非化学计量比硫族银化物奇异磁电阻效应的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非化学计量比的硒化银和碲化银(本文统称硫族银化物)系列材料展现出奇特的磁电阻(Magnetoresistance,MR)效应:在超宽磁场(0.1mT~55T)和超宽温度(4K~300K)范围内材料显示正MR效应,且MR效应与磁场呈线性关系。这一奇异的MR效应使该系列材料在超强磁场的测量、脉冲激光技术、磁技术和信息读取技术等领域均具有广泛的应用前景,美国能源部已将这种材料作为未来十年重点开发的材料之一。但是该系列材料的制备工艺还有待进一步地完善和优化,材料的表征和性能的研究还远远不够充分,甚至出现报道结果相互抵触的情况。至于该系列材料的机理研究尚属起步阶段,国外文献尽管有一些工作能够定性或者半定量地与实验结果吻合,但是一个公认的建立在第一性原理基础上的理论机制尚未建立。
     本文就是在此背景下基于目前所有的实验事实,尤其是对材料的微观结构的观测,并且在充分调研国际上相关机理的研究后,比较深入、系统地探索了非化学计量比硫族银化物系列材料MR效应的机理。我们研究的结果是国际上最早能够与实验进行定量比较的理论模型,主要针对块材和薄膜分两个层次建立了四个理论模型。
     首先,第一个层次是从唯象角度建立的模型。第一个模型是所谓的两相复合材料有效介质近似模型。模型的基本物理思想是假设材料的结构可以从整体上视为许多小的银金属沉积物镶嵌于硒化银或碲化银介质中,即所谓的两相(金属相和半导体相)复合材料。模型的关键之处在于根据材料属于窄禁带半导体的特点,基于对实验数据的观察,找到材料中载流子迁移率随温度和磁场场强的依赖关系。利用有效介质近似的自洽方程成功构建了国际上第一个理论结果与实验结果可以进行定量比较的模型。利用模型分析了块材的MR效应与磁场、温度及银金属组分浓度的变化规律。分析认为,材料内部结构的不均匀导致材料内电流的流动发生弯曲,在外磁场作用下电流的弯曲加强,从而引起材料的奇异MR效应。利用模型预测了银组分的最佳掺杂浓度,此时材料的MR效应最为显著,其相应的物理图像是此时银金属在材料内部发生逾渗。理论计算值与实验值进行比较,两者吻合较好。
     在第一层次,我们建立的第二个模型是两相复合材料的双重性转换模型。第一个模型不能用于薄膜MR效应的研究,原因是薄膜的边界效应显著,导致有效介质近似自洽方程不再成立。因此,要建立薄膜MR效应的理论模型必须另辟它径。仍然假设非化学计量比的硫族银化物材料是两相复合材料,并认为银金属是一滴滴小液滴镶嵌于半导体中,无磁场时这样的两相复合材料可以用“任意小液滴”模型描述。关键在于我们需要计算有磁场条件下的非对称的二阶有效电导率张量。为此,我们利用双重性转换(Duality transformation)关系,将问题转变为在物理上完全等价的无磁场条件下的标量电导率的计算。结果表明,理论计算的MR效应的数值与实验值完全吻合。
     为了能够更深入、直观地探讨材料产生MR效应的物理图像,我们在第二个层次(即半唯象的层次)建立了新的理论模型——准随机电阻网络模型,分别描述二维薄膜和三维块材的MR性质。模型的主要思想是认为材料内部电流的流动可以用电阻网络中的电流流动描述。模型中薄膜和块材分别被离散为四端口和六端口电阻单元整齐、有序排列而成的电阻网络。网络内部载流子的迁移率分布满足准随机分布,即受条件限制的高斯分布。两个物理限制条件为:分布的边界值分别为银组分和半导体组分的载流子迁移率;分布的均值与材料中银组分体积分数f有关,用复合材料的并联模型决定。对于准随机电阻网络模型进行了极其复杂的数值模拟运算,得到MR效应随磁场、温度变化规律,模拟结果与实验值极为吻合。模型的显著优点是,外电场、外磁场作用下不均匀材料内部电流的流动情况可以用网络内部电流的可视图直观反映。我们清晰地看到电流在外加磁场下发生强烈弯曲,电流流动的路径增加,使得材料的电阻增大,从而导致材料的正线性MR效应。这些工作有助于今后从第一性原理出发探寻相应的物理本质。
     在实验上已经发现非化学计量比硫族银化物材料的纵向MR效应,并进行了初步地表征研究。实验结果表明,随着掺杂种类的不同,材料纵向MR效应呈现复杂的行为,有正的纵向MR效应,也有负的纵向MR效应。国际上唯一的一篇探索相关机理的文章只是给出了负的纵向MR效应的定性说明。本文则在实验观察的基础上,构建了纵向MR效应的随机电阻网络模型。基于材料内部的不均匀性和纵向MR效应的特点,对材料的电阻率张量以及网络电阻单元的六阶阻抗矩阵进行修正。研究表明,我们的模型完全能描述目前纵向MR效应的复杂行为,并且能够半定量地与实验结果吻合。尤其可贵的是,通过模拟三维电流可视图,清晰展示了样品厚度方向上的电流“喷射”现象。研究表明,材料的纵向MR效应主要是由于材料在厚度上的不均匀性造成的。
An abnormal magnetoresistance (MR) of non-stoichiometric silver selenide and telluride (called by a joint name silver chalcogenide) is found firstly in 1997. It was shown that the MR of silver chalcogenide samples exhibits a linear dependence on magnetic field from 1mT to 5.5 T in the range of temperature from 4 to 300K. Silver chalcogenide material is expected to be measuring instrument for the high magnetic field, pulse laser technology, magnetic technology and information read technology. U.S. Department of Energy plans it as one of the most attentive materials in the next decade. However, the preparation technology for the materials need be improved further more and the investigation of materials' nature is inadequate. The reports about materials are even contradiction. Driven by the experimental results, theory researchers proposed models to interpret the unusual linear MR effect. Although the theory study has achieved some progress but no model has been compared with the experimental data quantitatively. A theory based on the first principle for the MR of non-stoichiometric silver chalcogenides is not built.
     Taking this into consideration, we observed the experimental fact, especially the structure of materials, and investigated the existing theory, then explored the mechanism of the MR effect of materials thoroughly and systemically. Based on two levels, we proposed four models for the MR of materials which results can be compared with the experimental results quantitatively.
     A first model proposed by us is a phenomenological model on the first level. The basic physical thought of the model is that the silver chalcogenide is regard as two-component (silver metal component and semiconductor component) composition. The key of the model is that the dependence of the mobility of carriers in the materials on the temperature and magnetic field is found. Based on the effective media approximation (EMA), the model for the MR of the three-dimension bulks is proposed and the results by the model agree well with the experimental data for the first time. The model takes the MR as a function of magnetic field, temperature and the conductivity of two components without magnetic field, and works when T > 112.5K . A critical volume fraction of silver metal is found, at which the MR reaches the maximum value in the same magnetic field and temperature. We suggest that the critical volume fraction is the result of the percolation between silver particles in silver selenide and telluride bulks.
     The second model on the first level is a duality transformation model of two-component composition. Since boundary effect of the thin films is remarkable, the EMA model is unsuitable for the thin films. So a new model need be proposed for the MR of thin films. We hold the supposition that the silver chalcogenide is two-component composition which can be depicted by the "random droplet" model without magnetic field. Now we must calculate the effective conductivity tensor for the films in a magnetic field. A general duality transformation is found which maps the conductivity-tensor into a new, isomorphic, well-defined conductivity tensor. It is indicated that the model predictions agree well with the available experimental data.
     For discussing the physical mechanism of MR effect intuitively and thoroughly, a quasi-random network model was proposed to simulate the real material on the second level (the half-phenomenological level). The main thought of the model is that the current in the real material can be described by the current in the resistor network.The thin film is dispersed into a two-dimension resistor network which is constructed from four-terminal resistors and the bulk is dispersed into a three-dimension resistor network which is constructed from six-terminal resistors. The mobility of carriesμwithin the network has a quasi-random distribution, i.e. a Gaussian distribution with two constraint conditions. The two constraint conditions are as follows: 1) The boundary values ofμare themobility of silver metalμ_1 and semiconductorμ_2 respectively; 2) The average value ofμis described by the parallel connection model of composite. The model predicts the dependence of the MR with the magnetic field and temperature. A good agreement is found between the theoretical MR and the available experimental data. The 2D and 3D visualizations of current flow within the network are indicated: the inhomogeneous of mobility in the network induce the intense curving flowing of electric current and MR effect of materials in magnetic field. This work is helpful for the mechanism of the MR of materials based on the first principle.
     The longitudinal MR of the non-stoichiometric silver chalcogenide was reported by Hu et al. It is indicated that the p-type and n-type doped materials has complicated longitudinal MR, including positive MR and negative MR. The only literature proposed a model which shows the negative MR. In this work, a random network model was proposed to investigate the complex phenomenon of longitudinal MR of materials. The resistivity tensor of material and the tensor of resistor unit in the network are corrected because of the inhomogenous nature of materials and the nonzero transverse-longitudinal coupling component of resistivity tensor. The model predictions are compared with the experimental result Semi-quantitatively. The visualizations of current flow within the network indicates the intense flowing of electric current along sample's thickness direction which analogous to the effect known as current jetting. The findings indicate that the inhomogenous nature of materials induces the complicated longitudinal MR.
引文
[1]郭奕玲,沈慧君,著名经典物理实验,北京:北京科学技术出版社,1991,p116-124.
    [2]Edelstein A.,Advances in magnetometry,Journal of Physics Condensed Matter,2007,19(16):165217.
    [3]Anon,Whither oxide electronics?,MRS Bulletin,2008,33(11):1006-1014.
    [4]Alvarez G.,Al-Hassanieh K.A.,Popescu F.,et al.,Study of strongly correlated electrons in nanoscopic and bulk forms:Some recent results,Journal of Physics Condensed Matter,2007,19(12):125213.
    [5]McFadyen I.R.,Fullerton E.E.,and Carey M.J.,State-of-the-art magnetic hard disk drives,MRS Bulletin,2006,31(5):379-383.
    [6]Bobo J.F.,Gabillet L.,and Bibes M.,Recent advances in nanomagnetism and spin electronics,Journal of Physics Condensed Matter,2004,16(5):471-496.
    [7]Jonker B.T.,Progress toward electrical injection of spin-polarized electrons into semiconductors,Proceedings of the IEEE,2003,91(5):727-740.
    [8]Gilleo K.,Goodrich B.,and Nicholls G.,Ultra-high density magnetic heads,2002,The International Society for Optical Engineering.
    [9]Fontcuberta J.,Balcells L.,Bibes M.,et al.,Magnetoresistive oxides:New developments and applications,Journal of Magnetism and Magnetic Materials,2002,242-245(PART Ⅰ):98-104.
    [10]Akinaga H.and Ohno H.,Semiconductor spintronics,IEEE Transactions on Nanotechnology,2002,1(1):19-31.
    [11]Baliga J.,Read-write heads follow steep progress curve,Semiconductor international,2001,24(2 Suppl):6.
    [12]Speriosu V.S.,Herman D.A.,Jr.,Sanders I.L.,et al.,Magnetic thin films in recording technology,IBM Journal of Research and Development,2000,44(1):186-204.
    [13]Tehrani S.,Slaughter J.M.,Chen E.,et al.,Progress and outlook for MRAM technology,1999,Piscataway,N J,USA:Institute of Electrical and Electronics Engineers Inc.
    [14]Himpsel F.J.,Ortega J.E.,Mankey G.J.,et al.,Magnetic nanostructures,Advances in Physics,1998,47(4):511-597.
    [15]Sugiyama Y.,Recent progress on magnetic sensors with nanostructures and applications,Journal of Vacuum Science & Technology B:Microelectronics Processing and Phenomena,1995,13(3):1075-1083.
    [16]邢定钰,自旋运输和巨磁电阻——自旋电子学的物理基础之一,物理,2005,5:348.
    [17]詹文山,自旋电子学研究与进展,物理,2006,35卷第十期:811-817.
    [18]Baibich M.N.,Broto J.M.,Fert A.,et al.,Giant Magnetoresistance of Fe/(001)Cr Magnetic Superlattices,Physical Review Letters,1988,61:2472-2475.
    [19]Grünberg P.R.,Sehreiber R.,Pang Y.,Layered magnetic structures:evidence for antiferromagnetie coupling of Fe layers across Cr interlayers,Physical Review Letters,1996,57:2442-2445.
    [20]Jin S.,Tiefel T.H.,Mc Cormack M.,Fastnacht R.A.,Ramesh R.and Chen L.H.,Thousandfold Change in Resistivity in Magnetoresistance La-Ca-Mn-O Film,Science,1994,264:413.
    [21]张海峰,刘晓为,王喜莲等,磁电阻效应的原理及其应用,哈尔滨工业大学学报,2008,40卷第3期:362-366.
    [22]周勋,梁冰清,唐云俊等,磁电阻效应的研究进展,物理实验,2000,20卷第9期:13-16.
    [23]Thomson W.,Effects of magnetization on the electric conductivity of nickel and of iron.Proc.Roy.Soc.,1857,8:546-550
    [24]Mitchell E.N.,Haukaas H.B.,Bale H.N.et al.,Compositional and thickness dependence of the ferromagnetic anisotropy in resistance of iron-nickel films,Applied Physics,1964,35:2604.
    [25]Kwiatkowski W.and Tumanski S.,Magnetoresistive permalloy sensors and magnetometers,Archiwum Elektrotechniki (Warsaw),1983,32(1-2):55-66.
    [26]Anon,Method of manufacturing thin film with magnetic anisotropy,IBM Technical Disclosure Bulletin,1985,27(10B):6001.
    [27]Bertram H.N.,Linear signal analysis of shielded AMR and spin valve heads,IEEE Transactions on Magnetics,1995,31(6 pt 1):2573-2578.
    [28]Lee J.H.and Rhie K.,Spin pumping technique and its observation,IEEE Transactions on Magnetics,1999,35(5 pt 2):3784-3786.
    [29]Dolabdjian C.,Qasimi A.,and Cordier C.,Applied magnetic sensing:A long way,2003:Institute of Electrical and Electronics Engineers Inc.
    [30]Hauser H.,Fulmek P.L.,Haumer P.,et al.,Flipping field and stability in anisotropic magnetoresistive sensors,Sensors and Actuators A:Physical,2003,106(1-3):121-125.
    [31]Yildiz F.,Kazan S.,Aktas B.,et al.,Magnetic anisotropy studies on FeNiCo/Ta/FeNiCo three layers film by layer sensitive ferromagnetic resonance technique,Physica Status Solidi C:Conferences,2004,1(12):3694-3697.
    [32]Jiang L.,Gokce A.,Da Silva F.C.S.,et al.,Zigzag-shaped AMR magnetic sensors:Transfer characteristics and noise,2005,Bellingham WA,WA 98227-0010,United States:International Society for Optical Engineering.
    [33]Stutzke N.A.,Russek S.E.,Pappas D.P.,et al.,Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors,Journal of Applied Physics,2005,97(10):10-107.
    [34]Jiang Z.,Llandro J.,Mitrelias T.,et al.,An integrated microfluidic cell for detection,manipulation,and sorting of single micron-sized magnetic beads,Journal of Applied Physics,2006,99(8):08-105.
    [35]Xu H.G.,Wang C.X.,Yang R.Q.,et al.,Extended Kalman Filter based magnetic guidance for intelligent vehicles,2006,Piscataway,NJ 08855-1331,United States:Institute of Electrical and Electronics Engineers Inc.
    [36]Dimitrova P.,Andreev S.,and Popova L.,Thin film integrated AMR sensor for linear position measurements,Sensors and Actuators A:Physical,2008,147(2):387-390.
    [37]Jingbao L.,Kongyao H.,and Xueting Z.,Electronic system design of Towed Ocean Bottom Magnetometer,2008,Piscataway,NJ 08855-1331,United States:Institute of Electrical and Electronics Engineers Inc.
    [38]Parkin S.S.P.,Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d,4d,and 5d transition metals,Physics Review Letters,1991,67:3598-3601.
    [39]Fert A.,Grünberg P.R.,Barth(?)l(?)m Y.,et al.,Layered magnetic structures:interlayer exchange coupling and giant magnetoresistance.Magnetism and Magnetic Materials,1995,140:1-8.
    [40]Ehrlich A.C.,Influence of interlayer quantum-well state on the giant magnetoresistance in magnetic multilayers,Physical Review Letters,1993,71:2300-2303.
    [41]Camley R.E.and Barna(?) J.,Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling,Physical Review Letters,1989,63:664-667.
    [42]卢森锴,陈远英,巨磁电阻效应及其研究进展,世界科技研究与发展,2008,30(1):84-88.
    [43]Compiled by the class for physics of the Royal Swedish Academy of Sciences:The discovery of giant magnetoresistance—scientific background on the Nobel prize in physics 2007,October 9,2007.
    [44]孙光飞,强文江,磁功能材料,北京:化学工业出版社,2007,p208-210,p220,p231.
    [45]Xiao S.and Yang X.,Electron-beam patterning and process optimization for magnetic sensor fabrication,Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures,2006,24(6):2940-2944.
    [46]Windeln J.,Bram C.,Eckes H.L.,et al.,Applied surface analysis in magnetic storage technology,Applied Surface Science,2001,179(1-4):167-180.
    [47]van der Graaf A.,Ball A.R.,and Kools J.C.S.,Magnetic alignment in spin-valve system studied by polarized neutron reflectometry,Journal of Magnetism ana Magnetic Materials,1997,165(1-3):479-483.
    [48]Van Dau F.N.,Giant magnetoresistance of magnetic multilayers,Vide:Science,Technique et Applications,1998,53(290):770-782.
    [49]Singer P.,Read/write heads:the MR revolution,Semiconductor International,1997, 20(2):71-76.
    [50]Roddick E.and New R.,Effect on soft error rate of kinks and open loops in the read-head transfer curve,2001:Institute of Electrical and Electronics Engineers Inc.
    [51]Rausch T.,Bain J.A.,Stancil D.D.,et al.,Near field hybrid recording with a mode index waveguide lens,2000,Bellingham,WA,USA:Society of Photo-Optical Instrumentation Engineers.
    [52]Petford-Long A.K.,In situ transmission electron microscope studies of information storage materials,Journal of Magnetism and Magnetic Materials,1997,175(1-2):109-110.
    [53]Pannetier-Lecoeur M.,Fermon C.,de Vismes A.,et al.,Low noise magnetoresistive sensors for current measurement and compasses,Journal of Magnetism and Magnetic Materials,2007,316(2 SPEC ISS):246-248.
    [54]Nakamura Y.,Okamoto Y.,Osawa H.,et al.,A Study of Turbo Decoding With Embedded AR Channel Model for Perpendicular Recording,IEEE Transactions on Magnetics,2003,39(5 Ⅱ):2570-2572.
    [55]Nakamoto K.,Okada T.,Watanabe K.,et al.,Single-Pole/TMR Heads for 140-Gb/in2 Perpendicular Recording,IEEE Transactions on Magnetics,2004,40(1 Ⅱ):290-294.
    [56]Kim J.Y.,Lee B.K.,Watanabe S.,et al.,Comparisons of standard and modified perpendicular magnetic recording disks with ring head writing,Journal of Magnetism and Magnetic Materials,2001,226(SUPPL 2):2051-2053.
    [57]Hoshino K.,Odai S.,and Hatatani M.,Applying Amorphous CoNbZr Shield to Improve the Dielectric-Breakdown Voltage of the Gap Layers of Narrow-Gap Read Heads,IEEE Transactions on Magnetics,2003,39(5 Ⅱ):2393-2395.
    [58]Himpsel F.J.,Magnetic quantum structures,Journal De Physique.Ⅳ:JP,1994,4(9):9-83.
    [59]Haginoya C.,Hatatani M.,Meguro K.,et al.,Side-shielded tunneling magnetoresistive read head for high-density recording,IEEE Transactions on Magnetics,2004,40(4 Ⅱ):2221-2223.
    [60]Grochowski E.and Fontana R.E.,Magnetic recording technology-advances through the year 2000 and beyond,1998,Piscataway,NJ,USA:IEEE.
    [61]Everitt B.A.,Olson D.,Van Nguyen T.,et al.,Vertical giant magnetoresistive read heads for 50-Gb/in2 magnetic recording,IEEE Transactions on Magnetics,2005,41(1 Ⅰ):125-131.
    [62]Bae S.,Tsu I.F.,Davis M.,et al.,Electromigration study of magnetic thin films for the electrical reliability of spin-valve read heads,2002:Institute of Electrical and Electronics Engineers Inc.
    [63]Nor A.F.M.,Hill E.W.,and Parker M.R.,Geometry effects on low frequency noise in giant magnetoresistance (GMR) sensors,IEEE Transactions on Magnetics,1998,34(4 pt 1):1327-1329.
    [64]Overend N.,Nogaret A.,Gallagher B.L.,et al.,Observation of a new type of giant magnetoresistance with possible sensor applications,Materials Science & Engineering B:Solid-State Materials for Advanced Technology,1998,B51(1-3):216-218.
    [65]Yamane H.,Mita J.,and Kobayashi M.,Spin-valve film for sensitive giant magnetoresistive sensor using AC bias magnetic field,Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,1998,62(8):701-707.
    [66]Marrows C.H.,Stanley F.E.,and Hickey B.J.,Inverse giant magnetoresistance at room temperature in antiparallel biased spin valves and application to bridge sensors,Applied Physics Letters,1999,75(24):3847-3849.
    [67]Dogaru T.and Smith S.T.,Edge crack detection using a giant magnetoresistance based eddy current sensor,Nondestructive Testing and Evaluation,2000,16(1):31-53.
    [68]Holliday N.T.and Hill E.W.,Intelligent instrument for giant magnetoresistance sensor evaluation,Sensors and Actuators A:Physical,2000,81(1):385-388.
    [69]Mancoff F.B.,Hunter Dunn J.,Clemens B.M.,et al.,A giant magnetoresistance sensor for high magnetic field measurements,Applied Physics Letters,2000,77(12):1879-1881.
    [70]Petta J.R.,Ladd T.,and Weissman M.B.,Nonlinear AC response and noise of a giant magnetoresistive sensor,IEEE Transactions on Magnetics,2000,36(4 Ⅱ):2057-2061.
    [71]Jury J.C.,Klaassen K.B.,Van Peppen J.C.L.,et al.,Measurement and analysis of noise sources in giant magnetoresistive sensors Up to 6 GHz,IEEE Transactions on Magnetics,2002,38(5 Ⅱ):3545-3555.
    [72]Khapikov A.,Simion B.,and Lederman M.,Magnetic and thermal properties of PtMn giant magnetoresistive sensors,Journal of Applied Physics,2003,93(10 2):7313-7315.
    [73]Yamada S.,Chomsuwan K.,and Iwahara M.,Application of giant magnetoresistive sensor for nondestructive evaluation,2006,Piscataway,NJ 08855-1331,United States:Institute of Electrical and Electronics Engineers Inc.
    [74]Qian Z.and Zhang X.,Analysis of characteristic of giant magnetoresistance sensor applied in electronic current transformer,2007,Piscataway,NJ 08855-1331,United States:Institute of Electrical and Electronics Engineers Inc.
    [75]Gangopadhyay S.,Cross R.W.,Elliner G.,et al.,Colossal magnetoresistance in pulsed laser-deposited thin ceramic films,Journal of Magnetism and Magnetic Materials,1995,147(3):225-230.
    [76]Jin S.,Colossal magnetoresistance in La-Ca-Mn-O,1997,Warrendale,PA,USA:MRS.
    [77]Cohenca C.H.,Jardim R.F.,and Lacerda A.H.,Colossal magnetoresistance in polycrystalline Pr_(1-x)Ba_xMnO_3 compounds,Radiation Effects and Defects in Solids,1998,147(1-2 pt 2):93-100.
    [78]Goodenough J.B.,Colossal magnetoresistance in Ln_(1-x)A_xMnO_3 perovskites,Australian Journal of Physics,1999,52(2):155-186.
    [79]Chen S.,Lai H.,Xiao Y.,et al.,Colossal magnetoresistance properties in series of two-element-doped La-(Ca,Ba)-Mn-O compounds,Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering,2003,32(8):615-620.
    [80]Dorr K.,Muller K.H.,Kozlova N.,et al.,Field dependence of colossal magnetoresistance in magnetic fields up to 50 T,Journal of Magnetism and Magnetic Materials,2005,290-291 PART 1:416-419.
    [81]Chekanova A.E.,Philippov Y.Y.,Goodilin E.A.,et al.,Application of nanostructured ASP precursors for processing CaCuMn_6O_(12) colossal magnetoresistance ceramics,International Journal of Applied Ceramic Technology, 2006,3(4):259-265.
    [82]Ogawa T.,Shindo H.,Takeuchi H.,et al.,Electrical and magnetic properties and colossal magnetoresistance effect of La_(1-x)Bi_xMnO_3,Japanese Journal of Applied Physics,Part Ⅰ:Regular Papers and Short Notes and Review Papers,2006,45(11):8666-8672.
    [83]Shiotani Y.,Sarrao J.L.,and Zheng G.-Q.,Field-induced ferromagnetic order and colossal magnetoresistance in La_(1.2)Sr_(1.8)Mn_2O_7:A La139 NMR study,Physical Review Letters,2006,96(5):057203.
    [84]Liu J.W.,Chen G.,Li Z.H.,et al.,Magnetic and electric properties of the colossal magnetoresistance manganite Sm_(1.4)Sr_(1.2)Ca_(0.4)Mn_2O_7,Solid State Communications,2007,141(6):341-343.
    [85]Zhu D.,Shu Q.,Liu W.,et al.,The coexistence and competition of low-field magnetoresistance and colossal magnetoresistance in polycrystalline La_(0.49)Sr_(0.51)(Mn_(1-x)Nb_x)O_3,Materials Chemistry and Physics,2007,103(2-3):437-440.
    [86]Silva R.A.,Costa F.M.,Silva R.F.,et al.,Electric field-modified segregation in crystal fibers of colossal magnetoresistive La_(0.7)Ca_(0.3)MnO_3,Journal of Crystal Growth,2008,310(15):3568-3572.
    [87]Julliere M.,Tunneling between ferromagnetic films,Physics Letters,1975,54A:225-226.
    [88]Penz P.A.and Bowers R.,Strain-Dependent Magnetoresistance of Potassium,Physical Review,1968,172:991.
    [89]Jones B.K.,Strain-Dependent Magnetoresistance of Sodium and Potassium,Physical Review,1969,179:637.
    [90]Lass J.S.,Induced torque in an ellipsoid.Torque anisotropy in potassium,Journal of Physics C:Solid State Physics,1970,3:1926.
    [91]Taub H.,Schmidt R.L.,Maxwell B.,Wand Bowers R.,Study of the Transverse Magnetoresistance of Polycrystalline Potassium,Physical Review B,1971,4:1134.
    [92]Simpson A.M.,Magnetoresistance of potassium,Journal of Physics F:Meterial Physics,1973,3:1471.
    [93]Newrock R.S.,Maxwell B.W.,Transverse thermal magnetoresistance of potassium,Journal of Low Temperature Physics,1976,23:119.
    [94]Jones B.K.,Strain-Dependent Magnetoresistance of Sodium and Potassium,Physical Review,1969,179:637.
    [95]Fickett F.R.,Magnetoresistance of Very Pure Polycrystalline Aluminum,Physical ReviewB,1971,3:1941.
    [96]Garland J.C.and Bowers R.,High-Field Galvanomagnetic Properties of Indium,Physical Review,1969,188:1121.
    [97]Huffman J.E.,Snodgrass M.L.and Biatt F.J.,Magnetoresistance of copper,gold,and indium,Physical Review B,1981,23:483.
    [98]Schneider W.,Bruhms H.and Hubner K.,Geometric manipulation of the high-field linear magnetoresistance,Journal of Physics and Chemistry of Solids,1980,41:313.
    [99]Allgaier R.S.,Restorff J.B.and Houston B.,Weak-and strong-field magnetoresistance in (111)-oriented n-type PbTe epitaxial films between 1.8 and 300 K,Journal of Appied.Physics,1982,53:3110.
    [100]Gallagher J.W.and Love W.F.,Transverse Magnetoresistance in n-Type Germanium,Physical Review,1967,161:793.
    [101]Weiss H.,Structure and Applications of Galvanomagnetic Devices,1969,(Pergamon,New York)
    [102]Ziman J.M.,Principles of the Theory of Solids,1964,(London:Cambridge University Press) ch.7
    [103]Xu R.,Husmann A.,Rosenbaum T.F.,et al,Large Magnetoresistance in non-magnetic silver chalcogenides,Nature,1997,390(6):57-60.
    [104]Parish M.M.and Littlewood P.B.,Non-saturating magnetoresistance in heavily disordered semiconductors,Nature,2003,426:162.
    [105]Herring C.,Effect of Random Inhomogeneities on Electrical and Galvanomagnetic Measurements,Journal of Applied Physics,1960,31:1939.
    [106]Allgaier R.S.,A new analysis of the linear high-field magnetoresistance in n-type PbTe films,Journal of Applied Physics,1986,59:1388.
    [107]Arora V.K.and Jaafarian M.,Effect of nonparabolicity on Ohmic magnetoresistance in semiconductors,Physical Review B,1976,13:4457.
    [108]Abrikosov A.A.,Quantum linear magnetoresistance,Europhysics Letters,2000,49:789.
    [109]Kobayashi M.,Review on structural and dynamical properties of silver chalcogenides,Solid State Ionics,1990,39(3-4):212-149.
    [110]Frueh A.J.,The crystallography of silver sulfide,Ag_2S,Z Kristallogr,1959,112:44.
    [111]萨拉蒙(SalamonM.B.),快离子导体物理,北京:科学出版社,1984,p16-17.
    [112]Shimojo F.,Okazaki H.,Boundary Condition Effect in MD Simulation:A Case of the α→β Phase Transition in Superonic Conductor Ag_2Se,Journal of Physical Society of Japan,1993,62(1):179-182.
    [113]Lewis K.L.,Zhang X.,Qian X.F.,et al.,Ultrafine Powder of Silver Suulfide Semiconductor Prepared in Alcohol Soloution,Materials Research Bulletin,1998,33(7):1083-1086.
    [114]Rao C.N.R.,Cheetham A.K.,Science and technology of nanomaterials:current status and future prospects,Journal of Materials Chemistry,2001,11:2887-2894.
    [115]Mohanty B.C.and Kasiviswanathan S.,Thermal stability of silver selenide thin films on silicon formed from the solid state reaction of Ag and Se films,Thin Solid Films,2006,515(4):2059-2065.
    [116]Marthoun Ferhat,Jiro Nagao,Thermoelectric and transport properties of β-Ag_2Se compounds,Journal of Applied Physics,2000,88:2.
    [117]Chuprakov I.S.and Dahmen K.H.,Large positive magnetoresistance in thin films of silver telluride,Applied Physics Letters,1998,72:2165-2167.
    [118]Husmann A.,Betts J.B.,Boebinger G.S.,et al.,Megagauss sensors,Nature,2002,417 (23):421-424.
    [119]Beck G.,Janek J.,Positive and negative magnetoresistance in the system silver-selenium,Physica B,2001,086:308-310.
    [120]Beck G.,Korte C.,Janek J.,et al.,The magnetoresistance of homogeneous and heterogeneous silver-rich silver selenide,Journal of Applied Physics,2004,96:5619.
    [121]von Kreutzbrucka M.,Mogwitz B.,Gruhl F.,et al.,Magnetroresistance in Ag_(2+δ)Se with high silver excess,Applied Physics Letters,2005,86:072102.
    [122]Lee M.,Rosenbaum T.F.,Saboungi M.L.,et al.,Band-gap tuningand linear magnetoresistance in the silver chalcogenides,Physical Review letters,2002,88(6):066602.
    [123]Mogwitz B.,Korte C.,Janek J.,Kreutzbruck M.,Kienle L.,Preparation and magnetoresistance of Ag_(2+x)Se thin films deposited via pulsed laser deposition,Journal of Applied Physics,2007,101:043510.
    [124]Hu J.,Rosenbaum T.F.,Betts J.B.,Current jets,disorder,and linear magnetoresistance in the silver chalcogenides,Physical Review letters,2005,95:186603.
    [125]Janek J.,Mogwitz B.,Beck G.et al.,The magnetoresistance of metal-rich Ag_(2+x)Se-a prototype nanoscale metal/semiconductor dispersion?,Progress in Solid State Chemistry,2004,32:179-205.
    [126]Ferhat M.,Nagao J.,Thermoelectric and transport properties of β-Ag_2Se compounds,Journal of Applied Physics,2000,88:2.
    [127]Manoharan S.S.,Prasanna S.J.,Magnetoresistance in microwave synthesized Ag_(2+δ)Se (0.0 (?)δ(?)0.2),Physical Review B,2001,3:212405.
    [128]Pejova B.,Najdoski M.,Chemical bath deposition of nanocrystalline (111) textured Ag_2Se thin films,Materials Letters,2000,43:269-273.
    [129]Hu J.,Deng B.,Lu Q.et al,Hydrothermal growth of β-Ag_2Se tubular crystals,Chemistry communication,2000,715-716.
    [130]郭世宜,刘璐,利用室温转化法合成硒化银量子点,南开大学学报,2004,37(2):107-110.
    [131]杨凤霞,邓宗伟,张端明等,硒化银纳米颗粒和晶体的制备及其表征,纳米科技,2008,2:47
    [132]Guttal V.and Stroud D.,Model for a macroscopically disordered conductor with an exactly linear high-field magnetoresistance,Physical Review B,2005,71:201304(R).
    [133]Guttal V.and Stroud D.,Nonsaturating magnetoresistance and Hall coefficient reversal in a model composite semiconductor,Physical Review B,2006,73:085202.
    [134]Bulgadaev S.A.and Kusmartsev F.V.,Large linear magnetoresistance in stronglely inhomogeneous planar and layered systems,Physics Littlers A,2005,342:188-195.
    [135]Magier R.,Bergrnan D.J.,Strong-field magnetotransport of two-phase disordered media in two and three dimensions:Exact and approximate results,Physical Review B,2006,74:094423.
    [136]Hu J.,Parish M.M.,Roaenbaum T.F.,Nonsaturating magnetoresistance of inhomogeneous conductor:comparison of experiment and simulation,Physical Review B,2007,75:214203.
    [137]宋亚舞,非磁性半导体的异常磁电阻效应研究,苏州大学硕士学位论文,2008,p21-25.
    [138]Bruggeman D.A.G.,Dielectric constant and conductivity of mixtures of isotropic materials,Ann.Phys.(Leipz.),1935,24:636.
    [139]Landauer R.,The electrical resistance of binary metallic mixtures,Journal of Applied Physics,1952,23:779.
    [140]Stroud D.,Generalized effective-medium approach to the conductivity of an inhomogeneous material,Physical Review B,1975,12:3368.
    [141]Gerritsen A.N.,Metallic conductivity,Handbuch der Physik,Band ⅪⅩ,(Springer-Verlag,Berlin) 1956.
    [142]Janek J.,Mogwitz B.,Beck G,et al.,The magnetoresistanee of metal-rich Ag_(2+x)Se-A prototype metal/semiconductor dispersion?,Progress in Solid State Chemistry,2004,32:179-205.
    [143]Ma S.,Chemical Substance Dictionary,Xian:Xian Science and Technology Press,1999,pp 664,676,877.
    [144]Cai W.Z.,Tu S.T.,and Gong J.M.,A physically based percolation model of the effective electrical conductivity of particle filled composites,Journal of Composite Materials,2006,40(23):2131-2142.
    [145]Milton G.W.,Classical hall effect in two-dimensional composites:a characterization of the set of realizable effective conductivity tensors,Physical Review B,1988,38:11296.
    [146]Liang B.Q.,Chen X.,Wang Y.J.et al.,Abnormal magnetoresistance effect in self-doped Ag_(2+δ)Te thin films (δ(?)0.25),Physical Review B,2000,61:3239.
    [147]Eckertova L.,薄膜物理学,北京:科学出版社,1986,p179-180.
    [148]邓宗伟,线性正磁电阻材料硒化银的制备及其机理研究,华中科技大学硕士毕业论文,2008,p23-43.
    [149]Hu J.,Parish M.M.,Rosenbaum T.F.,Nonsaturating magnetoresistance of inhomogeneous conductors:comparison of experiment and silmulation,Physical Review B,2007 75:214203.
    [150]Sarychev A.K.,Bergman D.J.,Strelniker Y.M.,Theory of high-field magnetotransport in a percolating medium,Physical Review B,1993 48:3145.
    [151]Haberkom N.,Guimpel J.,Tuning of the metal-insulator transistion in La_(0.75)Sr_(0.25)MnO/PrBa_2Cu_3O_(7-δ) superlattices,Applied Physics Letters,2005,87:042509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700