protein after human bone marrow mesenchymal stem cells transfected with human vascular endothelial growth factor 165 (VEGF165) gene, and to investigate the feasible of promotion tissue-engineered skin early revascularization.
     METHODS:Bone marrow mesenchymal stem cells were separated and purified by combining density gradient centrifugation with adhering method. The vector pShuttle-CMV/VEGF165 was transfected into bone marrow mesenchymal stem cells by liposome mediated and the bone marrow mesenchymal stem cells were divided into four groups : plasmid group,the empty plasmid group , liposome group and the control group, The cells in the plasmid group were transfected with pShuttle-CMV/VEGF165 ,while cells in the empty plasmid group were transfected with pShuttle-CMV and cells in the liposome group were transfected with Lipofectamine 2000 and cells in the control group received no special treatment. Human VEGF expression in vitro was assessed by RT-PCR、ELISA and Western Blot. MTT method was used to detect the effect of transfection on bone marrow mesenchymal stem cells . Apoptosis was detected by flow cytometry.
     RESULTS:The expressions of VEGF165 mRNA in each group by RT-PCR : the plasmid group、empty lasmid group、liposome group and the control group the VEGF165mRNA expression were 0.89±0.03、0. 34±0.04、0.40±0.03、0.30±0.03, Compared with other three groups, the VEGF165mRNA transcripts of bone mesenchymal stem cells in the plasmid group were significantly raised (P <0.01).The expression of VEGF165 protein in each group by ELLISA: The content of VEGF in the plasmid group、empty lasmid group、liposome group and the control were 778.39±35.21 pg/ml、543.55±24.32pg/ml、561.45±28.08pg/ml、571.53±22.73pg/ml, Compared with other three groups, the expression of VEGF165 protein in the plasmid group were significantly raised (P <0.01), and in the plasmid group , VEGF expression level gradually increased to the highest on day 7, gradually decreased later. Western Blot showed that the intensity of the plasmid group band increased(P <0.01). It wasn' t found that VEGF transfection had a significantly inhibitory effect on MSCs by MTT method and flow cytometry .
     CONCLUSION:Bone marrow mesenchymal stem cells were transfected with hVEGF165 gene successfully and deffectively express target gene and protein , provide a novel gene therapentic strategy for neovascularization which can possibly apply for clinic usage.
     Part III Construction of tissue - engineered skin with vascular endothelial growth factor - modified bone marrow mesenchymal stem cells and acellular dermal matrix
     OBJECTIVE: To construct tissue - engineered skin with VEGF- modified hBMSCs as well as acellular dermal matrix.
     METHODS:Bone marrow mesenchymal stem cells were separated and cultured in vitro.The vector pShuttle-CMV/VEGF165 was transfected into bone marrow mesenchymal stem cells by liposome mediated at the time of 80%- 90% confluence and the VEGF- modified bone marrow mesenchymal stem cells were seeded onto the surface of acellular dermal matrix. It was cultured absolutely inside liquid medium for about 2d. In this way, tissue - engineered skin was expected to be constructed in vitro. Observation the cells seeded to scaffold material and its compatibility.
     RESULTS:With the VEGF- modified cells cultured in the acellular dermal matrix, tissue - engineered skin could be construted in virto.
     CONCLUSION: Constuction of tissue - engineered skin with VEGF- modified bone marrow mesenchymal stem cells as well as acellular dermal matrix in vitro is feasible.
     Part IV Experimental study of the transplanted human bone mesenchymal stem cells transfected with gene
     accelerate the neovascularization of tissue - engineered skin OBJECTIVE:To investigate the feasibility of transplanting VEGF- modified tissue - engineered skin for accelerating neovascularization of tissue - engineered skin .
     METHODS:Twenty-six New Zealand white rabbits with four full thickness skin defects on the two sides of the back were separately covered with hVEGF165- MSCs+ADM, MSCs+ADM , ADM or none. Examine wound healing of local tissue and count it’s MVD by CD34 immunocytochemistry staining.
     RESULTS:1 week after operation the capillary density of wound tissue of VEGF gene transfection treatment group was significantly higher than those of MSCs+ADM treatment group and ADM treatment group ( P < 0.01). 2 weeks after operation the capillary density of wound tissue of VEGF gene transfection treatment group was highest in those three groups, However, among the three groups no significant difference. At the second week and third week after operation, There was significant difference in the survival rate and contraction rate between the three groups, Compared with the two groups, the graft survival rate of VEGF gene transfection treatment group was highest and the contraction rate was lowest ( P < 0.01).
     CONCLUSION:Transplantation tissue-engineered skin constructed by human bone mesenchymal stem cells transfected with gene VEGF and acellular dermal matrix can promote tissue-engineered skin early revascularization and wound healing effectively.
引文
1 . Heimbach D, Luterman A,Burket JF, et al. Artificial dermis for major burns - A multi - center randomized clinical trial. Ann Surg,1988;208 (3) : 313 - 320.
    2. Supp DM, Supp AP, Bell SM, Boyce ST. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol, 2000;114:5–13.
    3. Black A F, Berthod F, L’Heureux N, et al. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J, 1998; 12: 1331–1340
    4. Drosou A, Kirsner RS, Kato T, et al. Use of a bioengineered skin equivalent for the management of difficult skin defects after pediatric multivisceral transplantation. J Am Acad Dermatol, 2005;52: 854–858
    5. Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer. Expert Rev Med Devices, 2004; 1:21–31
    6. Greenberg S, Margulis A, Garlick JA. In vivo transplantation of engineered human skin. Methods Mo Biol, 2005; 289: 425–430
    7. Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant, 2005;5: 1002–1010
    8.谭谦,陈曦,梁志为,等.PDGF-B基因表达在组织工程化皮肤移植后血管重建中的作用.中华整形外科杂志.2004;20:448-451
    9. Supp DM,Boyce ST . Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J Burn Care Rehabil, 2002;23(1):10-20
    10. Lee JA,Conejero JA,Mason JM,et al. Lentiviral transfection with the PDGF-B gene improves diabetic wound healing. Plast Reconstr Surg, 2005;116(2):532-538.
    11. Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J,2002;16:797–804.
    12.孙源,董健.诱导兔骨髓间充质干细胞成为内皮细胞.中国矫形外科杂志, 2006;14(1):47-51
    13. Supp DM, Boyce ST. Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J Burn Care Rehabil, 2002;23:10–20.
    14. Supp DM,Karpinski AC,Boyce ST. Vascular endothelial growth factor overexpression ncreases vascularization by murine but not human endothelial cells in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil , 2004;25(4):337-45
    15. Dickens S,Vermeulen P,Hendrickx B,et al. Regulable vascular endothelial growth factor165 overexpression by ex vivo expanded keratinocyte cultures promotes matrix formation, angiogenesis, and healing in porcine full-thickness wounds. Tissue Eng Part A, 2008;14(1):19-27.
    16. Greco SJ,Rameshwar P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci USA, 2007 Sep 25;104(39):15484-9.
    17 . Oswald J, Boxberger S , Jorgensen B , et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 2004; 22 (3):377-384
    18. Park J , Ries J , Gelse K, et al. Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes . Gene Ther , 2003;10(13):1089-1098
    19. Tsuda H, Wada T, Yamashita T, et al. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med, 2005;7(10):1322-1334
    20. Ferrara N.Role of vascular endothelial growth factor in regulation of physiological angiogenesis.Am J Physiol Cell Physiol, 2001,280(6):1358-1366
    21. Neufield G, Cohen T, Gengrinovith S, et al. Vascular endothelial growth factor(VEGF) and its receptors.FASEB J,1999;13:9-22
    22. Lazarus HM, Koc ON, Devine SM,et al. Cotransplantation of HLA- identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant, 2005; 11:389–398
    23. Dong J,Dai WD,Fang TL,et al. Osteoblastic differentiation and in vivo osteogenic activityof marrow-derived mesenchymal stem cells stimulated by Tacrolimus: experiment with rats .Zhonghua Yi Xue Za Zhi, 2007 ; 87(3):190-194
    24. Yang LY,Huang TH,Ma L. Bone marrow stromal cells express neural phenotypes in vitro and migrate in brain after transplantation in vivo.Biomed Environ Sci, 2006;19(5):329-335
    25. Santa Maria L, Rojas CV, Minguell JJ. Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. Exp Cell Res, 2004; 300(2): 418-426
    26. Katayama R, Wakitani S, Tsumaki N, et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow .Rheumatology, 2004; 43(8): 980-985
    27.李海红,付小兵,王君,等.间充质干细胞分化为表皮附属细胞的初步实验研究.中国修复重建外科杂志, 2006; 20(6):675-678
    28. Pagnotto MR,Wang Z,Karpie JC,et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther, 2007;4(10):804-813
    29. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: Isolation, in vitro expansion and characterization. Handb Exp Pharmacol, 2006;174:249–282
    30.Maria OM, Khosravi R, Mezey E, et al. Cells from bone marrow that evolve into oral tissues and their clinical applications. Oral Dis , 2007;13(1):11-16
    31. Benayahu D,Akavia UD,Shur I,et al. Differentiation of bone marrow stroma-derived mesenchymal cells.Curr Med Chem.2007;14(2):173-179
    32. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev, 2006;5:91–116
    33.Jiang Y,Vaessen B,Lenvik T,et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle and brain. Exp Hematol, 2002;30(8):896-90
    34. Friedenstein AJ, Petrakova KV. Osteogenesis in transplants of bone marrow cells. The Journal of Embryological Experimental Morphology, 1966 ;16: 381–390
    35. Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest,2000;105:1663–1668
    36. Colter DC, Sekiya I, Prockop DJ, et al. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromalcells. Proc Natl Acad Sci USA, 2001; 98:7841-7845.
    37. Ghilzon R, McCulloch CA and Zohar R. Stromal mesenchymal progenitor cells. Leuk Lymphoma, 1999; 32:211-221
    38. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999; 284:143-147
    39. He Q, Wan C, Li G. Concise Review: Multipotent Mesenchymal Stromal Cells in Blood .Stem Cells, 2007 ;25(1):69-77
    40. D’Ippolito G, Diabira S, Howard GA, et al. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 2004;117:2971–2981
    41.Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood , 2001;98:2615–2625
    42.Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow.Nature, 2002;418:41-49
    43. Kassem M.Mesenchymal stem cells:biological characteristics and potential clinical applications. Cloning stem cells, 2004;6:369-374
    44. Lisignoli G, Remiddi G, Cattini L,et al. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation proceduce. Connect Tissue Res, 2001;42(1):49-58
    45. Kopen GC,Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection neonatal mouse brain.Cell Biology, 1999;96(19):10711-10716
    46. Majumdar MK, Banks V, Peluso DP, et al. Isolation, characterization and chondrogenic potential of human bone marrow-derived multipotential stromal cells.J Cell Physiol, 2000;185(1):98-106
    47.Malekzadeh R, Hollinger JO, Buck D, et al. Isolation for human osteoblast-like cells and in vitro amplification for tissue engineering. J Periodontol ,1998;69(11):1256-1262
    48. Nadri S, Soleimani M. Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev Biol Anim , 2007;43(8-9):276-282
    49. Zohar R,Sodek J,McCulloch CA.Characterization of stromal progenitor cells enriched by flow cytometry.Blood ,1997;90(91):3471—3481
    50. Shih CH, Nien J C, Shie LH, et al. Isolation and characterization of size - sieved stem cellsfrom human bone marrow. Stem cells, 2002;20 (1):249-258
    51.Czyz J, Wiese C, Rolletschek A, et al. Potential of embryonic and adult stem cells in vitro. Biol Chem, 2003;384(10-11):1391-1409
    52. Ferrari G, Cusella-DeAngelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998; 279:1528-1530
    53. Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans. Hepatology, 2000; 32:11-16
    54. Reger RL,Tucker AH,Wolfe MR.Differentiation and characterization of human MSCs. Methods Mol Biol, 2008;449:93-107
    55.Romanov YA, Darevskaya AN, Merzlikina NV, et al. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med, 2005; 140(1): 138-143
    56.Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow.Blood, 2007;109(2):1743-1751
    57.Bühring HJ, Battula VL ,Treml S,et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci, 2007;1106:262-271
    58. Pham C,Greenwood J,Cleland H,et al. Bioengineered skin substitutes for the management of burns: a systematic review. Burns, 2007;33(8):946-957
    59. Boyce ST. Cultured skin substitutes:a review .Tissue Eng,1996; 2:255-266
    60. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials .Clin Dermatol, 2005;23(4):403-412
    61.Zheng Y,Yi C,Xia W,et al.Mesenchymal stem cells transduced by vascular endothelial growth factor gene for ischemic random skin flaps. Plast Reconstr Surg. 2008 ; 121(1):59-69
    62. Yang J , Zhou W, Zheng W, et al . Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology , 2007 ;107 (1) : 17-29
    63.Alviano F, Fossati V, Marchionni C,et al. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol, 2007;21:7
    64. Toyama K,Honmou O,Harada K,et al. Therapeutic benefits of angiogenetic gene-modifiedhuman mesenchymal stem cells after cerebral ischemia. Exp Neurol, 2009;216(1):47-55
    65. Chou SH,Kuo TK.Liu M,et al. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.J Orthop Res, 2006;24(3):301-12
    66. Senger DR,Perruzzi CA,Feder J,et al. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines.Cancer Res, 1986;46(11):5629-5632
    67. Ferrara N,Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 1989;161(2):851-858
    68. Ferrara. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol, 2001; 280(6): 1358-1366
    69. Ennett AB, Kaigler D, Mooney DJ. Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A, 2006;79(1):176-184
    70. Tischer E,Mitchell R,Hartman T,et al.The human gene for vascu1ar endothelia1 growth factor: multiple protein forms are encoded through alternative exon splicingl.J Biol Chem, 1991;266:l1-47
    71.Neufield G, Cohen T, Gengrinovith S, et al.Vascular endothelial growth factor(VEGF) and its receptors .FASEB J, 1999;13:9-22
    72. Stalmans I. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome . Verh K Acad Geneeskd Belg , 2005; 67 (4) : 229-276
    73. Yang JF,Zhou WW,Tang T,et al. Effects of myocardial transplantation of mesenchymal stem cells transfected with vascular endothelial factor gene on improvement of heart function and angiogenesis after myocardial infarction: experiment with rats. Zhonghua Yi Xue Za Zhi, 2006;86(15) :1027-1034
    74.Baumgartner I,Pieczek A,Manor O,et al. Constitutive expression of phVEGF165 after intramsculer gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation ,1998;97:1114-1123
    75. Birk DM,Barbato J,Mureebe L,et al. Current insights on the biology and clinical aspects of VEGF regulation. Vasc Endovascular Surg, 2008;12-2009 1;42 (6):517-530
    76. Gao F,He T,Wang H,et al. A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol, 2007;9;23(11):891-898
    77. Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.Proc Natl Acad Sci USA, 2008 ;12;105(32):11099-11104.
    78.Jiang J, Fan CY, Zeng BF. Osteogenic differentiation effects on rat bone marrow-derived mesenchymal stromal cells by lentivirus-mediated co-transfection of human BMP2 gene and VEGF165 gene. Biotechnol Lett, 2008; 30:197–203
    79. Oakes DA, Lieberman JR. Osteoinductive application of regional gene therapy . Clin Orthop Relat Res, 2000; 379s:s101-112
    80. Molinier-Frenkel V,Gahery-Seqard H,Mehtali M,et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol, 2000;74(16):7678-7682
    81. Evans CH, Robbins PD. Possible orthopaedic applications of gene therapy . J Bone Joint Surg Am , 1995;77(7):1103-1114
    82. Huang Z,Li W,Mackay JA,et al. Thiocholesterol-based lipids for ordered assembly of bioresponsive gene carriers. Mol Ther, 2005;11(3):409-417
    83. Mancheno-Corvo P,Martin-Duque P. Viral gene therapy. Clin Transl Oncol, 2006;8(12):858-867
    84. Andrew DM.Cationic liposomes for gene therapy. Angew Chem Int Ed, 1998;7:1768-1785
    85. Almofti MR, Harashima H, Shinohara Y, et al. Cationic liposome-mediated gene delivery:biophysical study and mechanism of internalization. Arch Biochem Biophys, 2003;410(2);246-253
    86. Hawley-Nelson P, Ciccarone V. Transfection of cultured eukaryotic cells using cationic lipid reagents.Curr Protoc Cell Biol , 2003 Aug;Chapter 20:Unit 20.6.
    87. Nakanishi M,Noguchi A.Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Adv Drug Deliv Rev,2001;52(3);1:97-120
    88. Langer R,Vacanti JP. Tissue engineering. Science,1993; 260:920一926
    89.冯祥生,谭家驹,阮树斌,等.组织工程化皮肤在烧伤外科的应用与进展.中国临床康复,2002;2(24):3726-3727
    90. Mansbridge J. Skin tissue engineering. J Biomater Sci Polym Ed , 2008;19(8):955-968
    91. Tonello C , Vindigni V , Zavan B , et al . In vitro reconstruction of an endothelialized skinsubstitute provided with a microcapillary network using biopolymer scaffolds. FASEB J, 2005; 19 : 1546-1548
    92. Mason C. Tissue engineering skin: a paradigm shift in wound care. Med Device Technol ,2005;16(10):32-33
    93. HoMH,Kuo PY,Hsieh HJ,et al. Preparation of Porous scaffolds by using freeze一extraction and freeze一gelation methods. Biomaterials , 2004;25:129一138
    94.陈斌,郭永章.组织工程皮肤支架材料的研究与应用.中国临床康复,2005;9:105一107
    95.Walter RG , Matsuda T , Reyes HM , et al. Characterization of acellular dermal matrices(ADMs)prepared by two different methods. Burns ,1998;24(2):104一113
    96. Takami Y,Matsuda T ,Yoshitake M,et al. Dispase/ detergent treated dermal matrix as a dermal substitute . Burns ,1996;22 (3) : 182-190
    97 .Chen RN , Ho HO , Tsai YT ,et al. Process development of an acellular dermal matrix (ADM) for biomedical applications . Biomaterials , 2004;25 (13) :2679-2686
    98. Mizuno H,Takeda A,Uchinuma E. Creation of an acellular dermal matrix from frozen skin.Anesthetic Plast Surg ,1999;23(5):316-322
    99.Sheridan R ,Choucair R ,Donelan M,et al.Acellular allodermis in burns surgery:1 year results of a pilot trial. J Burn Care Rehabil ,1998;19(6):528-530
    100. Badylak S, Liang A, Record R, et al. Endothelial cell adherence to small intestinal submucosa:an acellular bioscaffold.Biomaterials ,1999;20:2257-2263
    101. Wu J, Barisoni D, Armato U. An investigation into the mechanism rejection of allo-skin grafts. Burns ,1995;21(1):11一16
    102.Wainwright DJ.Use of an acellular allograft dermal matrix(AlloDerm)in the management of full-thickness burns. Burns ,1995;21(4):243一248
    103.Eppley BL.Experimental assessment of the revascularization of acellular human dermis for soft-tissue augmentation. Plast Reconstr Surg , 2001;107: 757-762
    104. Hansbrough JF,Dore C,Hansbrough WB. Clinical trials of a living dermal tissue replacement placed beneath meshed,split一thickness skin grafts on excised burn wounds. J Burn Care Rehabil ,1992;13(5):519一529
    105. Balasubramani M,Kumar TR,Babu M. Skin substitutes: a review. Burns, 2001;27(5):534一544
    106. Wainwright DJ. Use of an acellular allograft dermal matrix (Alloderm) in the management offull thickness burns. Burns ,1995;21(4):243-248
    107. Ehrenreich M,Ruszczak Z. Update on dermal substitutes. Acta Dermatovenerol Croat , 2006;14(3):172-187
    108.郑锦标,梁杰,张培华.脱细胞真皮基质的制备、作用机理、免疫原性及其在整形外科中的应用现状.广东医学院学报,2008;26(2):208-210
    109.夏建春,米立国,高英,等. NaOH消蚀法制备胎儿脱细胞真皮基质的研究.中国临床解剖学杂志,2005;23 (4) :409-413;
    110.Lida T, Takami Y,Yamaguchi R, et al. Development of a tissue-engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix :a preliminary report of clinical application to burn wounds. Scand J Plast Reconstr Surg Hand Surg , 2005;39(3):138-46
    111.Powell HM , Boyce ST. EDC cross-linking improves skin substitutestrength and stability. Biomaterials , 2006;27 (34) :5821-5827
    112.梁黎明,柴家科,冯瑞,等.激光打孔制备微孔猪脱细胞真皮基质.中国激光医学杂志,2007 ;16 (2):88-91
    113.向军,刘英开,陆树良,等.兔无细胞真皮基质的研制.上海第二医科大学学报,2003;23(3):223-226
    114.Livesey SA,Herndern DN,Hollyoak MA,et al. Transplanted acellular allograft dermal matrix.Potential as a template for reconstruction of viable dermis. Transplantation, 1995;60(1):1一9
    115.左金华,徐慧英,杨佑成,等.曲拉通X-100对制备脱细胞真皮基质影响的实验研究.山东医药,2005,45(11),11-12
    116. Byrne AM, Bouchier-Hayes DJ , Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF) . J Cell Mol Med , 2005;9 :777-794
    117.冯祥生,潘银根,谭家驹,等.异种(猪)脱细胞真皮与自体表皮复合移植研究.中华整形外科杂志. 2000 ;16(1) :40 - 42
    118 . Heimbach D, Luterman A,Burket JF, et al. Artificial dermis for major burns - A multi - center randomized clinical trial. Ann Surg ,1988; 208 (3) : 313 - 320
    119 . Young DM, Greulich KM,Weier HG.Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J Burn Care Rehabil ,1996,17;305-310
    120. Drake CJ,Hungerford JE,Little CD. Morphogenesis of the first lood vessels. Ann NY Acad Sct , 1998;857:155~179
    121. Liekens S,De Clercq E,Neyts J.Angiogenesis: regulators and clinical applications. Biochcm Pharmacol , 2001;6l(3):253—270
    122. Vogel V,Baneyx G. The tissue engineeting puzzle: a molecular perspective. Annu Rev Biomed Eng , 2003;5:441-463
    123. Distler JH,Hirth A,Kurowska-Stolarska M,et al. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med, 2003;47(3):149-161
    124. Tepper OM, Galiano RD, Kalka C, et al. Endothelial progenitor cells: the promise of vascular stem cells for plastic surgery. Plast Reconstr Surg. 2003; 111: 846-854
    125.易成刚,郭树忠,张琳西.血管内皮祖细胞的研究进展及在整形外科应用前景.中华整形外科杂志, 2004; 20: 305-307
    126.Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant , 2005;5(5):1002-1010
    127. Liu Y,Jin Y,Wang X. Construction of a tissue engineering skin containing capillary-like network. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi , 2004;18(6):502-504
    128.Black AF,Hudon V,Damour,et al. A novel approach for studying angiogenesis: a human skin equivalent with a capillary-like network. Cell Biol Toxicol, 1999;15(2):81-90
    129.Hudon V,Berthod F,Black AF,et al. A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol,2003;148(6):1094-104
    130.孙源,董健.诱导兔骨髓间充质干细胞成为内皮细胞.中国矫形外科杂志, 2006;14(1):47-51
    131. Amant C,Berthou L,Walsh K. Angiogenesis and gene therapy in man: dream or reality? Drugs, 1999;59:33-36
    132. Jones WS, Annex BH. Growth factors for therapeutic angiogenesis in peripheral arterial disease. Curr Opin Cardiol, 2007;9:22(5):458-463
    133. van Weel V, van Tongeren RB, van Hinsbergh VW, et al. Vascular growth in ischemic limbs: a review of mechanisms and possible therapeutic stimulation. Ann Vasc Surg ,2008;7-8: 22(4):582-597
    134. Katsu M, Koyama H, Maekawa H,et al. Ex vivo gene delivery of ephrin-B2 induces development of functional collateral vessels in a rabbit model of hind limb ischemia . J Vasc Surg , 2009;49(1):192-8
    135. Holmes DI, Zachary I.The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6(2):209
    136.Ferrara N,Gerber HP,LeCouter J. The biology of VEGF and its receptors. Nat Med , 2003;9(6):669-76
    137. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell , 2000;100:157–168
    138.Jackson L,Jones DR,Scotting P,et al.Adult mesenchymal stem cells:Differentiation potential and therapeutic applications.J Postgrad Med , 2007;53(2):121-127
    139. Lei Z, Yongda L, Jun M, et al. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int , 2007;31(9):916-923
    140. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002;105:93–98
    141. Picinich SC, Mishra PJ, Mishra PJ, et al. The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert Opin Biol Ther, 2007;7(7):965-973
    142. Bedada FB,Gunther S,Kubin T,et al.Differentiation versus plasticity:fixing the fate of undetermined adult stem cells. Cell Cycle , 2006;5(3):223-226
    143. Keihoff G, Goihl A, Langnase K, et al. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol ,2006;85(1):11-24
    144. Alvarez-Dolado M , Pardal R., Garcia-Verdugo JM,et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 2003;425: 968–973
    145. Gnecchi M, Melo LG. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol, 2009;482:281-294
    146. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008;8(9):726-36
    147. Kumar S, Chanda D, Ponnazhaqan S. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther, 2008;15 (10):711-715
    148. Reiser J, Zhang XY, Hemenway CS, et al. Potential of mesenchymal stem cells in genetherapy approaches for inherited and acquired diseases .Expert Opin Biol Ther , 2005;5(12):1571-1584
    149. Le Blanc K, Tammik C, Rosendahl K et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol, 2003;31:890–896
    150. Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood , 2002;99:3838–3843
    151. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med ,2000;6:1282–1286
    152. Mackenzie TC, Flake AW. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy,2001;3:403– 405
    153. Saito T , Kuang JQ ,Bittira B , et al . Xenotransplant cardiac chimera :immune tolerance of adult stem cells . Ann Thorac Surg, 2002;74(1):19-24
    154. Badiavas, Evangelos V, Falanga, et al. Treatment of chronic wounds with bone marrow–derived cells. Archives of Dermatology, 2003;139(4): 510-516
    155.邓为民,李长虹,廖联明,等.成体骨髓源多能间充质干细胞体内分化为皮肤干细胞和皮肤组织.细胞生物学杂志, 2003;25(3):98-104
    156.刘德伍,李国辉,胡翔,等.骨髓间充质干细胞复合胶原构建组织工程皮肤修复皮肤缺损,中国临床康复.2005;9(2):90-91
    157. Falanga V,Iwamoto S,Chartier M,et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng, 2007;13(6):1299-1312
    158. Kirmaz C, Ozbilgin K, Yuksel H, et al. Increased expression of angiogenic markers in patients with seasonal allergic rhinitis. Eur Cytokine Netw, 2004;15(4):317-322
    159.Colesl S,Diamond P,Lambrusco,et al. Anovel mechanism of repression of the vascular endothelial growth factor promoter,by single strand DNA binding cold shock domain(Y-box) proteins in normoxic fibroblasts.Nucleic Acids Research,2002;30(22):4845- 4854
    160.缪玉兰,汪虹.血管内皮生长因子的作用及其在烧伤创面修复中的意义.中华烧伤杂志,2006;22(6):478-480
    161. Nelson CM, Tien J. Microstructured extracellular matrices in tissue engineering and development.Curr Opin Biotechnol,2006;17(5):518-523
    1. Friedenstein AJ, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966 ,16(3):381–390.
    2. Castro-Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells(CFU-F) and their progeny. Blood, 1980,56:289-301.
    3.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999 , 284: 143–147.
    4. Conget PA , Minguell JJ . Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells . J Cell Physiol , 1999 ,181 (1) :67-73.
    5. Tamir A , Petrocell IT , Stetl ER K, et al. Stem cell factor inhibits erythroid differentiation by modulating the activitity of G1 - cyclin - dependent kinase complexes : A role for p27 in erythoid differentiation coupled G1 arrest . Cell Growth Differ , 2000 ,11 (5): 269.
    6 .Jiang Y, Jahagirdar BN, Reinhardt RL,et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002 ,418: 41–49.
    7. Sottile V, Halleux C, Bassilana F, et al. Stem cell characteristics of human trabecular bone-derived cells. Bone, 2002, 30:699–704.
    8. Baksh D, Song L , Tuanr S. A dult mesenchymal stem cells: characterizat- ion, differentiation, and application in cell and gene therapy. J Cell Mol Med, 2004,8(3): 301-316.
    9. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: Isolation, in vitro expansion and characterization. Handb Exp Pharmacol,2006, 174:249–282.
    10. Jori FP, Napolitano MA, Melone MA, et al. Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J CellBiochem ,2005,94:645–655.
    11.Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science,1998,279:1528–1530.
    12.Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003,17: 160–170.
    13 . Le Blanc K, Pittenger M. Mesenchymal stem cells: Progress toward promise.Cytotherapy ,2005,7:36–45.
    14. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003, 75: 389 - 397.
    15. Deans RJ, Moseley AB. Mesenchymal stem cells: Biology and potential clinical uses. Exp Hem atol, 2000, 28: 875 - 884.
    16. Saito T , Kuang JQ ,Bittira B , et al . Xenotransplant cardiac chimera : immune tolerance of adult stem cells . Ann Thorac Surg ,2002,74(1):19-24.
    17.Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine,2000,6:1282–1286.
    18. Chan JL, Tang KC, Patel AP, et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-{gamma}. Blood, 2006, 107:4817–4824.
    19. Stagg J, Pommey S, Eliopoulos N, et al. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood ,2006,107:2570–2577.
    20. Conget PA ,Minguell JJ . Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells . J Cell Physiol ,1999,181 (1) :67-73.
    21. Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2006: [Epub ahead of print].
    22. Bühring HJ, Battula VL, Treml S, et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci, 2007, 1106:262-271.
    23.Lisignoli G,Remiddi G,Cattinill,et al. An elevated numder of differentiated ostelblast clonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure .Connect Tissue Res,2001,42:49-57.
    24. Shih CH, Nien J C, Shie LH, et al. Isolation and characterization of size - sieved stem cells from human bone marrow. Stem cells,2002,20 (1):249-258.
    25. Colter DC ,Class R ,Digirolamo CM , et al . Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow . Proc Natl Acad Sci USA ,2000 ,97 (7) :3213-3218.
    26. Qiu Q ,Ducheyne P ,Gao H ,et al . Formation and differentition ofthree-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel . Tissue Eng ,1998,4 (1):19-34.
    27. Glowack J ,Mizuno S , Greenberger JS. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture . Cell Transplant , 1998,7(3) :319-326.
    28. Angele P,kujat R,Nerlich M,et al. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng,1999,5(6):545-554.
    29. Majumdar MK,Banks V,Peluso DP,et al. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol,2000,185(1):98-106.
    30. Wakitani S, Goto T, Pineda SJ, ey al. Mesenchymal cell-based repair of large,full-thickness defects of articular cartilage. J Bone Joint Surg Am ,1994, 76:579-592.
    31.Gelse K, von der Mark K, Aigner T, et al. Articular cartilage repair by gene therapy using growth factor producing mesenchymal cells. Arthritis Rheum, 2003,48:430-441.
    32. Pagnotto MR,Wang Z,Karpie JC,et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther, 2007,14(10):804-813.
    33. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrowderived mesenchymal cells in children with osteogenesis imperfecta. Nat Med ,1999, 5:309-313.
    34.Jaiswal N, Haynesworth SE, Caplan AI, et al . Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem ,1997,64(2):295-312.
    35. Chambrtlain JR,Schwarze U,Wang PR, et al. Gene fargeting in stem cells from individuals with osteogenesis imperfecta. Science, 2004,303:1198-1201.
    36. Lou J, Xu F, Merkel K,et al. Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo.J Orthop Res ,1999, 17:43-50.
    37. Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration. Nat Biotechnol , 2000,18:959-963.
    38. Chang SC,Chuan H,Chen YR,et al. Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res, 2004,119(1):85-91.
    39. Kohyama J,Abe H, Shimazaki T, et al. Brain from bone: efficient“meta- differentiation”of marrow stroma-derive mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation, 2001, 68:235-243.
    40. Sanchez RJ, Song S, Cardozo PF, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000, 164: 247-256.
    41.Mezey E, Chandross KJ, Harta G, et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bonemarrow. Science, 2000, 290:1779-1782.
    42. Chen J,Li Y,WangL, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32: 1005-1011.
    43. Shen LH,Li Y,Chen J,et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience, 2006,137(2):393-399.
    44. Li Y, Chen J,Wang L. Treatment of stroke in rat with intracarotid ad-ministration of marrow stromal cells. Neurology, 2001, 56:1666-1672.
    45. Makino S ,Fukuda K,Miyoshi S ,et al . Cardiomyocytes can be generated from marrow stromal cells in vitro . J Clin Invest ,1999 ,103 (5):697-705.
    46.Orlic D, Kajstura J, Chimenti S, et al. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N YAcad Sci, 2001, 938:221-230.
    47. Matsumoto R, Omura T, Yoshiyama M, et al .Vascular endothelial growth factor–expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction . Arterioscler Thromb Vasc Biol.2005,25: 1168-1173 .
    48. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction( TOPCARE-AMI) . Circulation, 2002, 106: 3009-3017.
    49. Chen SL, Fang WW,Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004,94:92–95.
    50. Yao K,Huang RC,Ge L,et al. Observation on the safety: clinical trail on intracoronary autologous bone marrow mononuclear cells transplantation for acute myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi, 2006 ,34(7):577-581.
    51. Badiavas, Evangelos V, Falanga, et al. Treatment of chronic wounds with bone marrow–derived cells. Archives of Dermatology, 2003, 139: 510-516..
    52.邓为民,李长虹,廖联明,等.成体骨髓源多能间充质干细胞体内分化为皮肤干细胞和皮肤组织.细胞生物学杂志, 2003, 25:98-104.
    53.方利君,付小兵,孙同柱,等.在体诱导骨髓间充质干细胞分化为表皮细胞的初步观察.中华创伤杂志, 2003, 19:212-214.
    54.李海红,付小兵,王君,等。间充质干细胞分化为表皮附属细胞的初步实验研究.中国修复重建外科杂志, 2006; 20(6) :675-678.
    55.闫国和,粟永萍,艾国平等。羊膜负载骨髓间充质干细胞对放创复合伤促愈的实验研究。中国临床康复,2002,14(6):2072-2073。
    56.刘德伍,李国辉,胡翔,等。骨髓间充质干细胞复合胶原构建组织工程皮肤修复皮肤缺损,中国临床康复,2005,9(2):90-91
    57. Falanga V,Iwamoto S,Chartier M,et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007,13(6):1299-1312.
    58 . Oh SH,Miyazaki M,Kouchi H,et al. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem Biophys Res Commun. 2000,279(2):500-504.
    59. Theise ND,Badves,Saxena R,et al.Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 2000,31:235-240.
    60. Schwartz RE,Reyes M,Koodie L,et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest,2002,109(10):1291-302.
    61. Snykers S, Vanhaecke T, Papeleu P,et al . Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells.Toxicol Sci, 2006,94(2):330-41.
    62. Morigi M, Imberti B, Zoja C,et al.Mesenchymal stem cells are renotropic,helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol,2004,15:1794-1804.
    63.0h H, Muzzonigro TM, Bae SH, et al. Adult bone marrow derived cellstransdif- erentiating into insulin producing cells for the treatment of type I diabetes. Laboratory Investigation, 2004, 84: 607-617.
    64.Tang DQ, Cao LZ,Burkhardt BR, et al. In vivo and in vitro characteriza tion of insulin producing cells obtained from murine bone marrow. Diabetes, 2004, 53: 1721-1732.
    65. Maria OM, Khosravi R, Mezey E, et al. Cells from bone marrow that evolve into oral tissues and their clinical applications. Oral Dis. 2007, 13(1):11-16.
    66. Kawaguchi H, Hirachi A, Mizuno N ,et al. Cell transplantation for periodontal diseases: a novel periodontal tissue regenerative therapy using bone marrow mesenchymal stem cells. Clin Calcium ,2005,15: 1197–1202.
    67. De Kok IJ, Drapeau SJ, Young R, et al. Evaluation of mesenchymal stem cells following implantation in alveolar sockets: a canine safety study. Int J Oral Maxillofac Implants , 2005,20: 511–518.
    68. Ma Y, Xu Y, Xiao Z,et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells,2006,24(2):315-321.
    69. Tomita M, Mori T, Maruyama et al. A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells. 2006,24(10):2270-2278.
    70. Studeny M, Marini FC, Champlin RE,et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferonbeta delivery into tumors. Cancer Res,2002,62:3603-3608.
    71.Nakamizo A, Marini F, Amano T,et al.Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005,65:3307-3318.
    72. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002, 105(1):93-98.
    73. Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol, 2002,174(1):11-20.
    74. Van Damme A, Vanden Driessche T, Collen D, et al. Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther, 2002,2(2):195-209.
    75. Lee K, Majumdar MK, Buyaner D, et al. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther, 2001, 3(6):857-866.
    76. Ishida T, Inaba M, Hisha H, et al. Reguirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune disease in MRL/MP2Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same dornor. J Immunol, 1994, 152(6):3119-3127.
    77. Bartholomew A, Sturgeon C, Nelson M, et al. Allogeneic mesenchymal stem cells have significant immunoswppressive activity. Exp Hematol, 1999, 27(1):123-128.
    78. Noort WA, Kruisselbrink AB, Anker PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol, 2002, 30(8):870-878.
    79. Angelopoulou M, Novelli E, Grove JE, et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol, 2003,31(5): 413-420.
    80. Lazarus HM, Koc ON, Devine SM,et al. Cotransplantation of HLA- identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant,2005, 11:389–398.
    81.Mitaka T. Hepatic stem cells: from bone marrow cells to hepatocytes. Biochem Biophys Res Commun, 2001, 281, 1–5.
    82. Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubes induced by msx1. Cell.2000,103:1099–1109.
    83. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature, 2006, 441: 1061–1067.
    84.Terada N,Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature,2002, 416: 542–545.
    85.Ying QL, Nichols J, Evans Ep, et al. Changing potency by spontaneous fusion. Nature ,2002,416: 545–548.
    86. Lakshmipathy U, Verfaillie CM. Stem cell plasticity. Blood Rev, 2005,19: 29–38.
    87.Spees JL, Oison SD, Lynch J,et al. Differentiation,cell fusion and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow. Proc Natl Acad Sci,2003,100(5):2397-2402.
    88.Denrus JE , Charbord P. Origin and differentiation of human and murine stroma. Stem Cells ,2002 ,20 (3) :205-214.
    1 . Heimbach D, Luterman A,Burket JF, et al. Artificial dermis for major burns - A multi - center randomized clinical trial. Ann Surg,1988, 208 (3) : 313 - 320.
    2 . Supp DP, Supp AP, Bell SM, et al. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol, 2000, 114 (1) : 5 - 13.
    3.冯祥生,潘银根,谭家驹等.异种(猪)脱细胞真皮与自体表皮复合移植研究.中华整形外科杂志,2000 ,16(1) :40 - 42
    4 . Drake CJ,Hungerford JE,Little CD. Morphogenesis of the first blood vessels. Ann NY Acad Sct,1998.857:155~179.
    5 . Liekens S,De Clercq E,Neyts J.Angiogenesis: regulators and clinical applications. Biochcm Pharmacol,2001.6l(3):253—270.
    6. Vogel V,Baneyx G. The tissue engineeting puzzle: a molecular perspective. Annu Rev Biomed Eng, 2003,5:441-463
    7. Distler JH,Hirth A,Kurowska-Stolarska M,et al. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med, 2003,47(3):149-161
    8. Fett JW, Strydom DJ , Lobb RR , et al. Isolation and characterization of angiogenin , an angiogenic protein from human carcinoma cells . Biochemistry , 1985 , 24(20) : 5480 - 5486.
    9. Benest AV ,Salmon AH,Wang W,et al. VEGF and angiopoietin-1 stimulate different angiogenic phenotypes that combine to enhance functional neovascularization in adult tissue. Microcirculation, 2006, 13: 423-437
    10. Deguchi J , Namba T , Hamada H , et al . Targeting endogenous platelet-derived growth factor B-chain by adenovirus-mediated gene transfer potently inhibits in vivo smooth muscle proliferation after arterial injury. Gene Ther , 1999 ,6 :956-965.
    11. Wei G,Jin Q,Giannobile WV,et al. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release. 2006 May 1;112(1):103-10.
    12. Elcin AE, Elcin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng. 2006;12(4):959-68
    13. Liu H,Fan H,Cui Y,et al. Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold. Biomacromolecules. 2007;8(5):1446-1455.
    14. Elcin YM,Dixit V,Gitnick G.Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing.Artif Organs. 2001;25(7):558-65.
    15. Wilcke I,Lohmeyer JA,Liu S,et al. VEGF(165) and bFGF protein-based therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo.Langenbecks Arch Surg. 2007 ;392(3):305-14.
    16. Black A F, Berthod F, L’Heureux N, et al. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998 12, 1331–1340
    17. Drosou A, Kirsner RS, Kato T, et al. Use of a bioengineered skin equivalent for the management of difficult skin defects after pediatric multivisceral transplantation. J Am Acad Dermatol. 2005, 52, 854–858
    18. Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer. Expert Rev Med Devices. 2004, 1, 21–31
    19. Greenberg S, Margulis A, Garlick JA. In vivo transplantation of engineered human skin. Methods Mo. Biol. 2005, 289, 425–430
    20. Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant. 2005, 5, 1002–1010
    21.Shepherd BR,Enis DR,Wang FY,et al.Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells.FASEB J.2006,20,1124-1132
    22.肖仕初,夏照帆,杨珺,等.成纤维细胞促进真皮替代物血管化的作用机制,中国修复重建外科杂志, 2003,17(2),100-103
    23 . Hansbrough JF, Cooper ML , Cohen R, et al. Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery, 1992; 111 (4) : 438-446
    24. Hansbrough JF,Dore C,Hansbrough Wb,et al. Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds.J Burn Care Rehabil.1992;13(5):519-529.
    25.刘德伍,李国辉,胡翔,等.骨髓间充质干细胞复合胶原构建组织工程皮肤修复皮肤缺损.中华临床康复,2005,9(2):90-91.
    26.谭谦,陈曦,梁志为,等.PDGF-B基因表达在组织工程化皮肤移植后血管重建中的作用。中华整形外科杂志,2004,20:448-451
    27. Supp DM,Boyce ST . Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes.J Burn Care Rehabil, 2002 ,23(1):10-20
    28. Lee JA,Conejero JA,Mason JM,et al. Lentiviral transfection with the PDGF-B gene improves diabetic wound healing. Plast Reconstr Surg. 2005;116(2):532-538.
    29. Liu PY, Tong W, Liu K,et al. Liposome-mediated transfer of vascular endothelial growthfactor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair Regen. 2004, 12(1):80~5.
    30. Dickens S,Vermeulen P,Hendrickx B,et al. Regulable vascular endothelial growth factor165 overexpression by ex vivo expanded keratinocyte cultures promotes matrix formation, angiogenesis, and healing in porcine full-thickness wounds. Tissue Eng Part A. 2008;14(1):19-27.
    31. Supp DM,Karpinski AC,Boyce ST. Vascular endothelial growth factor overexpression increases vascularization by murine but not human endothelial cells in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil . 2004;25(4):337-45
    32. Eming SA , Medalie DA , Tompkins RG, et al . Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft . Hum Gene Ther ,1998 ,9 :529-539.
    33.Erdag G,Medalie DA,Rakhorst H,et al.FGF-7 expression enhances the performance of bioengineered skin.Mol Ther, 2004 Jul;10(1):76-85
    34. Zheng Y,Yi C,Xia W,et al.Mesenchymal stem cells transduced by vascular endothelial growth factor gene for ischemic random skin flaps.Plast Reconstr Surg. 2008 Jan;121(1):59-69.。
    35. Burke JF ,Yannas IV ,Quinby WC ,et al . Successful use of a physiologically acceptable artificial shin in the treatment of extensive burn injury. Ann Surg ,1981 ,194 (4) :413 - 427
    36. Boyce ST ,Hansbrough JH. Biologic attachment ,growth and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin - 6 - sulfate substrate. Surgery ,1988 ,103 (4) :421 - 431
    37. Hansbrough JF ,Cooper ML ,Cohen R, et al . Evaluation of a biodegratable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery ,1992 ,111(4) :438 - 446
    38.肖仕初,夏照帆,杨君,等.成纤维细胞-无细胞真皮替代物的生物学活性及移植试验.中华烧伤杂志, 2001 ,17(4) :231
    39. Takami Y, Matsuda T , Yoshitake M, et al . Dispase/detergent treated dermal matrix as a dermal substitute. Burns ,1996 ,22 :182 - 90
    40. Wagshall E , Lewis Z , Babich SB ,et al . Acelluar dermal matrix allograft in the treatment of mucogingival defects in children : illustrative case report . J Dent Child ,2002 ,69(1) :39 - 43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700