采用平转动应力盘技术加工超大口径非球面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超大口径光学系统具有角分辨能力高,能量收集能力强的特点,被广泛用于天文观测和空间对地观测,超大口径的非球面主镜是其中的核心器件,目前国外单镜直径已经达到8m量级,而国内已经达到2m量级,正在向4m量级迈进。
     从加工的角度看,超大口径非球面的加工具有偏离量大,材料去除量大的特点,目前广泛用于中小口径非球面加工的采用小磨头的计算机非球面表面成型技术(Computer Controlled Optical Surfacing,CCOS)的材料去除效率不能满足超大口径非球面的加工需求。本文提出了将应力盘技术(Stressed Lap)引入到传统CCOS技术中的新方法来提高材料去除效率以适应超大口径非球面的加工,采用应力盘作为磨头而保持传统CCOS的磨头运动方式和加工工艺不变,文中简称平转动的应力盘技术。
     从超大口径非球面的轮廓检测的角度看,目前使用的三坐标式轮廓仪精度、测量速度有限,本文采用摆臂式轮廓仪用于超大口径非球面的检测,使得轮廓检测精度及测量速度都得到了显著的提高,提高了加工效率。本文在实验室已有的工作基础之上,主要在以下几个方面开展了相关的工作:
     一、平转动应力盘的加工及变形运动特性的模拟分析。分析表明,采用平转动运动方式的应力盘与国外目前采用的自转方式的应力盘技术相比具有更接近高斯分布的去除函数,具有更高的局部面形误差控制能力;与传统的CCOS技术相比,此技术可以保证一定收敛率的同时,大幅度的提高材料去除效率,模拟计算结果约为16~17倍(特定加工参数);同时,与UA采用的自转方式的应力盘相比,平转动的应力盘不仅保持了应力盘平滑作用强,材料去除效率高的特点,而且应力盘的变形速度仅为前者的1/6(特定加工参数),降低了应力盘的响应速度的要求,易于物理实现,可以使用更高的主轴转速,进一步提高去除效率。
     二、应力盘变形精度的有限元分析。应力盘是平转动应力盘技术中的核心器件,它与非球面镜面吻合的好坏直接决定了非球面的面形质量和单次研磨抛光过程的收敛率,其变形精度是影响其加工精度和加工过程能否平稳进行的首要因素。本文采用有限元静力分析的方法计算了几种机械上可行的连接结构及盘面加强筋结构应力盘对离焦、像散和彗差三种基本误差面形的拟合精度。分析表明优化后的应力盘结构对于PV100μm的三种基本误差均达到0.1μm量级的拟合精度,根据加工经验,可以满足实际加工的要求。
     三、应力盘的原理样机的变形精度实验。为了测试应力盘的变形精度及其误差的分布,本文在有限元分析的基础之上,设计并完成了一台可以手动调节面形的应力盘原理模型,并利用一台具有1μm精度的轮廓仪对该模型作了相关的变形精度试验及重复性试验,试验结果表明其变形误差主要分布在安装立柱的边缘区域,在80%口径内,对于100μm PV的离焦和像散以及20μm PV的彗差,变形精度和重复性精度的均方根值均在1μm RMS以内,小于亚历桑那大学报道的经验允许值3μm,可以满足加工过程的吻合要求,对于下一步的研究,有重要意义。
     四、1.5m加工能力的平转动应力盘加工机床的研制。该机床是一台可以使用应力盘、小磨头作为抛光工具的大口径非球面加工机床,与之前我所研制的FSGJ系列非球面加工机床相比,具有更大的加工推力(3000N),具有更大的工作台(1.6m数控转台),同时,集成了应力盘的控制逻辑,可以完成应力盘的离线标定及加工过程中的变形控制工作,采用悬臂式结构,在非加工状态时可以从工作区域移出,采用摆臂式轮廓仪作为研磨阶段的在线检测装置,加工实验表明该机床运行平稳,可以很好的满足1.5m口径以内的大口径非球面的加工需求。
     五、平转动应力盘的加工工艺研究及加工实验。针对磨头尺寸增大后加工过程中比较突出的边缘效应,通过低阶拟合以及高阶补偿相结合的方法,在虚拟加工算法中引入边缘效应的影响,保证材料去除效率提高的同时具有一定的面形收敛率,从而有效的缩短加工周期。最后利用一块1100×800的体育场形SiC球面、一块φ820mmSiC平面以及一块φ820mmSiC抛物面进行了加工试验,完成粗磨及精磨的时间都在一个月以内,与小磨头技术相比,加工效率提升显著。
     六、摆臂式非接触大口径非球面轮廓仪的研制。针对三坐标式轮廓仪测量大口径光学表面精度偏低,测量时间长的问题,本文提出了采用摆臂式轮廓测量结合非接触位移传感器来实现大口径光学表面的高速高精度测量的新方法。摆臂式轮廓仪测量精度只受摆臂转台误差的影响,可以实现很高的测量精度,根据误差分析,对口径小于Φ1.5m的非球面,装调误差对测量精度影响小于1μm PV,同时采集密度大幅度提高,可以很好的反映镜面边沿的误差分布。最后本文采用摆臂式轮廓仪指导测量一块1100×800的体育场形球面试验件、φ820mm平面以及一块φ820mm抛物面的加工,前两者与光学检验的一致性都在0.5μm PV以内,具有很好的一致性。
Lots of large apture telescopes is developed for high resolution and energy collect ability. the diameter of the primary mirror is up to 8m in the largest telescopes in the world and to 2m and heading to 4m in our country. Comparing with small aspherics, much more materials need to be removed and the ordinary CCOS (Computer controlled optical surfacing) technology is held back by its low material removing rate and cannot address the need in the production of large aspherics. A solution is put forward in this paper by applying the CCOS (Computer controlled optical surfacing) removing strategy into the stressed lap technology, employing the stressed lap as the removing tool but moving the lap in the CCOS fashion, naming the stressed lap with orbital motion. Based on the pioneer work done by my workmate, my work are in the following few regions.
     1) Processing and deflection character analysis of the stressed lap with orbital tool motion. The working function of the stressed lap with orbital motion is analyzed comparing to the original stressed lap with the spinning motion and turn out to be better with a nearly Gaussian distribution. The grinding and polishing process of the CCOS with stressed lap is also simulated and the removing rate is about 16~17 times higher than the original CCOS. The effects of the stressed lap’s change in movement is also evaluated, the speed of the stressed lap’s deflection in the new way is only about 1/6 of the original stressed lap, which means it is dramatically relax the requirements of the lap’s respond or can move faster to get a higher material moving rate.
     2) FEA analysis of the deformation accuracy of the stressed lap. When polishing an aspheric with a stressed lap, a few microns of fitting accuracy is needed, so the ability of the mechanical structure of the stressed lap to fit the aspheric shape of the mirror is critical for the polishing accuracy and the surface quality of the aspheric mirrors. The article focuses on the effect of the shapes of the footprint of the tubes on the lap on the deformation of the lap. A few feasible mechanical structures is simulated by FEA models and evaluated by MATLAB routines. The results show that the one with the least residual error can reach a fitting accuracy of a few 0.1 microns, faithfully fulfilling the accuracy needed by the polishing process.
     3) deformation accuracy experiment with a prototype stressed lap model. To verify the deform accuracy of the stressed lap and the high order residual error distribution, a prototype stressed lap whose shape could be manually adjusted is build out and tested with a CMM whose accuracy is within 1μm. The results show that most of error is in the outer annual area where those tubes are assembled and the deform accuracy for 100μm power and 100μm astigmatism and 20μm coma and the repeatability of the lap is within 1μm RMS, better than the experimental standard of 3μm given by the University of Arizona, which is very important for the actual usage of the lap in the future.
     4) Experiment of the processing of large mirrors with large tools with orbital tool motion.For the technology of stressed lap with orbital tool motion upgrade the efficiency by enlarging the lap size naming large tools with orbital tool motion. The edge effect that common for large laps is simulated and compensated by first order approximation and weight functions for high order distribution to improve the convergence rate. A round square 1100mm×800mm SiC mirror is grinded with this method. After 22 runs of 55 hours in all, the overall surface error is 122μm PV before and 5.9μm PV after the process, comparing with previous small lap technology, the efficiency is at least improved by a factor of 2.
     5) A CNC machine for the processing of aspherics whit 1.5m capacity. both small tools and stressed lap with orbital tool motion can be used on this machine and the characters different from the previous FSGJ asphercis processer are: the machine could afford 3000N force to polishing the mirrors which is suitable for the usage of large tools. the machine is designed for the offline calibration and deforming control of the stressed lap when working on a mirror. and the rotating table whose diameter is 1.6m is much larger and stronger than the former FSGJ machines. the spindle is attached on a socle girder and could be moved out of the processing area which make it convenient to use. the machine work well in the experiment and could process any asphercs whose size is within 1.5m in diameter.
     6) A high speed and high accuracy swing-arm profilometer. To upgrade the testing accuracy of traditional three coordinate CMM, A high speed and high accuracy swing-arm profilometer is constructed for high accuracy and high testing speedfor large mirrors testing. According to analysis, because the arm rotating run-out is the only error source, high accuracy up 1μm PV could be reached withinΦ1.5m. By applying a non-contact linear sensor, high sample rate was achieved which could decrease testing time to minimize the thermal effects on profilometry. A mirror of 1100×800 mm sphere was tested by the swing-arm profilometer, and it took only 30 minutes for more than 1200,000 sample points. Comparing to a Shark-Hartmann test, the difference of two testing results is 0.02μm RMS and 0.5μm PV respectively, with very good consistency.
引文
[1] Jerry E. Nelson and Terry S. Mast, Construction of the Keck Observatory [J], Proc. SPIE, 1990, 1236:47-55.
    [2] Dierickx, Daniel Enard, Fritz Merkle, Lothar Noethe and Raymond N. Wilson, 8.2 metre primary mirrors of the VLT, Proc. SPIE, 1990, 1271, 266-274.
    [3] The Large Binocular Telescope-a brief history of innovation [M] Research corporation 2001 annual report
    [4] Gary H. Sanders, Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project, Proc. SPIE, 2008,7017:70170H.
    [5] Philippe Dierickx, Bernard Delabre and Lothar Noethe, OWL optical design, active optics, and error budget, Proc. SPIE, 2000, 4003:203-209.
    [6] Lincoln L. Endelman, Hubble Space Telescope: mission, history, and systems, Proc. SPIE, 1991,1358, 422-441;
    [7] Bernard D. Seery, The James Webb Space Telescope (JWST): Hubble's scientific and technological successor, Proc. SPIE, 2003, 4850:170-178.
    [8]张以谟,应用光学[M]北京:电子工业出版社,2008
    [9]程景全,天文望远镜原理和设计[M]合肥:中国科学技术出版社
    [10] Robert A. Jones. Fabrication of a large, thin, off-axis aspheric mirror [J]. Optical engineering, 1994, 33:4067-4075.
    [11]潘君骅.光学非球面的设计、加工与检验[M].北京:科学出版社,2004.
    [12]江东亮,潘振生,李雨林,反应烧结碳化硅陶瓷材料的研究[J],无机材料学报,1988,3(2),130-138.
    [13]郝寅雷,赵文兴,翁志成,新型反射镜材料——碳化硅[J],宇航材料工艺,2001年,第四期,11-16页.
    [14]范镝,张忠玉,牛海燕,碳化硅光学镜面加工[J],硅酸盐学报,2003,31(11),1096-1100.
    [15] Jorge González-García. Calculating petal tools by using genetic algorithms [J]. APPLIED OPTICS, 2006, 45(24):6126-6136.
    [16] R. A. Jones. Computer simulation of smoothing during computer-controlled optical polishing [J].Applied Optics, 1995, 34(7), 1162-1169.
    [17] Zhang Xuejun. Optimization of polishing parameters in computer controlled optical polishing process. SPIE, 1996, 2861:296-298.
    [18]余景池,张学军.计算机控制光学表面成型技术综述[J].光学技术,1998,24(3):6-8.
    [19] I.V.Prokhorov. New High-Precision Magnetorheological Instrument-Based Method of Polishing Optics. OSA OF&T Workshop Digest, 1992, 24:134-136.
    [20] R. A. Jones. Rapid optical fabrication with computer-controlled optical surfacing [J]. Optical Engineering, 1991, 30(12): 1962-1967.
    [21]王权陡,余景池,郑卫平.光学非球面元件的数控加工技术[J].仪器仪表学报,1997, 18(5):291-295.
    [22] Yi Wang, Ying Ni, Jing-chi Yu. Study on computer controlled polishing machine with small air bag tool [J]. SPIE, 2007, 6722: 67224O1-67224O7.
    [23] Andreas Kelm. Simulation and analysis of the polishing process for aspheres [J]. SPIE, 2009, 7426:74260F1-74260F5.
    [24]周林.计算机控制光学表面成形中的频域分析[J].中国科学E辑,2009,3:402-408.
    [25] Markus Schinhaerl. Advanced techniques for computer-controlled polishing [J]. SPIE, 2008, 7060: 70600Q1-70600Q12.
    [26] Robert A. Jones, Computer-controlled optical surfacing with orbital tool motion [J]. Optical Engineering, 25(6), 1986.
    [27] D. Golini, W. J. Rupp, J. Zimmerman, Microgrinding: new technique for rapid. fabrication of large mirrors[J]. SPIE Proceedings, 1989 1113:204-210.
    [28] Robert A. Jones, etc, Rapid optical fabrication with CCOS[J]. SPIE ,1990,1333:34-43.
    [29] R. A. Jones, Computer simulation of smoothing during computer-controlled optical polishing [J]. Applied Optics, 1995, 34(7):1162-1169.
    [30] Robert A. Jones, Fabrication of a large, thin, off-axis aspheric mirror[J]. Optical engineering,1994, 33:4067-4075.
    [31] Elmar Pitschke, Peter Sperber. Prediction of MRF polishing by classification of the initial error with Zernike polynomials [J]. SPIE, 2004, 5180:115 -123.
    [32] W. Messner, C. Hall. Manufacturing Meter-scale Aspheric Optics[J].SPIE, 2007, 6671:6671061-8.
    [33] Kathy W. Hylton. Ion beam milling of silicon carbide optical components [J]. SPIE, 1994, 1994:16 -27.
    [34] Lisa R. Rich, David A. Crowe. Polishing process for concave lightweight silicon-coated silicon carbide optics [J]. SPIE, 1995, 2543:236-248.
    [35] Allen, Lynn N, Hannon, John J. Final surface error correction of an off-axis aspheric petal by ion figuring [J]. SPIE, 1992, 1543:190-200.
    [36] Lynn N. Allen, Progress in ion figuring large optics[J] SPIE 1994,2428.
    [37] Lynn N. Allen, Robert E. Keim, and Timothy S. Lewis, Surface error correction of a Keck 10m telescope primary mirror segment by ion figuring, SPIE, 1991, 1531:195-204.
    [38]潘君骅.光学非球面的设计、加工与检验[M].北京:科学出版社,2004.
    [39] Terry S. Mast and Jerry E. Nelson The Fabrication of Large Optical Surfaces Using a Combination of Polishing and Mirror Bending SPIE,1990, 1236:670-681
    [40] Martin H, Anderson D, et a1. Progress in the stressed-lap polishing of a 1.8m f/1 mirror [J]. SPIE 1990, 1236:682-690.
    [41] D. Anderson, J. Burge, D. Ketelsen, et a1 Stressed-lap polishing of 3.5-rn f/1.5 and 1.8-rn f/1.0 rnirrors [J]. SPIE 1991, 1531:260-269.
    [42] Breidenthal, Robert S, Measurement of large optical surfaces for fabrication using a nonoptical technique [J], Proc. SPIE 1992, 1618:97-103.
    [43] Takacs, Peter Z.; Qian, Shinan; Kester, Thomas; Li, Haizhang, Large-mirror figure measurement by optical profilometry techniques [J], Proc. SPIE,1999,3782:266-274.
    [44] Lance D. Lund, Direct contact profilometry of large aspherics, SPIE, 1986, 0645:75-79.
    [45] David S. Anderson and James H. Burge. Swing-arm profilometry of aspherics[J], Proc. SPIE,1995, 2536: 169-179.
    [46] Peng Su, Chang Jin Oh, Robert E. Parks, James H. Burge Swing arm optical CMM for aspherics [J]. SPIE 2009, 7426: 74260J-1- 74260J-8.
    [47] Offner and D. Malacara, null Tests Using Compensators [M], Optical Shop Testing, 2nd Ed, D. Malacara, Ed.(Wiley, New York, 1992)
    [48] D.Malacara. Optical shop testing[M], Wiley: New York, 1978
    [49] David E. Stoltzmann and Peter Ceravolo, Ross null test for conk mirrors, Applied Optics, 1993, 32(7), 1189-1199.
    [50] www.zygo.com
    [51]张学军,数控非球面加工过程的优化研究[D].博士学位论文,长春:中国科学院长春光机所,1997.
    [52]王权陡.计算机控制离轴非球面制造技术的研究[D].博士学位论文,长春:中国科学院长春光学精密机械与物理研究所, 2001.
    [53]郑立功.高精度、大口径离轴非球面制造技术研究[D].博士学位论文,长春:中国科学院长春光学精密机械与物理研究所,2003.
    [54] F. Preston, The theory and design of plate glass polishing machines [J]. J. Soc. Glass Tech. IX,1927, 14-256.
    [55] R. A. Jones, Computer controlled optical surfacing with orbital tool motion [J]. Opt. Eng. 1986, 25:785–790.
    [56] R. Wagner and It. Shannon, Fabrication of aspherics using a mathematical model for material revomal, Appi. Opt,1974,13:1683-1689.
    [57] R. A. Jones, Optimization of computer controlled polishing, Appl. Opt. 1977, 16: 218–222.
    [58]杨力.先进光学制造技术[M].北京:科学出版社,2001:47-62.
    [59]辛企明.近代光学制造技术[M].北京:国防工业出版社,1997.
    [60]《光学零件工艺手册》编写组.光学零件工艺手册:上册[M].北京:国防工业出版社,1977
    [61]余景池,张学军.计算机控制光学表面成型技术综述[J].光学技术,1998,24(3):6-8.
    [62]郑立功,张学军,张峰.矩形离轴非球面反射镜的数控加工[J].光学精密工程,2004,12(1):113-117.
    [63]张学军.数控光学成形的计算机模拟及工艺试验[J].光学精密工程,1993,1(5).
    [64] Weimin Zheng, Tianning Cao, Xiuzhong Zhang. Applications of a novel general removal function model in the CCOS [J]. SPIE, 2000, 4231: 51-59.
    [65]王权陡.数控抛光技术中抛光盘的去除函数[J].光学技术,2000,26(1):32-34.
    [66] Dae Wook Kim. Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes [J]. Optics Express, 2005,13(3):910-917.
    [67]邓伟杰,郑立功,张学军,等.基于线性代数和正则化方法的驻留时间算法[J].光学精密工程,2007,15(7) .
    [68]邓伟杰. CCOS的控制模型及控制参量求解算法[D].博士学位论文,长春:中国科学院长春光学精密机械与物理研究所,2010.
    [69] D. Anderson, H. Martin, J. Burge, D. Ketelsen, S. West, Rapid fabrication strategies for primary and secondary mirrors at Steward Observatory Mirror Laboratory[J], 1994,SPIE,2199
    [70] Wilson R N. Reflecting Telescope Optics II[M]. Springer, 1998
    [71] Martin H, Anderson D, et a1. Progress in the stressed-lap polishing of a 1.8m f/1 mirror [J]. SPIE 1990, 1236:682-690.
    [72] D. Anderson, H. Martin, J. Burge, et a1 Rapid fabrication strategies for primary and secondary mirrors at Steward Observatory Mirror Laboratory [J]. SPIE, 1994, 2199:199-210.
    [73] H. M. Martin, R. G. Allen, J. H. Burge Polishing of a 6.5 mf/1.25 mirror for the first Magellan telescope [J]. SPIE, 1999, 3739:47-55.
    [74] H. M. Martin, J. H. Burge, B. Cuerden, et a1 Manufacture of a combined primary and tertiary mirror for the Large Synoptic Survey Telescope [J]. SPIE 2008, 7018.
    [75] H. M. Martina, R. G. Allena, J. H. Burge, et a1 Fabrication and testing of the first 8.4 m off-axis segment for the Giant Magellan Telescope [J]. SPIE 2010, 7739.
    [76] S. C. West, H. M. Martin, et a1. Practical design and performance of the stressed lap polishing too1 [J]. APPLIED OPTICS. 1994, 33(34).
    [77] J H Burge. Simulation and optimization for a computer-controlled large-tool polisher [J]. 1998, in Optical Fabrication and Testing, OSA Technology Digest12:43-45.
    [78] Xiao Luo, Ligong Zheng, Xuejun Zhang, Fabrication of large off-axis asymmetry aspherics using stressed lap with orbital tool motion. SPIE. 2010, 7654:765408-1:765408-6
    [79] Lubliner and Nelson, J. E, Stressed mirror polishing I: A technique for producing non-axisymmetric mirrors [J]. Applied Optics, 1980, 19: 2332-2340.
    [80] Nelson J E, George G, Hunt L K, et al. Stressed mirror polishing. II: Fabrication of an off-axis section of a paraboloid[J] . Applied Optics , 1980 , 19(14):2341-2352.
    [81]杨力,姜文汉.计算机控制抛光大口径高陡度非球面技术研究[J].光电工程,1999,26(1):9-15.
    [82] Martin H,Anderson D.Progress in the stressed-lap polishing of a 1.8m f/1 mirror.SPIE.1990,1236:682-690.
    [83] West S C. Practical design and performance of the stressed lap polishing too1.Applied Optics.1994.33(34):8084-8099.
    [84]曾志革,邓建明,姜文汉.能动抛光磨盘的有限元分析[J].强激光与粒子束,2002 ,14 (1) :29-34.
    [85] Xiao Luo, Ligong Zheng, Xuejun Zhang, Finite element analysis simulation and experimental verification of the stressed lap s deformation accuracy. Applied optics, 2011, 50(5):782:787.
    [86]李邦国,路华鹏,胡仁喜等,Patran 2006与Nastran 2007有限元分析实例指导教程[M],北京:机械工业出版社,2007
    [87]朱政,高必烈.主动抛光盘磨制非球面的工艺与面形检测[J].光学技术,2005,31(3):341-343.
    [88]汪达兴,李颖,杨世海,高必烈.主动抛光盘磨制非球面镜面控制技术的研究[J].光学技术,2005,31(3):373-379.
    [89]崔向群,高必烈,汪达兴等.一种大口径大非球面度天文镜面磨制新技术[J] .光学学报, 2005 , 25 (3) :402-407.
    [90]杨力,姜文汉.计算机控制抛光大口径高陡度非球面技术研究[J].光电工程,1999,26(1):9-15.
    [91]曾志革,邓建明,李晓今,等.能动抛光磨盘的变形实验研究[J].强激光与粒子束,2004,16(5):555-559.
    [92]范斌,杨力,袁加虎.应力盘盘面变形智能控制研究[J] .中国激光, 2003 , 30 (增刊) :155-157.
    [93] www.delta-tau.com
    [94] David S. Anderson and James H. Burge. Swing-arm profilometry of aspherics[J], Proc. SPIE,1995, 2536: 169-179.
    [95] Peng Su, Chang Jin Oh, Robert E. Parks, James H. Burge Swing arm optical CMM for aspherics [J]. SPIE 2009, 7426: 74260J-1- 74260J-8.
    [96]贾立德,郑子文,戴一帆,李圣怡,摆臂式非球面轮廓仪的原理与试验[J].光学精密工程, 2007, 15(4):499-504
    [97] Peng Su, James H. Burge, Robert A. Sprowl,,Jose Sasian. Maximum likelihood estimation as a general method of combining sub-aperture data for interferometric test[J]. Proc. SPIE,2006, 6342.
    [98]成大先,机械设计手册[M],北京:化学工业出版社,2008
    [99] Zhang Xuejun. Theoretical method for edge figuring in computer controlled polishing of optical surface [J].SPIE, 1994.
    [100] Zhang Xuejun. Edge control in computer controlled optical polishing [J]. Pro. SPIE, 1995, 2536: 239-242.
    [101] R. E. Wagner and R. R. Shannon. Fabrication of aspherics using a mathematical model for material removal [J]. Appl. Opt., 1974, 13:1683-1689.
    [102] Alberto Cordero-Da′vila. Edge effects with the Preston equation for a circular tool and workpiece [J]. APPLIED OPTICS, 2004, 43(6):1250-1254.
    [103] Luna-Aguilar E. Edge effects with Preston equation [J]. SPIE, 2003, 4840: 598-603.
    [104]邓俊辉,计算几何-算法与应用[M],北京:清华大学出版社,2006
    [105] Dae Wook Kim, Sug-Whan Kim. Novel simulation technique for efficient fabrication of 2m class hexagonal segments for extremely large telescope primary mirrors [J]. SPIE, 2005,5638:48-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700