蛋白质结构域重组构建新功能酶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是具有催化功能的蛋白质,其催化的多样性已使其在生物产业中得到广泛应用。应用自然界酶分子进化原理,构建具有实际应用所需的高催化效率、高稳定性的酶是蛋白质工程研究的重要目标。随着人们对酶的三级结构了解的增加,越来越多的合理设计方法,比如定点突变和结构域重组,被用来改变酶的性质和功能。通过合理设计改造的酶,不仅在工业和医药等方面起着重要作用,也加深了人们对于蛋白质结构-功能关系的认识。结构域重组是自然界中蛋白质进化的一个重要途径,也是人工设计和改造酶蛋白的有效策略。天然存在的与多种功能和性质相关的蛋白质结构域为人们构建新型酶蛋白提供了重组素材。传统的结构域重组方法通过重组同源蛋白质的结构域,已经成功地构建出了许多嵌合酶。它们或具有新的催化活力,或改变了底物特异性,或在稳定性上获得了提高,等等。一般来讲,重组亲本的同源性越低,嵌合酶获得新功能的可能性越大。重组低同源性的亲本蛋白质的困难在于,来源于不同亲本的结构域在重组过程中往往会破坏结构域界面上的相互作用,导致无活力的嵌合酶。因此,蛋白质工程的合理设计需要加深对蛋白质进化机制的理解,以及有效地构建嵌合蛋白质的新策略。本文通过两种途径重组了低同源性亲本的结构域,并成功获得了有活力的嵌合酶:(1)传统结构域重组结合结构域界面优化的方法;(2)关键基序指导的结构域重组(Key Motif Directed Recombination, KMDR)。
     (一)传统结构域重组结合结构域界面优化获得嵌合酶:来自超嗜热矿泉古菌Aeropyrum pernix K1的嗜热酯酶apAPH和来自嗜热古菌Archaeoglobusfulgidus的嗜热酯酶AFEST具有相似的催化结构域,而它们的底物结合结构域差异较大。apAPH偏好水解中等长度脂肪酸链的酯底物,如pNPC8;AFEST偏好水解短脂肪酸链的酯底物,如pNPC4。为了研究apAPH和AFEST的结构功能关系,我们交换了这两个酶的底物结合结构域,并对新形成的结构域界面进行优化获得了两个有活力的嵌合酶PAR和AAM7。对这两个嵌合酶的性质表征结果表明它们都继承了亲本蛋白质的嗜热性和热稳定性。酶催化动力学结果表明,PAR和AAM7对酯酶底物的链长特异性分别与向它们提供底物结合结构域的亲本一致。我们的实验结果表明:一,底物结合结构域对于酶的底物特异性具有决定性作用;二,低同源性亲本蛋白质进行结构域重组时,对新形成的结构域界面进行优化是获得正确折叠的嵌合酶以及提高嵌合酶稳定性的重要保证。
     (二)关键基序指导的结构域重组(KMDR):同一超家族中的蛋白质成员之间具有相似的折叠结构,但在一级序列和生物功能上可能有很大的差异。在某些成员中可以检测到的蛋白质序列基序和结构基序的存在表明这些成员可能是从一个或多个共同的祖先进化来的。通过对α/β水解酶超家族成员的序列和结构的比对,我们发现了关键基序的存在。关键基序是指存在于保守的结构基序中的保守的序列基序。关键基序代表了蛋白质超家族中成员的相似的局部结构环境。我们设想可以在关键基序区域选择重组位点,利用关键基序的保守性和它与邻近结构的相互作用,重组不同亲本的结构域构建新的嵌合酶。我们提出了一个新的结构域重组的方法—关键基序指导的结构域重组(KMDR)。利用KMDR,以来自于α/β水解酶超家族的三个成员—嗜热酯酶AFEST,嗜热酯酶apAPH和中温脂肪酶Lip1(来源于褶皱假丝酵母Candida rugosa)—为亲本,设计并构建了嗜热的嵌合酶LAf和LAp。对嵌合酶的性质测定结果表明,与我们的预期一致,嵌合酶获得了嗜热亲本AFEST和apAPH的嗜热性和热稳定性,同时也保持了中温脂肪酶亲本Lip1对长链底物的偏好性。我们通过定点突变对嵌合酶LAp进行优化,获得了活力提高4.6倍的突变体。
     蛋白质超家族成员中对所需功能的相关结构域进行重组是产生功能跃迁以及扩大合成蛋白质种类的有效途径。作为结构域重组的新方法,KMDR在处于刚性的结构域内部的关键基序区域进行结构域重组,而不是传统重组方法选择的结构域间的柔性连接区域。它有效地重组低同源亲本蛋白质,构建新功能嵌合蛋白质,这对于基础酶学研究以及构建在医药、化工等产业用酶都具有重要意义。我们的研究工作不仅发展了蛋白质超家族中低同源亲本结构域重组的方法,而且首次提出了关键基序在自然界蛋白质进化过程中可能具有重要作用。
Constructing enzymes with desired properties is a major goal for proteinengineers. Recombination is an important mechanism for natural evolution of proteins,and presents an effective strategy for exploring protein sequence space. Diversefunctional domains in proteins provide a resource for designing novel biocatalysts.The recombination of functional protein modules, such as domains or subdomains,from diverse homologous enzymes by conventional domain recombination has led tochimeric enzymes with novel activities, altered substrate specificities, and improvedstability. Recombining proteins with less sequence similarity would offer betteropportunities for creating novel proteins. The challenge has been that the domainsfrom parental proteins with less sequence identity often have structurallynon-compatible interfaces when they are recombined, resulting in inactive chimeras.Thus, further advances in rational protein engineering require a profoundunderstanding of how proteins evolve and new strategies for the efficient generationof chimeras. In this work, we constructed chimeras through two different strategies:traditional domain recombination combining with domain interface refinement; andKey Motif Directed Recombination.
     AFEST is a carboxylesterase from Archaeoglobus fulgidus, hydrolyzesp-nitrophenyl esters (pNP) with short acyl chain lengths, and shows the highestactivity towards pNPC4(para-nitrophenyl-butyrate). apAPH is an acylpeptidehydrolase from Aeropyrum pernix K1(apAPH) and shows a promiscuous esteraseactivity with a preference for middle chain length substrates, whose favorite ester substrate is pNPC8(para-nitrophenyl-caprylate). In order to study thestructure-function relationship of the hyperthermophilic esterases apAPH and AFEST,we exchanged substrate binding domains of the two enzymes, and optimized thenewly formed domain interfaces through site directed mutations. We obtained twofunctional chimeric enzymes PAR and AAM7. Characterization of these two chimericenzymes showed that they inherited the thermophilic properties of the parent proteins.The kinetic parameters indicated that, the esterase substrate specificities of PAR andAAM7were similar to the parent which provided them with the substrate bindingdomain, respectively. Our experimental results showed that: a, the substrate-bindingdomains play a dominant role for the enzyme substrate specificity; b, the optimizationof newly formed domain interface is an important guarantee for obtaining correctlyfolded and stable chimeric enzymes constructed by domain swapping of parents withlow sequence identity.
     In one superfamily, proteins can differ greatly in their primary amino acidsequences and in their biological functions. Traces of ancient functional amino acidsequence motifs and structural motifs are, however, often detectable, suggesting thatat least some members of a protein superfamily may be derived from one or morecommon ancestors. By comparing the sequence and structure homologues of theα/β-hydrolase fold superfamily, we discovered the existence of key motifs, which areconserved amino acid sequences within a conserved structural motif. Key motifsrepresent a localized similar structural environment in distant proteins within a proteinsuperfamily. Here, we explored the idea of recombining distant sequence proteins atkey motif regions to engineer novel enzymes. We developed a new domainrecombination strategy-Key Motif Directed Recombination (KMDR). ThroughKMDR, We designed and constructed chimeric proteins from three catalyticallydistinct members of the α/β hydrolase fold superfamily: two hyperthermophilicesterases (AFEST and apAPH) and a mesophilic lipase (Lip1from Candida rugosa)with less than20%sequence identity. The chimeras LAf and LAp retained thesubstrate preference of Lip1for long acyl chain ester substrates and the thermophilic property of the parent AFEST and apAPH.
     Recruiting evolved structural domains or subdomains with desired functions frommembers of a superfamily provides a powerful approach for generating largefunctional leaps. As an innovation for domain recombination at inner, rigid areas witha key motif, rather than flexible regions between domains, KMDR thus represents apractical method for the efficient manipulation and recombination of structuraldomains with distantly related sequences. The ability to efficiently design proteinscombining distantly related sequences provides a means to create new biocatalyststhat are useful for fundamental research, and accelerating the commercialization ofvarious products, from pharmaceuticals to fine chemicals. Our work not only shedlight on the efficient recombination of very dissimilar protein sequences within asuperfamily, but also provided the first evidence that key motifs may have playedimportant roles in natural protein evolution.
引文
[1] Ulmer KM. Protein engineering. Science.1983,219:666-671.
    [2]朱国萍.用蛋白质工程方法设计和改造工业用酶.安徽师大学报.1998,22:402-405.
    [3] Arnold FH. Directed evolution: creating biocatalysts for the future. Chem EngSci.1996,51:5091-5102.
    [4] Chaparro-Riggers JF, Polizzi KM, Bommarius, AS. Better library design:data-driven protein engineering. Biotechnol J.2007,2:180-191.
    [5] Carter P. Site-directed mutagenesis. Biochem J.1986,237:1-7.
    [6] Kilbey BJ. Charlotte Auerbach (1899-1994). Genetics.1995,141:1–5.
    [7] Flavell RA, Sabo DL, Bandle EF and Weissmann C. Site-directed mutagenesis:effect of an extracistronic mutation on the in vitro propagation of bacteriophage QbetaRNA. Proc Natl Acad Sci USA.1975,72:367–371.
    [8] Müller W, Weber H, Meyer F and Weissmann C. Site-directed mutagenesis inDNA: Generation of point mutations in cloned β globin complementary DNA at thepositions corresponding to amino acids121to123. J Mol Biol.1978,124:343-358.
    [9] Hutchison CA, Phillips S, Edgell MH, Gillham S, Jahnke P, Smith M.Mutagenesis at a Specific Position in a DNA Sequence. J Biol Chem.1978,253:6551-6560.
    [10] Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypicselection. Proc Natl Acad Sci USA.1985,82:488-492.
    [11] Wells JA, Estell DA. Subtilisin--an enzyme designed to be engineered. TrendsBiochem Sci.1988,13:291–297.
    [12] Papworth C, Bauer JC, Braman J, Wright DA. Site-directed mutagenesis in oneday with>80%efficiency. Strategies.1996,9:3–4.
    [13] Duangpan S, Jitrapakdee S, Adina-Zada A, Byrne L, Zeczycki TN, St Maurice M,Cleland WW, Wallace JC, Attwood PV. Probing the catalytic roles of Arg548andGln552in the carboxyl transferase domain of the Rhizobium etli pyruvate carboxylaseby site-directed mutagenesis. Biochemistry.2010,49:3296-3304.
    [14] Lee LC, Chen YT, Yen CC, Chiang TC, Tang SJ, Lee GC, Shaw JF. Altering theSubstrate Specificity of Candida rugosa LIP4by Engineering the Substrate-BindingSites. J Agric Food Chem.2007,55:5103-5108.
    [15] Koschorreck K, Schmid RD, Urlacher VB. Improving the functional expressionof a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMCBiotechnol.2009,9:12.
    [16] Griswold KE, Kawarasaki Y, Ghoneim N, Benkovic SJ, Iverson BL, Georgiou G.Evolution of highly active enzymes by homology-independent recombination. ProcNatl Acad Sci USA.2005,102:10082-10087.
    [17] Carrière F, Thirstrup K, Hjorth S, Ferrato F, Nielsen PF, Withers-Martinez C,Cambillau C, Boel E, Thim L, Verger R. Pancreatic lipase structure-functionrelationships by domain exchange. Biochemistry.1997,36:239-248.
    [18] Carbone MN, Arnold FH. Engineering by homologous recombination: exploringsequence and function within a conserved fold. Curr Opin Struct Biol.2007,17:454-459.
    [19] Voigt CA, Martinez C, Wang ZG, Mayo SL, Arnold FH. Protein building blockspreserved by recombinaion. Nat Struct Biol.2002,9:553-558.
    [20] Meyer MM, Hochrein L, Arnold FH. Structure-guided SCHEMA recombinationof distantly related β-lactamases. Protein Eng Des Sel.2006,19:563–570.
    [21] Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH.Structure-guided recombination creates an artificial family of cytochromes P450. PlosBiol.2006,4:e112.
    [22] Heinzelman P, Snow CD, Arnold FH. A family of thermostable fungal cellulasescreated by structure-guided recombination. Proc Natl Acad Sci USA.2009,106:5610-5615..
    [23] Heinzelman P, Snow CD, Arnold FH. SCHEMA recombination of a fungalcellulase uncovers a single mutation that contributes markedly to stability. J BiolChem.2009,284:26229-26233.
    [24] LeMaster DM, Hernandez G. Hybrid native partitioning of interactions amongnonconserved residues in chimeric proteins. Proteins.2005,60:723–731.
    [25] LeMaster DM, Hernandez G. Additivity in both thermodynamic stability andthermal transition temperature for rubredoxin chimeras via hybrid native partitioning.Structure.2005,13:1153-1163.
    [26] LeMaster DM, Hernandez G. NMR and X-ray analysis of structural additivity inmetal binding site-swapped hybrids of rubredoxin. BMC Struct Biol.2007,7:81.
    [27] Saraf MC, Benkovic SJ. FamClash: A method for ranking the activity ofengineered enzymes. Proc Natl Acad Sci USA.2004,101:4142-4147.
    [28] Pantazes R, Saraf MC, Maranas CD. Optimal protein library design usingrecombination or point mutagenesis based seqeunce based scoring functions. ProteinEng Des Sel.2007,8:361-373.
    [29] Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energeticconnectivity in protein families. Science.1999,286:295-299.
    [30] Socolich M, Ranganathan R. Evolutionary information for specifying a proteinfold. Nature.2005,437:512-518.
    [31] Benkovic SJ, Ranganathan R. Surface Sites for Engineering Allosteric Control inProteins. Science.2008,322:438-442.
    [32] Stemmer WPC. DNA shuffling by random fragmentation and reassembly: Invitro recombination for molecular evolution. Proc Natl Acad Sci USA.1994,91:10747–10751.
    [33] Zhao H, Giver L, Shao Z, Arnold FH. Molecular evolution by staggeredextension process (StEP) in vitro recombination. Nat Biotechnol.1998,16:258–261.
    [34] Shao Z, Zhao H, Giver L, Arnold FH. Random-priming in vitro recombination:an effective tool for directed evolution. Nucleic Acids Res.1998,26:681–683.
    [35] Short JM. Method of DNA reassembly by interrupting synthesis. U.S. Patent.1999, no.5,965,408.
    [36] Kikuchi M, Ohnishi K, Harayama S. Novel family shuffling methods for the invitro evolution of enzymes. Gene.1999,236:159–167.
    [37] Biondi RM, Baehler PJ, Reymond CD, Ve′ron M. Random insertion of GFP intothe cAMP-dependent protein kinase regulatory subunit from Dictyosteliumdiscoideum. Nucleic Acids Res.1998,26:4946–4952.
    [38] Graf R, Schachman HK. Random circular permutation of genes and expressedpolypeptide chains: Application of the method to the catalytic chains of aspartatetranscarbamoylase. Proc Natl Acad Sci USA.1996,93:11591–11596.
    [39] Ostermeier M, Shim JH, Benkovic SJ. A combinatorial approach to hybridenzymes independent of DNA homology. Nat Biotechnol.1999,17:1205–1209.
    [40] Lutz S, Ostermeier M, Moore GL, Maranas CD, Benkovic SJ. Creatingmultiple-crossover DNA libraries independent of sequence identity. Proc Natl AcadSci USA.2001,98:11248-11253.
    [41] Reeder T, Schleif R. AraC protein can activate transcription from only oneposition and when pointed in only one direction. J Mol Biol.1993,231:205–218.
    [42] Dahiyat BI, Mayo SL. De Novo Protein Design: Fully Automated SequenceSelection. Science.1997,278:82–87.
    [43] Sander C, Vriend G, Bazan F, Horovitz A, Nakamura H, Ribas L, Finkelstein AV,Lockhart A, Merkl R, Perry LJ, et al. Protein Design on computers. Five new proteins:Shpilka, Grendel, Fingerclasp, Leather and Aida. Proteins.1992,12:105–110.
    [44] R thlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J,Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS,Baker D. Kemp elimination catalysts by computational enzyme design. Nature.2008,453:190-195.
    [45] Jiang L, Althoff EA, Clemente FR, Doyle L, R thlisberger D, Zanghellini A,Gallaher JL, Betker JL, Tanaka F, Barbas CF3rd, Hilvert D, Houk KN, Stoddard BL,Baker D. De novo computational design of retro-aldol enzymes. Science.2008,319:1387-1391.
    [46] Bork P, Koonin EV. Protein sequence motifs. Curr Opin Struct Biol.1996,6:366-376.
    [47] Balla S, Thapar V, Verma S, Luong T, Faghri T, Huang CH, Rajasekaran S, delCampo JJ, Shinn JH, Mohler WA, Maciejewski MW, Gryk MR, Piccirillo B, SchillerSR, Schiller MR. Minimotif Miner: a tool for investigating protein function. NatMethods.2006,3:175–177.
    [48] Akiyama Y, Hosoya T, Poole AM, Hotta Y. The gcm-motif: A novelDNA-binding motif conserved in Drosophila andmammals. Proc Natl Acad Sci USA.1996,93:14912–14916.
    [49] H hne M, Sch tzle S, Jochens H, Robins K, Bornscheuer UT. Rationalassignment of key motifs for function guides in silico enzyme identification. NatChem Biol.2010,11:807-813.
    [50] H st GE, Razkin J, Baltzer L, Jonsson BH. Combined enzyme and substratedesign: grafting of a cooperative two-histidine catalytic motif into a protein targeted atthe scissile bond in a designed ester substrate. Chembiochem.2007,13:1570-1576.
    [51] Saarela J, Jung G, Hermann M, Nimpf J, Schneider WJ. The patatin-like lipasefamily in Gallus gallus. BMC Genomics.2008,9:281.
    [52] Pugalenthi G, Suganthan PN, Sowdhamini R, Chakrabarti S. MegaMotifBase: adatabase of structural motifs in protein families and superfamilies. Nucleic Acids Res.2008,36: D218-221.
    [53] Wu CY, Chen YC, Lim C. A structural-alphabet-based strategy for findingstructural motifs across protein families. Nucleic Acids Res.2010,38: e150.
    [54] Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M,Remington SJ, Silman I, Schrag J, Sussman J, Verschueren KHG, Goldman A. Theα/β hydrolase fold. Protein Eng.1992,5:197-211.
    [55] Nardini M, Dijkstra BW. α/β Hydrolase fold enzymes: the family keeps growing.Curr Opin Struct Biol.1999,9:732-737.
    [56] Sarda H, Desnuelle P. Action de la lipase pancreatique sur les esters en emulsions.Biochim Biophys Acta.1958,30:513-521.
    [57] Schrag JD, Cygler M. Lipases and α/β hydrolase fold. Methods Enzymol.1997,284:85-107.
    [58] Cygler M, Schrag JD. Structure and conformational flexibility of Candida rugosalipase. Biochim Biophys Acta.1999,1441:205-214.
    [59] Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology,three-dimensional structures, and biotechnological applications of lipases. Annu RevMicrobiol.1999,53:315-351.
    [60] Rosenblum JS, Kozarich JW. Prolyl peptidases: a serine protease subfamily withhigh potential for drug discovery. Curr Opin Chem Biol.2003,7:496-504.
    [61] Polgár L. Structure and function of serine proteases. New Comp Biochem.1987,16:159-200.
    [62] Verger R. Interfacial activation of lipases: facts and artifacts. Trends Biotechnol.1997,15:32–38.
    [63] Wong H, Schotz MC. The lipase gene family. J Lipid Res.2002,43:993-999.
    [64] Manco G, Giosuè E, D'Auria S, Herman P, Carrea G, Rossi M. Cloning,overexpression, and properties of a new thermophilic and thermostable esterase withsequence similarity to hormone-sensitive lipase subfamily from the archaeonArchaeoglobus fulgidus. Arch Biochem Biophys.2000,373:182-192.
    [65] De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, RossiM, Pedone C. The Crystal Structure of a Hyper-thermophilic Carboxyl esterase fromthe Archaeon Archaeoglobus fulgidus. J Mol Biol.2001,314:507-518.
    [66] Gao R, Feng Y, Ishikawa K, Ishida H, Ando S, Kosugi Y, Cao S. Cloning,purification and properties of a hyperthermophilic esterase from archaeon Aeropyrumpernix K1. J Mol Catal B: Enzym.2003,24-25:1-8.
    [67] Bartlam M, Wang G, Yang H, Gao R, Zhao X, Xie G, Cao S, Feng Y, Rao Z.Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1.Structure.2004,8:1481-1488.
    [68] Wang Q, Yang G, Liu Y, Feng Y. Discrimination of esterase and peptidaseactivities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1by a single mutation. J Biol Chem.2006,281:18618-18625.
    [69] Akoh CC, Lee GC, Shaw JF. Protein engineering and applications of Candidarugosa lipase isoforms. Lipids.2004,39:513-526.
    [70] Domínguez de María P, Sánchez-Montero JM, Sinisterra JV, Alcántara AR.Understanding Candida rugosa lipase: anoverview. Biotechnol Adv.2006,24:180-196.
    [71] Cygler M, Schrag JD. Strueture and conformational flexibility of Candida rugosalipase. Biochim Biophys Acta.1999,1441:205-214.
    [72] Tejo BA, Salleh AB, Pleiss J. Structure and dynamics of Candida rugosa lipase:the role of organic solvent. J Mol Model.2004,10:358-366.
    [73] Brocca S, Secundo F, Ossola M, Alberghina L, Carrea G, Lotti M. Sequence ofthe lid affects activity and specificity of Candida rugosa lipase isoenzymes. ProteinSci.2003,12:2312–2319.
    [74] Macrae AR, Hammond RC. Present and future application of lipases. BiotechnolGenet Eng Rev.1985,3:193-217.
    [1] Pleiss J. Protein design in metabolic engineering and synthetic biology. Curr OpinBiotechnol.2011,22:611-617.
    [2] Cheriyan M, Toone EJ, Fierke CA. Improving upon nature: active site remodelingproduces highly efficient aldolase activity toward hydrophobic electrophilic substrates.Biochemistry.2012,51:1658-1668.
    [3] Antikainen NM, Martin SF. Altering protein specificity: techniques andapplications. Bioorg Med Chem.2005,13:2701-2716.
    [4] Huang J, Koide A, Makabe K, Koide S. Design of protein function leaps bydirected domain interface evolution. Proc Natl Acad Sci USA.2008,105:6578-6583.
    [5] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity ofprogressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Res.1994,22:4673-4680.
    [6] Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M,Pieper U, Sali A. Comparative protein structure modeling with MODELLER. CurrProtoc Bioinformatics, John Wiley&Sons, Inc., Supplement15,5.6.1-5.6.30,2006.
    [7] Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: aprogram to check the stereochemical quality of protein structures. J App Cryst.1993,26:283.
    [8] Luthy R, Bowie JU, Eisenberg D. Assessment of protein models withthree-dimensional profiles. Nature.1992,356:83-85.
    [9] D'Amico S, Marx JC, Gerday C, Feller G. Activity-stability relationships inextremophilic enzymes. J Biol Chem.2003,278:7891-7896.
    [10] Sreerama N, Woody RW. Computation and analysis of protein circular dichroismspectra. Methods Enzymol.2004,383:318-351.
    [11] Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M. Automated analysis ofinteratomic contacts in proteins. Bioinformatics.1999,15:327-332.
    [12] Wallace AC, Laskowski RA, and Thornton JM. LIGPLOT: a program to generateschematic diagrams of protein-ligand interactions. Protein Eng.1995,8:127-134.
    [13] Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, and Liang J. CASTp:computed atlas of surface topography of proteins with structural and topographicalmapping of functionally annotated residues. Nucleic Acids Res.2006,34:W116-W118.
    [1] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity ofprogressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Res.1994,22:4673-4680.
    [2] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW,Noble WS. MEME suite: tools for motif discovery and searching. Nucleic Acids Res.2009,37: W202-208.
    [3] Hutchinson EG, Thornton JM. PROMOTIF--a program to identify and analyzestructural motifs in proteins. Protein Sci.1996,5:212-220.
    [4] DeLano WL. The PyMOL molecular graphics system.2002,http://www.pymol.org.
    [5] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionarydistance, and maximum parsimony methods. Mol Biol Evol.2011,28:2731-2739.
    [6] Pogulis RJ, Vallejo AN, Pease LR. In vitro recombination and mutagenesis byoverlap extension PCR. Methods Mol Biol.1996,57:167-176.
    [7] Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics ofnanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA.2001,98:10037-10041.
    [8] Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automatedpipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic AcidsRes.2004,32: W665-667.
    [9] Castillo RM, Mizuguchi K, Dhanaraj V, Albert A, Blundell TL, Murzin AG. Asix-stranded double-psi beta barrel is shared by several protein superfamilies.Structure.1999,7:227-236.
    [10] Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generateschematic diagrams of protein-ligand interactions. Protein Eng.1995,8:127-134.
    [11] Greenfield NJ. Using circular dichroism spectra to estimate protein secondarystructure. Nat Protoc.2006,1:2876-2890.
    [12] Voigt CA, Martinez C, Wang ZG, Mayo SL, Arnold FH. Protein building blockspreserved by recombinaion. Nat Struct Biol.2002,9:553-558.
    [13] Meyer MM, Silberg JJ, Voigt CA, Endelman JB, Mayo SL, Wang ZG, Arnold FH.Library analysis of SCHEMA-guided protein recombination. Protein Sci.2003,12:1686–1693.
    [14] Endelman JB, Silberg JJ, Wang ZG, Arnold FH. Site-directed proteinrecombination as a shortest-path problem. Protein Eng Des Sel.2004,17:589–594.
    [15] Meyer MM, Hochrein L, Arnold FH. Structure-guided SCHEMA recombinationof distantly related β-lactamases. Protein Eng Des Sel.2006,19:563–570.
    [1] Gao R, Feng Y, Ishikawa K, Ishida H, Ando S, Kosugi Y, and Cao S. Cloning,purification and properties of a hyperthermophilic esterase from archaeon Aeropyrumpernix K1. J Mol Catal B Enzym.2003,24:1-8.
    [2] Bartlam M, Wang G, Yang H, Gao R, Zhao X, Xie G, Cao S, Feng Y, Rao Z.Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1.Structure.2004,8:1481-1488.
    [3] Wang Q, Yang G, Liu Y, Feng Y. Discrimination of esterase and peptidaseactivities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1by a single mutation. J Biol Chem.2006,281:18618-18625.
    [4] Shiba, K. Natural and artificial peptide motifs: their origins and the application ofmotif-programming. Chem Soc Rev.2010,9:117-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700