基于复杂agent网络的病毒传播建模和仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒感染对人类健康的影响显而易见,严重时可以威胁生命;特别是病毒传播所引起的传染病则可能引起全社会的恐慌和动荡,同时须耗费大量的人力、物力和财力用于对传染病的预防、控制、诊断和治疗。除了自然发生的传染病,恐怖分子也可能将投放病毒生物剂作为其开展生物恐怖袭击的手段,生物恐怖危害的预警与应急决策已成为当前国际上关于生物恐怖防御和传染病防治等的重要研究领域。
     由于研究病毒传播引起的传染病扩散问题不可在真实世界进行实验,因此计算机建模和仿真是研究此类问题的一种有效途径。本论文研究目的在于提出描述病毒传播特点和动态性的一种有效方法,通过计算机上生成的虚拟复杂网络来描述和刻画真实世界个体之间交互的复杂性以及病毒传播动态过程,然后支持仿真。在此基础上,我们可基于对仿真结果的分析预测传染病的发展趋势,并根据特定病毒的防治要求为公共卫生措施的制定提供决策支持。
     在深入研究常用的传统系统动力学建模、基于agent的建模和基于复杂网络的建模这三种病毒传播建模方法的基础上,提出一种支持个体层和群体层建模的一体化方法——复杂agent网络方法。该方法无缝集成多agent系统方法和复杂网络两种方法,利用两者的优点并规避其不足,能为个体层和群体层的一体化建模提供方法指导。
     在复杂agent网络方法指导下分析病毒传播过程,构建了基于病毒传播过程动态性的传染病流行规模统计模型,作为在仿真过程中度量传染病流行规模(也即疫情严重程度)的统计量并计算得到系统的状态输出。然后,从两个层次分析影响病毒传播过程及疫情发展的因素:在群体层次主要研究个体复杂交互规律的宏观描述、传染病扩散阻断措施和人口统计学方面的影响;在个体层次研究宿主个体agent建模,描述个体与病程发展相关的基本属性和行为,并重点研究了通过个体交互活动引起(空气传播和性传播)病毒传染的概率模型。
     影响个体规避传染决策的因素包括情感和认知两种,且这两种因素之间互相影响,共同影响决策。对情感和认知之间的影响以及二者在决策过程中的作用进行研究,构建了个体规避传染的决策框架;在框架指导下,综合考虑个体的初级、二级和高级情感以及个体对疫情认知的知识表示之间的影响关系,提出一种支持自主学习的个体情感和认知FCM表示模型,并通过非线性Hebbian自主学习对专家初始设定的因果影响关系权值进行调整;在计算模糊认知图中各种因素值的基础上,可根据个体对不同传染病传播的具体反应情况,设定个体规避传染的决策规则。
     作为支持病毒传播过程建模的一个关键算法,基于配置模型的scale-free病毒传播复杂网络生成算法可快速、灵活和鲁棒地生成给定网络尺寸和幂律度分布指数的复杂网络,以支持病毒传播社会网络的构建。基于该算法生成复杂网络的过程中,边的创建能满足病毒传播过程中个体之间交互形成的局部判定条件,同时对边赋予其与交互关系相关的属性值,更符合真实世界情况;此外,避免了其他一般算法所要求的随机增删结点和边的操作,从而能够保留所有个体病程发展全过程的状态信息,也即保证了个体agent的自治性和独立性。
     基于前述研究,设计并实现了一个病毒传播仿真原型系统,并在此基础上构建了封闭高校内甲型H1N1传播仿真和荷兰阿姆斯特丹男同性恋HIV流行病仿真两个应用实例。在设计不同想定并对仿真结果进行分析之后,分别给出了控制这两种不同类型传染病扩散的公共卫生决策建议。这两个应用实例验证了论文所提出的复杂agent网络方法在支持病毒传播过程建模和仿真方面的有效性。
     论文研究成果可有力支持病毒传播建模和仿真,为模拟真实世界病毒传播问题提供了一般性参考过程和建模框架,并为传染病扩散过程的模拟和预测提供了量化分析支撑,这对控制无论是自然发生的传染病还是由生物恐怖袭击引发的传染病,都具有重要的理论意义和现实意义。
Virus infections obviously harm human health and even threat human life. The prevalenceof infectious diseases caused by viruses can arouse social panic and disturbance, andin the meantime cost large amount of resources for prevention, containment, diagnosesand treatment. Apart from the study of natural infectious diseases, the study of bioterroristicattacks and their subsequent infectious diseases becomes an important field, inwhich the precaution of bioterrorism and crisis decision making are of great internationalconcerns.
     Modeling and Simulation is an effective approach to mimic and study virus propagation,due to infectious diseases’non-experimentation among human in the real world. Theaim of this thesis is to present a method for describing the characteristics and dynamicsof virus propagation and characterizing the complex interactions among individuals bygenerating virtual complex networks so as to support stochastic simulations. Afterwards,we can predict the trends of infectious diseases by analyzing simulation results, and thensupport public health policy making based on features of viruses concerned.
     The paper presents a novel Complex Agent Networks method, which is a comprehensivesolution to the modeling at individual and population scales, based on deep investigationson three common epidemic modeling methods, i.e., traditional equation-basedmodeling, agent-based modeling and complex-network-based modeling. Our ComplexAgent Networks method can seamlessly integrate Multi-agent Systems and complex networks,utilizing the merits of both methods while avoiding their demerits. This methodcan generally guide the overall modeling at individual and population scales.
     Based on the utilization of the Complex Agent Networks method to analyze the dynamicvirus propagation procedure, we construct a statistical model for assessing the epidemiologicalimpact of virus propagation in simulations. Then we analyze the influentialfactors of virus propagation on different scales. On population scale, the macro characterizationof the complex interactions between hosts, intervention policies of infectiousdiseases and demographical influences are studied. On individual scale, hosts’individualagent modeling, individual properties and behavior related to infection progression andparticularly the probabilistic model of virus infection caused by interactions are studied.
     The two interacting factors that influence individual decision-making for avoiding infections are emotion and cognition. A decision framework is constructed based on thestudy of the relationship between the two factors and their roles in the decision-making.Guided by this framework, a Fussy-Cognitive-Map-based representation model of individualemotions and cognition which supports unsupervised learning is presented, withprimary, secondary and senior emotions and cognitive knowledge of infectious diseasesconsidered. Initial causal influence weights between each pair of concepts can be tuned byapplying Nonlinear Hebbian Learning. We can set individual decision rules for avoidinginfections mapping to the iterated values of concepts in a fussy cognitive map, accordingto people’s reactions in reality when they are faced with infectious disease spreading.
     Then a key algorithm, named configuration model based scale-free complex networkgenerations, is presented to support rapid flexible and robust generations of complex networkswith given size and power law degree distributions. The social networks for viruspropagation can be generated based on the algorithm, with local principles of forming interactionsamong individuals considered, and interaction properties assigned to edges. Inaddition, random addition and deletion of vertices and edges required by other algorithmscan be avoided in our algorithm, and thus the infection progression information of eachindividual can be retained to guarantee agents’autonomy and independence.
     Next, a virus propagation simulation prototype is designed and implemented basedon aforementioned study and two applications are built to illustrate the prototype. One isfor simulating the human swine influenza A [H1N1] propagation in a closed universityarea, the other is for simulating the HIV epidemic among men who sex with men in Amsterdam,the Netherlands. After performing different scenario simulations, suggestions forpublic health decision making are given to hold back these two different infectious diseases.These two applications are advantageous to validate the Complex Agent Networksmethod presented previously.
     This study can effectively support the modeling and simulation of virus propagation,and provides a general reference procedure and framework for mimicking virus propagationin the real world. Quantitative analyses of the spreading of infectious diseases,conducted based on this study, helps theoretically and practically to investigate the interdictionsof both naturally occurring and bioterroristically aroused infectious diseases.
引文
[1] Potterat J J, Phillips-Plummer L, Muth S Q, et al. Risk network structure in the earlyepidemic phase of HIV transmission in Colorado Springs [J]. Sexually TransmittedInfections. 2002, 78: i159– i163.
    [2] Newman M E J. The structure and function of complex networks [J]. SIAM Review.2003, 45 (2): 167–256.
    [3] Martinez N D. Artifacts or attributes? Effects of resolution on the Little Rock Lakefood web [J]. Ecological Monographs. 1991, 61: 367– 392.
    [4] Olson K B. Aum Shinrikyo: Once and Future Threat? [J]. CDC Emerging Diseases.
    [5] Dewan P K, Fry A M, Laserson K. Inhalational Anthrax Outbreak among PostalWorkers, Washington, D.C., 2001 [J]. Emerging Infectious Diseases. 2002, 8 (10).
    [6] Smallpox. 2009. http://en.wikipedia.org/wiki/Smallpox.
    [7] Kaplan E H, Craft D L, Wein L M. Analyzing bioterror response logistics: the caseof smallpox [J]. Mathematical Biosciences. 2003, 185 (1): 33–72.
    [8] Anthrax. 2009. http://en.wikipedia.org/wiki/Anthrax.
    [9]刘兴堂,刘力,宋坤, et al.对复杂系统建模与仿真的几点重要思考[J].系统仿真学报. 2007, 19 (13): 3073–3075,3104.
    [10]许国志,顾基发,车宏安.系统科学[M].上海科技教育出版社, 2000.
    [11]范冬萍.复杂系统的突现与层次[J].学术研究. 2006.
    [12] Bobashev G V, Goedecke D M, Yu F, et al. A HYBRID EPIDEMIC MODEL:COMBINING THE ADVANTAGES OF AGENT-BASED AND EQUATIONBASEDAPPROACHES [C] // Henderson S G, Biller B, Hsieh M-H, et al. In2007 Winter Simulation Conference. 2007.
    [13] SM S, TW L. Exploring the World of Agent-based Simulations: Simple Models,Complex Analyses [C]. In the 2002 Winter Simulation Conference. 2002.
    [14] Kermack W, McKendrick A. A Contribution to the Mathematical Theory of Epidemics[C]. In Proceedings of the Royal Society of London. 1927.
    [15] Hyman J, Li J, Stanley E. The Differential Infectivity and Staged Progression Modelsfor the Transmission of HIV [J]. Mathematical Biosciences. 1999, 155: 77–109.
    [16] Hyman J, LaForce T. Modeling the Spread of Influenza AmongCities [M] // HTBC C-C. In Bioterrorism: Mathematical Modeling Applicationsin Homeland Security 1st edition. 2003, 2003:.第128页
    [17] Bailey N. The Mathematical Theory of Infectious Diseases and Its Applications[M]. New York: Hafner Press, 1975.
    [18] Kuznetsov Y, Piccardi C. Bifurcation analysis of periodic SEIR and SIR epidemicmodels [J]. Journal of Mathematical Biology. 1994, 32: 109–121.
    [19] Chowell G, Fenimore P W, Carsow M A C, et al. SARS out break in Ontario, HongKong and Singapore: the role of diagnosis and isolation as a control mechanism [J].Journal of Theoretical Biology. 2003, 224: 1–8.
    [20]方兆本,李红星,杨建萍.基于公开数据的SARS流行规模的建模及预报[J].数理统计与管理. 2003, 22 (5): 48–57.
    [21] Yicang Z, Zhien M, Brauer F. A Discrete Epidemic Model for SARS Transmissionand Control in China [J]. Mathematical and Computer Modeling. 2003.
    [22]时培建,徐多林,水声建. SARS传播模型及其趋势分析[J].北京石油化工学院学报. 2004, 12 (1).
    [23]刘建清,王江荣,王庆龄, et al.以SARS为例的传染病传播模型[J].兰州石化职业技术学院学报. 2006, 6 (4): 27–29.
    [24]王拉娣.传染病动力学模型及控制策略研究[D]. [S. l.]:上海大学, 2004.
    [25]白颖.突发公共卫生事件仿真分析的研究与应用[D]. [S. l.]:国防科学技术大学, 2003.
    [26] Epstein J M, Axtell R. Growing artificial societies: social science from the bottomup [M]. The MIT Press (November 8, 1996), 1996.
    [27] F H. The Science of Self-organization and Adaptivity. 2001.
    [28]朱一凡,梅珊,陈超, et al.自治主体建模在海军战术仿真中的应用[J].系统仿真学报. 2008, 20 (20): 5446–5450,5454.
    [29] Reynolds W N, Dixon D S. A General Framework for Representing Behavior inAgent Based Modeling [C]. In Complex Systems and Policy Analysis: New Toolsfor a New Millennium. Arlington VA, 2000.
    [30] Belleman R, Sloot P, Zudilova E, et al. Simulation, visualisation, interaction andmixed reality: views of the University of Amsterdam and SARA [C]. In the EUworkshop on Simulation, Visualisation, Interaction and Mixed Reality. BRUSSELS,2005.
    [31] Arthur W, Holland J, LeBaron B, et al. Asset pricing under endogenous expectationsin an artificial stock market [M]. Reading: Addison-Wesley, 1997.
    [32] Sloot P, Chen F, Boucher C. Cellular Automata Model of Drug Therapy for HIVInfection [C]. In Proceedings of the 5th International Conference on Cellular Automatafor Research and Industry. 2002: 282– 293.
    [33]桂志芳,刘忠.基于多主体的舰艇编队C3I系统建模[J].武器装备自动化.2005, 24 (2): 5–6.
    [34] Bagni R, Berchi R, Cariello P. A comparison of simulation models applied to epidemics[J]. Journal of Artificial Societies and Social Simulation. 2002, 5 (3).
    [35] Emonet T, Macal C M, North M J, et al. Agent Cell: A Digital Single-Cell Assayfor Bacterial Chemotaxis [J]. Bioinformatics. 2005, 21 (11): 2714–2721.
    [36] Franklin S, Graesser A. Is it an Agent, or just a Program? A Taxonomy forAutonomous Agents [C]. In Proceedings of the Third International Workshopon Agent Theories, Architectures and Languages. Budapest, Hungary, 1996:141–155.
    [37] Tosic P, Agha G. Understanding and Modeling Agent Autonomy in DynamicMulti-Agent, Multi-Task Environments [C]. In Proceedings of the 1st EuropeanWorkshop on Multi-Agent Systems (EUMAS’03). Oxford, England, 2003.
    [38] Wooldridge M. An Introduction to MultiAgent Systems [M]. John Wiley & SonsLtd, 2002.
    [39] Panait L, Luke S. Cooperative Multi-Agent Learning: The State of theArt [J]. Autonomous Agents and Multi-Agent Systems. 2005, 11 (3): 387–434.10.1007/s10458-005-2631-2.
    [40] Koopman J. Models of infectious disease agent study [J]. Am J Epidemiol. 2006,163 (SUPPL.).
    [41] Roche B, Guegan J-F, Bousquet F. Multi-agent systems in epidemiology: a firststep for computational biology in the study of vector-borne disease transmission.2008.
    [42] Auchincloss A H, Diez Roux A V. A new tool for epidemiology: The usefulnessof dynamic-agent models in understanding place effects on health [J]. AmericanJournal of Epidemiology. 2008, 168 (1): 1–8.
    [43]邓宏钟,迟妍,谭跃进.基于多智能体的疾病传染仿真研究[J].计算机仿真.2004, 6: 167–169.
    [44]瞿毅臻,李琦,甘杰夫.基于Repast平台的SARS传播仿真建模研究[J].计算机科学. 2008, 35 (2): 286–288.
    [45] Carley K, Altman N, Kaminsky B, et al. BioWar: A City-Scale Multi-Agent NetworkModel of Weaponized Biological Attacks [R]. 2004.
    [46] Carley K, Fridsma D, Casman E, et al. BioWar: Scalable Multi-Agent Social andEpidemiological Simulation of Bioterrorism Events. 2004.
    [47] Carley K, Altman N, Casman E, et al. BioWar: Scalable Agent-Based Model ofBioattacks [J]. IEEE Trans. on Systems, Man, and Cybernetics. 2006, 36: 252–265.
    [48] Chen L-C, Kaminsky B, Tummino T, et al. Aligning Simulation Models of SmallpoxOutbreaks [C]. In the Second Symposium on Intelligence and Security Informatics.Tucson, AZ, 2004.
    [49] Carley K, Chen L-C, Fridsma D, et al. Model alignment of anthrax attack simulations[J]. Decision Support Systems. 2006, 41: 654–668.
    [50] Valle S D, Kubicek D, Mniszewski S, et al. EpiSimS Los Angeles Case Study [R].2006.
    [51] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[J]. Physics Reports. 2006, 424 (4-5): 175–308.
    [52]汪小帆.复杂网络理论及其应用[M].清华大学出版社.
    [53]郭雷.复杂网络[M].上海科技教育出版社.
    [54] Bollobas B. Modern Graph Theory [M]. New York: Springer, 1998.
    [55] Britton T, Deijfen M, Martin-Lof A. Generating simple random graphs withprescribed degree distribution [J]. Journal of Statistical Physics. 2006, 124 (6):1377–1397.
    [56] Handcock M S, Morris M. A simple model for complex networks with arbitrarydegree distribution and clustering. 2007.
    [57] Newman M E J. Component sizes in networks with arbitrary degree distributions[J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2007,76 (4).
    [58] Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degreedistributions and their applications [J]. Physical Review E - Statistical, Nonlinear,and Soft Matter Physics. 2001, 64 (2 II): 261181–261187.
    [59] J W D, H S S. Collective dynamics of“small-world”networks [J]. Nature. 1998,393: 440–442.
    [60] Marchiori M, Latora V. Harmony in the small-world [J]. Physica A. 2000, 285:539–546.
    [61] Latora V, Marchiori M. Efficient Behavior of Small-World Networks [J]. Phys.Rev. Lett. 2001, 87: 198701.
    [62] Latora V, Marchiori M. Economic Small-World Behavior in Weighted Networks[J]. Eur. Phys. Journ. B. 2003, 32: 249.
    [63] Wasserman S, Faust K. Social Network Analysis [M]. Cambridge, UK: CambridgeUniversity Press, 1994.
    [64] Scott J. Social Network Analysis: A Handbook, 2nd ed. [M]. London: Sage Publications,2000.
    [65] Amaral L A N, Scala A, Barthelemy M, et al. Classes of small-world networks [C].In Natl. Acad. Sci. USA. 2000: 11149–11152.
    [66] Aiello W, Chung F, Lu L. A random graph model for massive graphs [C] // MachineryA o C. In the 32nd Annual ACM Symposium on Theory of Computing.New York, 2000: 171–180.
    [67] Aiello W, Chung F, Lu L. Random evolution of massive graphs [M] // Abello J,Pardalos P M, Resende M G C. Massive Data Sets. Dordrecht: Kluwer Academic,2002: 2002: 97–122.
    [68] Liljeros F, Edling C R, Amaral L A N. Sexual networks: Implication for the transmissionof sexually transmitted infection [J]. Microbes and Infections.
    [69] Liljeros F, Edling C R, Amaral L A N, et al. The web of human sexual contacts [J].Nature. 2001, 411: 907–908.
    [70] Schneeberger A, Nat R, Mercer C H, et al. Scale-free networks and sexually transmitteddiseases: A description of observed patterns of sexual contacts in Britainand Zimbabwe [J]. Sexually Transmitted Diseases. 2004, 31 (6): 380–387.
    [71] Bornholdt S, Ebel H. World wide web scaling exponent from Simon’s 1955model [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics.2001, 64 (3 II): 351041–351044.
    [72] Simon H A. On a class of skew distribution functions [J]. Models of Man. Socialand Rational. 1955.
    [73] De Solla Price D J. Networks of scientific papers [J]. Science. 1965, 149 (3683):510.
    [74] Price D D S. A general theory of bibliometric and other cumulative advantageprocesses [J]. Journal of the American Society for Information Science. 1976, 27:293–306.
    [75] Barabasi A-L, Albert R. Emergence of Scaling in Random Networks [J]. Science.1999, 286 (5439): 509–512.
    [76] Ghoshal G, Newman M E J. Growing distributed networks with arbitrary degreedistributions [J]. European Physical Journal B– Condensed Matter. 2007, 58 (2):175–184.
    [77] Sloot P M A, Ivanov S V, Boukhanovsky A V, et al. Stochastic simulation of HIVpopulation dynamics through complex network modelling [J]. International Journalof Computer Mathematics. 2008, 85 (8): 1175–1187.
    [78] Karlsson D, Jansson A, Normark B H, et al. An individual-based network modelto evaluate interventions for controlling pneumococcal transmission [J]. BMC InfectiousDiseases. 2008, 8.
    [79] Vickers D M, Osgood N D. A unified framework of immunological and epidemiologicaldynamics for the spread of viral infections in a simple network-based population[J]. Theoretical Biology and Medical Modelling. 2007, 4.
    [80] Gomez-Garde~nes J, Latora V, Moreno Y, et al. Spreading of sexually transmitteddiseases in heterosexual populations [J]. Proceedings of the National Academy ofSciences of the United States of America. 2008, 105 (5): 1399–1404.
    [81] Pautasso M, Jeger M J. Epidemic threshold and network structure: The interplay ofprobability of transmission and of persistence in small-size directed networks [J].Ecological Complexity. 2008, 5 (1): 1–8.
    [82]王旻.基于复杂网络的病毒传播及控制策略研究[D]. [S. l.]:同济大学, 2006.
    [83]余雷,薛惠锋.基于复杂网络的传染病传播模型研究[J].陕西科技大学学报.2007, 25 (3): 126–129.
    [84] Shi H, Duan Z, Chen G. An SIS model with infective medium on complex networks[J]. Physica A: Statistical Mechanics and its Applications. 2008, 387 (8-9):2133–2144.
    [85] Mei S, Sloot P. Understanding small contact networks dynamics: An agent-basedcomplex network approach [C]. In the International Workshop“Facing the Challengeof Infectious Diseases– Integrating mathematical modeling, computationalthinking and ICT applications”. ISI Foundation, Turin (Italy), 2008.
    [86] Mei S, Sloot P, Quax R, et al. Complex Agent Networks explaining the HIV epidemicamong homosexual men in Amsterdam [J]. Mathematics and Computers inSimulation. 2010, 80 (5): 1018–1030.
    [87] Little L R, McDonald A D. Simulations of agents in social networks harvesting aresource [J]. Ecological Modelling. 2007, 204 (3-4): 379–386.
    [88] Kurabayashi D, Urano K, Funato T. Emergent transportation networks by consideringinteractions between agents and their environment [J]. Advanced Robotics.2007, 21 (12): 1339–1349.
    [89]周洁萍.基于个体的医院内SARS时空传播模拟研究[D]. [S. l.]:中科院遥感应用研究所, 2005.
    [90]李群,王维平,朱一凡, et al.仿真模型设计与执行[M].科学出版社, 2007.
    [91] Luke S, Cioffi-Revilla C, Panait L, et al. MASON: A new multi-agent simulationtoolkit [J]. Proceedings of the 2004 SwarmFest Workshop. 2004.
    [92] Minar N, Burkhart R, Langton C, et al. The Swarm simulation system: A toolkit forbuilding multi-agent simulations [J]. Santa Fe Institute Working Paper 96-06-042.1996.
    [93] Tatara E, North M J, Howe T R, et al. An Introduction to Repast Modeling by Usinga Simple Predator-Prey Example [J]. Agent 2006 Conference on Social Agents:Results and Prospects. 2006.
    [94] Wilensky U, Rand W. An introduction to agent-based modeling: Modeling natural,social and engineered complex systems using NetLogo [M]. 2008.
    [95] Giraldi G A, Costa L C d, Xavier A V, et al. Methods for Analytical Understandingof Agent-Based Modeling of Complex Systems. 2005.
    [96] Edmonds B, Norling E. Emergence in and Engineering of Complex MAS, CPMReport No.: CPM-06-160 [R]. 2006.
    [97]曹军海,张和明,熊光楞.多Agent仿真中Agent行为的形式化描述方法[J].系统仿真学报. 2004, 16 (11): 2398–2400.
    [98]仲辉.基于MCBA的舰艇编队NCO行为建模方法及其关键技术研究[D].[S. l.]:国防科学技术大学, 2007.
    [99]姜伟,康晓予,郭锐, et al.海战仿真中CGF行为建模方法研究[J].计算机仿真. 2009, 26 (6): 14–18.
    [100] West D. Introduction to Graph Theory [M]. Prentice-Hall, Englewood Cliffs, NJ,1995.
    [101] Gastner M T, Newman M E J. Shape and efficiency in spatial distribution networks(cond-mat/0409702). 2004.
    [102] Vragovic I, Louis E, Daz-Guilera A. Efficiency of informational transfer in regularand complex networks [J]. Phys. Rev. E. 2005, 71 (3): 036122.
    [103]吴俊.复杂网络拓扑结构抗毁性研究[D]. [S. l.]:国防科学技术大学, 2008.
    [104] Del Valle S Y, Hyman J M, Hethcote H W, et al. Mixing patterns between agegroups in social networks [J]. Social Networks. 2007, 29 (4): 539–554.
    [105] Chowell G, Nishiura H, Bettencourt L. Comparative estimation of the reproductionnumber for pandemic influenza from daily case notification data [J]. Journal of TheRoyal Society Interface. 2007, 4: 155– 166.
    [106] Baggaley R F, Ferguson N M, Garnett G P. The epidemiological impact of antiretroviraluse predicted by mathematical models: A review [J]. Emerging Themesin Epidemiology. 2005, 2.
    [107] Xiridou M, Geskus R, De Wit J, et al. The contribution of steady and casual partnershipsto the incidence of HIV infection among homosexual men in Amsterdam [J].AIDS. 2003, 17 (7): 1029–1038.
    [108] Xiridou M, Geskus R, De Wit J, et al. Primary HIV infection as source of HIVtransmission within steady and casual partnerships among homosexual men [J].AIDS. 2004, 18 (9): 1311–1320.
    [109] Semple S J, Patterson T L, Grant I. HIV-positive gay and bisexual men: Predictorsof unsafe sex [J]. AIDS Care - Psychological and Socio-Medical Aspects ofAIDS/HIV. 2003, 15 (1): 3–15.
    [110] Davidovich U, De Wit J B F, Stroebe W. Behavioral and cognitive barriers to safersex between men in steady relationships: Implications for prevention strategies [J].AIDS Education and Prevention. 2004, 16 (4): 304–314.
    [111] Koopman J S, Jacquez J A, Welch G W, et al. The role of early HIV infection in thespread of HIV through populations [J]. Journal of Acquired Immune DeficiencySyndromes and Human Retrovirology. 1997, 14 (3): 249–258.
    [112] Henkel J. Attacking AIDS with a’Cocktail’Therapy. 1999.
    [113] Bernard E J.’Undetectable’But Infectious? November 2004.
    [114] Influenza A virus subtype H1N1. 2009. http://en.wikipedia.org/wiki/Influenza_A_virus_subtype_H1N1.
    [115] George J M, Brief A P. Motivational agendas in the workplace: The effects offeelings on focus of attention and work motivation [J]. Research in organizationalbehavior. 1998, 18: 75–109.
    [116] LeDoux J E. The emotional brain:The mysterious underpinnings of emotionallife [M]. New York:Simon & Schuster, 1996.
    [117]刘明,许力.人工情感在Agent行为选择策略中的应用[J].江南大学学报(自然科学版). 2003, 2 (6): 564–568.
    [118]江道平,班晓娟,尹怡欣, et al.情感理论及基于情感的决策理论与模型研究[J].计算机科学. 2007, 34 (4): 154–170.
    [119] Damasio A. Descartes’error: Emotion,reason and the human brain [J]. 1994.
    [120]谷学静,石志国,王志良.基于BDIAgent技术情感机器人语音识别技术研究[J].计算机应用研究. 2003: 24–26.
    [121]王志良.人工心理与人工情感[J].智能系统学报. 2006, 1 (1): 38–43.
    [122]王玉洁,王志良,王国江, et al.基于模糊认知图的情感Agent模型研究[J].计算机工程与应用. 2007, 43 (17): 1–3.
    [123]涂序彦.人工情感[C]. In中国人工智能进展.北京, 2003: 27–31.
    [124] Gadanho S C. Emotion triggered learning in autonomous robot control [J]. Cyberneticsand System. 2001, 32 (5): 531–559.
    [125] Coleman D. Emotional intelligenc [M]. New York: Bantam Books, 1995.
    [126] Picard R W. Affective Computing [M]. Cambridge, MA: MIT Press, 1997.
    [127] Yu R, Tzeng G. A soft computing method for multi-criteria decision making withdependence and feedback [J]. Applied Mathematics and Computation. 2006, 180:63–75.
    [128] Yaman D, Polat S. A fuzzy cognitive map approach for effect-based operations:An illustrative case [J]. Information Sciences. 2009, 179: 382–403.
    [129] Dickerson J, Kosko B. Virtual worlds as fuzzy cognitive maps [J]. Fuzzy Engineering.1997: 125–141.
    [130] Kosko B. Neural Networks and Fuzzy Systems [M]. New Jersey: Prentice Hall,Englewood Cliffs, 1992.
    [131] Xirogiannis G, Stefanou J, Glykas M. A fuzzy cognitive map approach to supporturban design [J]. Expert Systems with Applications. 2004, 26: 257–268.
    [132] Zhuge H, Luo X. Automatic generation of document semantics for the e-scienceknowledge grid [J]. The Journal of Systems and Software. 2006, 79: 969–983.
    [133] Papageorgiou E I, Stylios C, Groumpos P P. Unsupervised learning techniques forfine-tuning fuzzy cognitive map causal links [J]. International Journal of Human-Computer Studies. 2006, 64 (8): 727–743.
    [134] Papageorgiou E, Stylios C, Groumpos P. Fuzzy cognitive map learning based onnonlinear Hebbian rule [M] // TD Gedeon L F E. Artificial Intelligence 2903.Berlin Heidelberg: Springer-Verlag, 2003: 2003: 254–266.
    [135] Papageorgiou E I, Groumpos P P. A new hybrid method using evolutionary algorithmsto train Fuzzy Cognitive Maps [J]. Applied Soft Computing. 2005, 5 (4):409–431.
    [136] Oja E. Neural networks, principal components and subspaces [J]. Int. J. NeuralSyst. 1989, 1: 61–68.
    [137] Oja E, Ogawa H, Wangviwattana J. Learning in nonlinear constrained Hebbian networks[M] // T Kohonen e a E. Artificial Neural Networks. 1991: 1991: 385–390.
    [138] Rapoport A, Horvath W J. A study of a large sociogram [J]. Behavioral Sci. 1961,6: 279–291.
    [139] Mariolis P. Interlocking directorates and control of corporations: The theory ofbank control [J]. Social Sci. Quart. 1975, 56: 425–439.
    [140] Padgett J F, Ansell C K. Robust action and the rise of the Medici,1400-1434 [J].Amer. J. Sociol. 1993, 98: 1259–1319.
    [141] Bai W, Zhou T, Wang B. Interplay between HIV/AIDS epidemics and demographicstructures based on sexual contact networks [J]. International Journal of ModernPhysics C. 2007, 18 (6): 1025–1045.
    [142] Choi K H, Ning Z, Gregorich S E, et al. The influence of social and sexual networksin the spread of HIV and syphilis among men who have sex with men inShanghai, China [J]. Journal of Acquired Immune Deficiency Syndromes. 2007,45 (1): 77–84.
    [143] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of Growing Networkswith Preferential Linking [J]. Phys. Rev. Lett. 2000, 85 (21): 4633–4636.
    [144] Krapivsky P L, Redner S, Leyvraz F. Connectivity of Growing Random Networks[J]. Phys. Rev. Lett. 2000, 85 (21): 4629–4632.
    [145] Bianconi G, Barabasi A-L. Competition and multi-scaling in evolving networks[J]. Europhys. Lett. 2001, 54: 436–442.
    [146] Bianconi G, Barabasi A-L. Bose-Einstein Condensation in Complex Networks [J].Phys. Rev. Lett. 2001, 86 (24): 5632–5635.
    [147] Ravasz E, Barabasi A-L. Hierarchical organization in complex networks [J]. Phys.Rev. E. 2003, 67 (2): 026112.
    [148] Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks [J].Phys. Rev. E. 2002, 65 (5): 056109.
    [149] Jin E, Girvan M, Newman M. Structure of growing social networks [J]. Phys. Rev.E. 2001, 64: 46132.
    [150] Klemm K, Eguluz V M. Highly clustered scale-free networks [J]. Phys. Rev. E.2002, 65: 36123.
    [151] Sole R, Pastor-Satorras R, Smith E, et al. A model of large-scale proteome evolution[M] // Sole R, Pastor-Satorras R, Smith E, et al. Advances in Complex SystemsVol.5. 2002: 2002: 43–54.
    [152] Moore C, Ghoshal G, Newman M E J. Exact solutions for models of evolvingnetworks with addition and deletion of nodes [J]. Physical Review E - Statistical,Nonlinear, and Soft Matter Physics. 2006, 74 (3).
    [153] Xie Y B, Zhou T, Wang B H. Scale-free networks without growth [J]. Physica A:Statistical Mechanics and its Applications. 2008, 387 (7): 1683–1688.
    [154] Servedio V D P, Caldarelli G, Butta P. Vertex intrinsic fitness: How to producearbitrary scale-free networks [J]. Physical Review E - Statistical, Nonlinear, andSoft Matter Physics. 2004, 70 (5 2).
    [155] Chen Q, Shi D. The modeling of scale-free networks [J]. Physica A: StatisticalMechanics and its Applications. 2004, 335 (1-2): 240–248.
    [156] Dorogovtsev S N, Mendes J F F. Scaling properties of scale-free evolving networks:Continuous approach [J]. Physical Review E - Statistical, Nonlinear, andSoft Matter Physics. 2001, 63 (5 II): 561251–5612519.
    [157] Wilensky U. NetLogo Preferential Attachment model. 2005.
    [158] Bender E, Canfield E. The asymptotic number of labelled graphs with given degreesequences [J]. J. Combin. Theory Set. A. 1978, 24: 296–307.
    [159] Molloy M, Reed B. A critical point for random graphs with a given degree sequence[J]. Random Struct. Algorithms. 1995, 6 (2-3): 161–179.
    [160] Chung F, Lu L. The average distances in random graphs with given expected degrees[J]. Proceedings of the National Academy of Sciences of the United Statesof America. 2002, 99 (25): 15879–15882.
    [161] Graham F C, Lu L. Connected components in random graphs with given degreesequences [J]. 2005.
    [162] Xu X P, Liu F. A novel configuration model for random graphs with given degreesequence [J]. Chinese Physics. 2007, 16 (2): 282–286.
    [163] Goh K-I, Kahng B, Kim D. Universal Behavior of Load Distribution in Scale-FreeNetworks [J]. Phys. Rev. Lett. 2001, 87 (27): 278701.
    [164] Caldarelli G, Capocci A, De Los Rios P, et al. Scale-Free Networks from VaryingVertex Intrinsic Fitness [J]. Phys. Rev. Lett. 2002, 89 (25): 258702.
    [165] O’Madadhain J, Fisher D, Smyth P, et al. Analysis and visualization of networkdata using JUNG [J]. Journal of Statistical Software. 2005.
    [166]中华人民共和国卫生部.卫生部甲型H1N1流感防控工作信息通报. 2009.http://www.moh.gov.cn.
    [167]湖南省卫生厅.湖南省甲型H1N1流感防控工作信息通报. 2009. http://www.21hospital.com.
    [168] 2009 flu pandemic. 2009. http://en.wikipedia.org/wiki/2009_flu_pandemic.
    [169] Mei S, Xuan Y, Vijver D v d, et al. Quantitatively Evaluating Interventions in theInfluenza A (H1N1) Epidemic on China Campus Grounded on Individual-basedSimulations [C]. In the International Conference on Computational Science 2010(ICCS 2010). Amsterdam, the Netherlands, 2010.
    [170] Brandes U. A Faster Algorithm for Betweenness Centrality [J]. Journal of MathematicalSociology. 2001, 25 (2): 163–177.
    [171] UNAIDS, WHO. 2007 AIDS epidemic update [R]. 2007.
    [172] UNAIDS, WHO. 2008 Report on the global AIDS epidemic: Executive summary[R]. 2008.
    [173] UNAIDS, WHO. 2008 Report on the global AIDS epidemic [R]. 2008.
    [174] Laar M v d, Boer I d, Koedijk F, et al. HIV and Sexually Transmitted Infections inthe Netherlands in 2004. 2004. http://www.soaaids-professionals.nl/documenten/RIVM-rapport-2005.pdf.
    [175] Veen M v, Koedijk F, Broek I v d, et al. Sexually transmitted infections in theNetherlands in 2006. 2006. http://rivm.openrepository.com/rivm/bitstream/10029/16495/1/210261003.pdf.
    [176] Choi K H, Liu H, Guo Y, et al. Emerging HIV-1 epidemic in China in men whohave sex with men [J]. Lancet. 2003, 361 (9375): 2125–2126.
    [177] Ma X, Zhang Q, Zhao J, et al. Possible rise in HIV prevalence among men whohave sex with men (MSM) in Beijing [C]. In 16th International AIDS Conference.Toronto, Canada, 2006.
    [178] Lv F, Wang N, Wu Z, et al. HIV/AIDS EPIDEMIC IN CHINA: INCREASING ORDECREASING? [C]. In 16th International AIDS Conference. Toronto, Canada,2006.
    [179] Overview of the Amsterdam Cohort Studies among homosexual men and drugusers. 2006. http://www.amsterdamcohortstudies.org/menu/reports/ACSoverview2006.pdf.
    [180] The Amsterdam Cohort Studies on HIV infection Annual Report 2006. 2006.http://www.amsterdamcohortstudies.org/menu/reports/ACSannualreport2006.pdf.
    [181] Caceres C F, Van Griensven G J P. Male homosexual transmission of HIV-1 [J].AIDS. 1994, 8 (8): 1051–1061.
    [182] Leynaert B, Downs A M, De Vincenzi I. Heterosexual transmission of human immunodeficiencyvirus: Variability of infectivity throughout the course of infection[J]. American Journal of Epidemiology. 1998, 148 (1): 88–96.
    [183] Vittinghoff E, Douglas J, Judson F, et al. Per-contact risk of human immunodeficiencyvirus transmission between male sexual partners [J]. American Journal ofEpidemiology. 1999, 150 (3): 306–311.
    [184] DeGruttola V, Seage Iii G R, Mayer K H, et al. Infectiousness of HIV between malehomosexual partners [J]. Journal of Clinical Epidemiology. 1989, 42 (9): 849–856.
    [185] Boily M C, Bastos F I, Desai K, et al. Changes in the Transmission Dynamicsof the HIV Epidemic after the Wide-Scale Use of Antiretroviral Therapy CouldExplain Increases in Sexually Transmitted Infections: Results from MathematicalModels [J]. Sexually Transmitted Diseases. 2004, 31 (2): 100–112.
    [186] Dukers N H T M, Goudsmit J, De Wit J B F, et al. Sexual risk behaviour relates tothe virological and immunological improvements during highly active antiretroviraltherapy in HIV-1 infection [J]. AIDS. 2001, 15 (3): 369–378.
    [187] Bezemer D, De Wolf F, Boerlijst M C, et al. A resurgent HIV-1 epidemic amongmen who have sex with men in the era of potent antiretroviral therapy [J]. AIDS.2008, 22 (9): 1071–1077.第
    [188] Hendriks J C M, Craib K J P, Veugelers P J, et al. Secular trends in the survivalof HIV-infected homosexual men in Amsterdam and Vancouver estimated froma death-included CD4-staged Markov model [J]. Int J Epidemiol. 2000, 29 (3):565–572.
    [189] Ronald B G. Methods for estimating the AIDS incubation time distribution whendate of seroconversion is censored [J]. Statistics in Medicine. 2001, 20 (5):795–812.
    [190] Detels R, Munoz A, McFarlane G, et al. Effectiveness of Potent AntiretroviralTherapy on Time to AIDS and Death in Men With Known HIV Infection Duration[J]. JAMA: Journal of the American Medical Association. 1998, 280 (17):1497. 00987484.
    [191] Dorrucci M, Balducci M. Temporal Changes in the Rate of Progression to DeathAmong Italians With Known Date of HIV [J]. JAIDS: Journal of Acquired ImmuneDeficiency Syndromes. 1999, 22 (1): 65. 15254135.
    [192] Tarwater P M, Mellors J, Gore M E, et al. Methods to Assess Population Effectivenessof Therapies in Human Immunodeficiency Virus Incident and PrevalentCohorts [J]. American Journal of Epidemiology. 2001, 154 (7): 675–681.
    [193]盛骤,谢式千,潘承毅.概率论与数理统计[M].高等教育出版社, 1989.
    [194] Pearson’s chi-square test. 2009. http://en.wikipedia.org/wiki/Pearson’s_chi-square_test.
    [195] Wolitski R J, Flores S A, O’Leary A, et al. Beliefs about personal and partnerresponsibility among HIV-seropositive men who have sex with men: Measurementand association with transmission risk behavior [J]. AIDS and Behavior. 2007,11 (5): 676–686.
    [196] Crepaz N, Hart T A, Marks G. Highly active antiretroviral therapy and sexual riskbehavior: A meta-analytic review [J]. Journal of the American Medical Association.2004, 292 (2): 224–236.
    [197] Stolte G, Dukers N H, de Wit J B, et al. A summary report from Amsterdam: increasein sexually transmitted diseases and risky sexual behaviour among homosexualmen in relation to the introduction of new anti-HIV drugs [J]. Euro surveillance: bulletin europeen sur les maladies transmissibles = European communicabledisease bulletin. 2002, 7 (2): 19–22.
    [198] Dukers N H T M, Fennema H S, Van Der Snoek E M, et al. HIV incidence and HIVtesting behavior in men who have sex with men: Using three incidence sources,the Netherlands, 1984-2005 [J]. AIDS. 2007, 21 (4): 491–499.
    [199] Marks G, Crepaz N, Senterfitt J W, et al. Meta-analysis of high-risk sexual behaviorin persons aware and unaware they are infected with HIV in the United States:Implications for HIV prevention programs [J]. Journal of Acquired Immune DeficiencySyndromes. 2005, 39 (4): 446–453.
    [200] Marks G, Crepaz N, Janssen R S. Estimating sexual transmission of HIV frompersons aware and unaware that they are infected with the virus in the USA [J].AIDS. 2006, 20 (10): 1447–1450.
    [201] Williamson L M, Dodds J P, Mercey D E, et al. Sexual risk behaviour and knowledgeof HIV status among community samples of gay men in the UK [J]. AIDS.2008, 22 (9): 1063–1070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700