建立牛梨形虫病血清学诊断方法及新疆流行病学调查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛梨形虫病(piroplasmosis)主要是由巴贝斯虫、双芽巴贝斯虫和环形泰勒虫引起的一种蜱传性血液原虫病,多种动物可感染,尤其是反刍动物,有时也可感染人。本病共同的临诊特征是发热、贫血、血红蛋白尿,严重者可死亡。按照病程,可将牛的梨形虫病分为急性型和慢性型;按感染类型,可将其分为显性、亚临诊性以及持续性感染。传统的检测和鉴定主要依靠显微镜检查,主要用于急性临诊感染的诊断,但难以进行梨形虫虫种鉴定。在持续性感染的动物中,由于末梢血液中的原虫数量少,容易漏诊。血清学检测可诊断亚临诊性感染和持续性带虫感染,所用的方法主要包括补体结合试验(Complement Fixation Test,CFT)、间接血凝试验(Indirect Hemagglutination Test, IHA)、乳胶凝集试验(Latex Agglutination Test, LAT)、间接荧光抗体试验(Indirect Fluorescent Antibody test, IFAT)、酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assays, ELISA)等,但所使用的诊断抗原大多是粗制的自然抗原,难以克服抗原种间的交叉反应。分子生物学诊断方法例如DNA探针、rRNA探针和PCR方法因辐射、需要专业人员和特殊的实验室材料与仪器等原因仅限于实验室内使用。因此,提高血清学方法的特异性是诊断和鉴定牛梨形虫病的关键所在。目前发现牛巴贝斯虫的裂殖子表面抗原2c (MSA-2c).牛双芽巴贝斯虫的热休克蛋白20(HSP20),牛环形泰勒虫裂殖子表面抗原1(Tams1)的共同特点是保守性好、免疫原性和反应原性强、特异性高,不仅可以作为检测牛梨形虫病的诊断抗原,也可作为预防这些疾病的亚单位疫苗或核酸疫苗的候选者。我国尚未见相关的研究报道。本研究的目的是选择MSA-2C基因、HSP20基因以及Tamsl基因进行克隆与表达,通过优化基因表达获得相应的重组蛋白,初步建立牛梨形虫病的新型血清学诊断方法,并对新疆牛梨形虫病的流行病学进行调查,为制定新疆牛梨形虫病的防治计划提供了第一手资料。通过实验研究得到如下结果:
     1.通过分别设计MSA-2c基因、HSP20基因以及Tams1基因序列的特异性引物,经PCR扩增,从血液原虫病患牛的全血样品的基因组DNA中克隆到MSA-2c基因、HSP20基因和Tams1基因片段。又通过设计特异性引物,经RT-PCR扩增,从血液原虫病患牛的全血样品的总RNA中,获得HSP20外显子基因片段。经序列分析发现:(1)克隆出的MSA-2c基因全长798bp,有完整的开放阅读框,与国际标准虫株(德克萨斯株AY052538)的同源性高达99.90%,与其他14个不同国家和地区分离株的MSA-2c基因序列有97.7%的同源性;(2)克隆到HSP20基因和HSP20基因外显子,全长分别为699bp和534bp,与国际标准虫株(墨西哥株)的同源性分别为99.43%和99.63%。(3)克隆的Tams1基因全长846bp,有一个完整的开放阅读框,编码281个氨基酸,与国外虫株的同源性为99.36%~99.80%。系统进化树分析显示,新疆牛环形泰勒虫Tams1基因与印度株、毛利塔里亚株、土耳其、北非共和国株进化途径一致。抗原决定簇分析显示Tams1基因编码的氨基酸具有13个交叉的抗原决定簇。上述结果表明牛巴贝斯虫的MSA-2c基因、牛双芽巴贝斯虫的HSP20基因和HSP20外显子基因以及牛环形泰勒虫Tams1基因都具有高度的保守性。
     2.将克隆的MSA-2c基因、HSP20外显子基因以及Tams1基因片段分别再克隆至原核表达载体pGEX-4T-2中,将合成的构建物转入大肠杆菌中,进行IPTG诱导表达。通过优化这些基因表达获得了相应的重组蛋白。SDS-PAGE和Western blot分析发现,MSA-2c基因、HSP20外显子基因以及Tams1基因所表达的融合蛋白分别为55kDa、46kDa、56kDa,它们分别能被抗牛巴贝斯虫、抗双芽巴贝斯虫和抗环形泰勒虫的抗血清所识别。这一结果表明表达出的融合蛋白具有很强的免疫原性和反应原性,能够作为诊断抗原建立牛梨形虫病的新型血清学检测方法。
     3.分别以纯化的GST-MSA-2c融合蛋白、GST-HSP20(exon)融合蛋白和GST-Tams1融合蛋白作为诊断抗原,通过优化ELISA反应条件,分别建立了可以检测牛巴贝斯虫、牛双芽巴贝斯虫和牛环形泰勒虫血清特异性抗体的新型间接ELISA方法。方阵试验确定(1)GST-MSA-2c抗原的最适包被浓度为2.5μg/ml,血清最佳稀释倍数为40倍,ELISA阳性反应的临界值为OD450>0.347,批内和批间重复试验的变异系数均小于10%。(2)GST-HSP20抗原的最适包被浓度为5μg/ml,血清最佳稀释倍数为40倍,ELISA阳性反应的临界值为OD450>0.292,批内和批间重复试验的变异系数均小于10%。(3)GST-Tams1抗原的最适包被浓度为10μg/ml,血清最佳稀释倍数为80倍,ELISA阳性反应的临界值为OD450>0.282,批内和批间重复试验的变异系数均小于15%。特异性试验结果为(1) MSA-2c间接ELISA可以检出已知的牛巴贝斯虫阳性血清,对已知的牛双芽巴贝斯虫、环形泰勒虫、东方巴贝斯虫的阳性血清和牛巴贝斯虫阴性血清为阴性。(2)HSP20间接ELISA可以检出已知的双芽巴贝斯虫阳性血清,对已知的牛巴贝斯虫、环形泰勒虫、东方巴贝斯虫的阳性血清和双芽巴贝斯虫阴性血清为阴性。(3)Tams1司接ELISA可以检出已知的牛环形泰勒虫的阳性血清,对已知的牛双芽巴贝斯虫、牛巴贝斯虫虫、东方巴贝斯虫的阳性血清和牛环形泰勒虫的阴性血清为阴性。这些结果表明检测牛梨形虫病的这三种新型间接ELISA方法特异性好,能进行梨形虫虫种的诊断与鉴定。与对应的三种巢式PCR检测结果相比,MSA-2c间接ELISA、HSP20间接ELISA以及Tams1间接ELISA的阳性符合率为96%。上述结果表明所建立的新型重组蛋白间接ELSIA检测方法法重复性好、特异性强、灵敏度高,为大规模地进行新疆牛梨形虫病的流行病学调查和血清学诊断提供有效的技术手段。
     4.使用所建立的牛梨形虫病新型血清学诊断方法对2006年~2008年新疆14个地州的牛梨形虫病流行病学进行了调查。检测结果显示(1)新疆存在着牛巴贝斯虫病。在2006年采集的278份牛血清样品中,阳性血清7份,感染率为2.52%。在2007年的532份牛血清样品中检出阳性血清32份,感染率为3.13%。在2008年的530份牛血清中检出阳性血清43份,感染率为5.28%。2008年,在地方流行性疫病区牛巴贝斯虫感染率高达28%。牛巴贝斯虫病所在的地州由2006年的2个扩大到2008年的9个。(2)新疆还存在着牛双芽巴贝斯虫病,而且比牛巴贝斯虫病严重。在2006年采集的278份牛血清样品中,阳性血清11份,感染率为5.40%。在2007年的532份牛血清样品中检出阳性血清25份,感染率为4.70%。在2008年的530份牛血清中检出阳性血清53份,感染率为7.17%。2008年,在地方流行性疫病区牛巴贝斯虫感染率高达30%。牛双芽巴贝斯虫病所在的地州由2006年的8个扩大到2008年的13个。(3)牛环形泰勒虫病仍是新疆牛梨形病的主要病原。在2006年采集的278份牛血清样品中,阳性血清31份,感染率为11.15%。在2007年的532份牛血清样品中检出阳性血清61份,感染率为11.47%。在2008年的530份牛血清中检出阳性血清61份,感染率为11.51%。2008年,在地方流行性疫病区牛环形泰勒虫感染率高达24%。(4)在三年采集的1340份血清样品中共检出牛梨形虫阳性血清280例,感染率为20.90%,其中牛巴贝斯虫、双芽巴贝斯虫、泰勒梨形虫单一感染率分别为8.21%(23/280),15.71%(44/280)和43.93%(123/280)。新疆牛梨形虫混合感染为15.35%,甚至出现三重感染现象。2008年在流行区内的牛梨形虫感染率高达74%(37/50),单一感染与混合感染率分别为64.85%(24/37)和35.15%(13/37),流行区的混合感染率明显增高。这些结果表明新疆牛梨形虫病由原来的一种牛环形泰勒虫病增加到三种牛梨形虫病,其流行病学特征为感染率逐年增加,疫区不断扩大,混合感染使疫情趋于复杂化,对动物和人类构成一定的威胁,不容忽视。
     本研究是新疆首次利用新型血清学方法对全疆牛梨形虫病进行大规模的流行病学调查,初步掌握了新疆梨形虫病流行的第一手数据和流行特点,为今后制定包括牛巴贝斯虫病、牛双芽巴贝斯虫病和牛环形泰勒虫在内的新疆牛梨形虫防控计划和综合防治措施的制定提供了依据。
The bovine piroplasmosis is a tick-born hemoparasitic disease which mainly caused by Babesia bovis, Babesia bigemina and Theilaria annulata. Many kinds of animals can be infected, especially in ruminants, sometime in man. The common clinical symptoms are fever, anaemia, haemoglobinuria, even death in severe cases. The bovine piroplasmosis can be divided into acute and chronic infections, according to the course of disease, and can also be grouped into clinical, sub-clinic and persistent infections by their infection types. The traditional detection and identification of piroplasms depends mainly on microscope, especially for the acute and clinical infection, but is hard for the sub-clinical and persistent infected cases, because the number of hemoparasites in the peripheral blood is too low to detect and easily to make misdiagnosis. The sub-clinical, chronic and persistent infected cases, even carriers can be detected by serological methods, such as complement fixation test (CFT), indirect hemagglutination test (IHA), latex agglutination test (LAT), indirect fluorescent antibody test (IFAT), and enzyme-linked immunosorbent assay (ELISA), etc. The crude, natural proteins as diagnostic antigens are used in the most of existing serological tests for bovine piroplasmosis which are hard to eliminate the cross reactions among the species of piroplasms. The tests of molecular biology, such as DNA probes, rRNA probe and PCR have highly sensitive and specific tools for diagnosis of bovine piroplasmosis, but still hard to use as routine method, because vitriol conditions, such as irradiation, professional personnel and special laboratory materials and equipment, are unsuitable for use in the field. Therefore, it is an important turning point to improve the specificity of serological tests for detection of specific antibodies against bovine piroplasmas. Recently years, some specific antigens have been found, such as merozoite surface antigen-2c (MSA-2c) in Babesia bovis, heat shock protein20(HSP20) in Babesia bigemina, and merozoite/piroplasm surface antigen1(Tams1) in Theileria annulata, etc. The common features for the antigens are highly conserved and immunogenic. Some scientists postulates that they may be not only the useful diagnostic candidates for detection of bovine piroplasmosis, but also the useful subunit or NDA vaccine candidates for improved control of bovine piroplasmosis. At present, the reports of the same or relative studies have not been found in China.
     The purpose of this study are:(1) to clone and express the MSA-2c, HSP20and Tams1and to obtain three fusion proteins by the optimal conditions for expression of these genes;(2) to develop the improved indirect enzyme-linked immunosorbent assays (iELISAs) using recombinant proteins as diagnostic antigens;(3) to perform the epidemiologic surveys of bovine piroplasmosis in Xinjiang;(4) to obtain the firsthand information for development of prevent and control program against bovine piroplasmosis in the future. The results from this study are as following:
     1. Three genes MSA-2c, HSP20and Tams1were cloned from extracted genome DNA in bovine blood samples infected with hemoparasite in Xinjiang by PCR with specific designed primers, respectively, and HSP20exon gene was loned from extracted total RNA in bovine blood samples infected with hemoparasites by RT-PCR with specific designed primers. The sequence analysis was shown:(1) the total length of MSA-2c gene was798kb, and had an intact open reading frame encoding281amino acids. It shared99.90%nucleotide homology with that of type strain, Texas AY052538, and also shared97.7%nucleotide homology with that of stains isolated from other different countries and regions.(2) The total lengths of HSP20gene and HSP20exon gene were699kb and534kb, respectively, and they shared99.43%and99.63%nucleotide homology, respectively, with those of the Mexico type strain.(3) The total length of Tamsl gene was846kb, and had an intact open reading frame encoding281amino acids. It shared99.36%-99.80%nucleotide homology with that published in GenBank. Analysis of phylogenetic tree was shown that it was closely related to others isolated from India, Mauritania, Turkey and Tunisia. Analysis of antigen determinants was shown that it had13putative cross-antigen determinants.
     The results above mentioned suggested these genes MSA-2c for B. bovis, HSP20/HSP20(exon) for B. bigemina and Tamsl for T. annulata were highly conserved.
     2. The cloned MSA-2c, HSP20(exon) and Tamsl genes were sub-cloned into expression vector pGEX-4T-2and the resultant constructs were respectively transformed into E. coli cells and induced by IPTG. SDS-PAGE and Western blot analysis were shown that fussion proteins of55kDa for MSA-2c gene,46kDa for HSP20(exon) and56kDa for Tamsl were expressed which could be recognized by bovine antisera against B. bovis, B. bigemina and T. annulata, respectively. These results were indicated the expressed fusion proteins by these genes possessed strong immunogenicity and reactionogenicity, which could be used as recombinant antigens to develop the improved serological tests for detection of specific antibodies against bovine piroplasmosis.
     3.Three improved indirect enzyme-linked immunosorbent assays (indirect ELISAs) for the detection of specific antibody against bovine piroplasmosis were developed using MSA-2c, HSP20(exon) and Tams1fusion proteins after optimizing its reacting conditions.(1) For indirect MSA-2c ELISA, the optimal concentration of coating recombinant antigen was2.5μg/ml and the optimal dilution of serum sample was1:40in the cross assay. The cutoff was chosen as an OD450>0.347for positive response. The variation coefficient of intra-batch and the inter-batch in the repeating tests was less than10%.(2) For indirect HSP20(exon) ELISA, The optimal concentration of coating recombinant antigen was5μg/ml and the optimal dilution of serum sample was1:40in the cross assay. The cutoff was chosen as an OD450>0.292for positive response. The variation coefficient of intra-batch and the inter-batch in the repeating tests was less than10%.(3) For indirect Tams1ELISA, the optimal concentration of coating antigen was10μg/ml and the optimal dilution of serum sample was1:80in the cross assay. The cutoff was chosen as an OD450≥0.282for positive response. The variation coefficient of intra-batch and the inter-batch in the repeating tests was less than15%.
     The results of specificity for the three indirect ELISAs were shown that (1) positive serum samples for B. bovis identified by Npcr were still detected positive in the indirect MSA2c ELISA, but not from the sera of B. bigemina, T. annulata and B. orientalis, and negative control sera.(2) Identified positive serum samples for B. bigemina were detected positive in the indirect HSP20(exon) ELISA, but not from the sera of B. bovis, T. annulata and B. orientalis, and negative control sera.(3) Identified positive serum samples for T. annulata were detected positive in the indirect Tamsl ELISA, not for sera of B. bigemina, B. bovis and B. orientalis, and negative control sera. The concordances of identified positive serum samples for bovine piroplasmosis in indirect MSA-2c, HSP20(exon) and Tamsl ELISAs were96%(14/16, n=50),96%(9/11, n=50) and96%(21/23, n=50), respectively, comparing with those by nested-PCR. The results above mentioned were shown three improved indirect ELISAs were highly sensitive and specific for the diagnosis and identification of bovine piroplsmas, which could be useful tools of epidemiological survey for detection of bovine piroplasmosis in large scale.
     4. The epidemiologic survey for detection of bovine piroplasmosis in Xinjiang by the three improved indirect ELISAs was performed in this study. The results were shown that (1) Bovine babesiosis caused by B. bovis was presented in Xinjiang which was first time to be confirmed by the serological test. The prevalence for B. bovis from the tested cattle in2006,2007and2008were2.25%(7/278),3.31%(32/532) and5.28%(43/530), respectively. The rate of B. bovis infection was increased to28%(14/50) in some endemic regions where the disease occurred in2008. The number of infected prefectures in Xinjiang was also increased from2in2006to9in2008.(2) Bovine babesiosis caused by B. bigemina was also presented in Xinjiang, which was first time to be confirmed by the serological test. The infection rates for B. bigemina in2006,2007and2008were5.40%(11/278),4.70%(25/532) and7.17%(53/530), respectively. The infection rate was increased to30%(15/50) in some endemic regions where the disease occurred in2008. The number of infected prefectures in Xinjiang was also increased from8in2006to13in2008.(3) Bovine theileriosis caused by T. annulata was still the main hemoparasitic disease in cattle of Xinjiang. The infection rates in2006,2007and2008were11.15%(31/278),11.47%(61/532) and11.51%(61/530), respectively. The infection rate was increased to24%(15/50) in some regions where the disease occurred in2008.(4)280positive serum examples for bovine piroplasmosis were detected from1340sera collected from14prefectures in Xinjiang during2006to2008. The total infection rate reached to20.90%(280/1340). of those, the infection rates of bovine piroplasmosis caused by B. bovis, B. bigemina and T. annulata alone were8.92%(23/280),15.71%(44/280) and43.92%(123/280), respectively, during that time. The rate of mix infections among them was15.35%(43/280) which included some triple infections. The infection rate was unexpectedly increased to74%(37/50) in some endemic regions where the disease occurred in2008. The mixed infections reached to35.15%(13/50) in that areas. These results were indicated the category of bovine piroplasmosis was increased from1kind of hemoparasitic disease caused by T. annulata in past years to3kinds of ones caused by T. annulata, B. bigemina and B. bovis, respectively. The features of bovine piroplasmosis in Xinjiang were that rate of single infection and mixed infections were increased year by year, which made epidemic situations more complicated. It was more dangerous for animal and human health and a question which could be disregarded.
     This is a first time to perform the epidemiological survey in large-scale for detection the specific antibodies against bovine piroplasmosis in Xinjiang by improved indirect ELISAs using recombinant proteins as diagnostic antigens and the first time that B. bovis and B. bigemina have been detected in Xinjiang. We basically obtain the firsthand informa-tion for development of prevent and control program against bovine piroplasmosis in the future in Xinjiang.
引文
[1]蒋金书.动物原虫病.北京:中国农业大学出版社,2000,87-126
    [2]杨光友.动物寄生虫病学.成都:四川科学技术出版社,2005,105-107
    [3]罗建勋,殷宏,刘志远等.牛巴贝斯虫18SrRNA基因序列比较研究.畜牧兽医学报,2005,36(9):906-911.
    [4]Zahler M, Gothe R, Rinder H, et al. Characteristic genotypes discriminate between Babesia canis isolates of differing vector specificity and pathogenicity to dogs. Parasitol. Res.,1998, 84(7):544-548
    [5]Ellis J, Hefford C, Baverstock P R, et al. Ribosomal DNA sequence of Babesia and Thelleria. Molecular and Biochemical Parasitology,1992,54:96-97
    [6]Allsopp M, Crvalier-Smith T, De Waal D T, et al. Phylogeny and evolution of the piroplasms. Parasitology,1994,108:147-152
    [7]Schnittger L, Yin H, Gubbels M, et al. Phylogeny of sheep and goat Theileria and Babesia parasites. Parasitology Research,2003,91:398-406
    [8]Yin H, Liu GY, Luo J X, et al. Phylogeneticanaysis of Theileria species transmitted by Haemaphysalis qinghariensis. Parasitol. Res.,2004,92:36-42
    [9]Luo J X, Yin H, Guan G, et al. A comparison of small-subunit ribosomal RNA gene sequences of bovine Babesia species transmited by Haemaphysalis spp. China Parasitol. Res.,2005,95:145-149
    [10]Friedhoff K I. Transmission of Babesia. In Ristic M (ed.), Babesiosis of domestic animals and man, Beca Raton: CRC Press,1988,37-38
    [11]杨平,王修文.贵州省牛血孢子虫病疫源地的病原研究.全国家畜寄生虫病研究工作第一次会议资料汇编,1964,352-355
    [12]白启,刘光远,张林等.卵形巴贝斯虫在我国的发现与分离.中国兽医杂志,1990,16(27):2-4
    [13]王开功,张立,廖梅等.贵州牛巴贝斯虫与附红体混合感染疾病的诊疗.山地农业生物学报,2004,483-485
    [14]袁江玲,马素贞,沈炯玉等.牛巴贝斯虫株MSA-2c基因重组质粒的构建、真核表达及其免疫反应性研究.新疆农业大学学报,2008,31:79-82
    [15]刘军龙.牛梨形虫核糖体RNA转录间隔区序列的测定及应用.北京:中国农业科学院,2007
    [16]Levine ND.Protozoan parasites of domestic animals and of man[M].Burgress,1973,406
    [17]吕文样,吕文顺,张其才等.我国牛蜱传性血液原虫的虫种调查和分布特征的研究.中国兽医科技,1995,25(8):13-16
    [18]Levine N D. Veterinary protozoology. Ames: Iowa state university press,1985,172
    [19]吕文顺,殷宏,吕文详等.牛大巴贝西虫在我国的发现及其媒介蜱的确定.中国兽医科技,1988,12:11-14
    [20]杨毅平.牛巴贝斯虫病的诊治报告.福建畜牧兽医,2008,30(1):26-27
    [21]殷宏,吕文顺,张其才等.甘肃省牛羊部分蜱传性血液原虫的传播试验.中国兽医寄生虫病杂志,2000,8(1):17-19
    [22]Gray J, De Vos A. Studies on a bovine Babesia transmitted by Hyalomm amarginatum rufipes Koch. Onderstepoort Journal of Veterinary Research,1981,48:215-223
    [23]徐明勇.新进奶牛巴贝斯焦虫的诊治.贵州畜牧兽医,2004,28(6):25
    [24]黄炯,黄丽茜,沙吾列等.牛含环形泰勒焦虫血源细胞的生物反应器培养条件的探索.中国预防兽医学报,1999,3:204-205
    [25]Pipano E, Samish M, Krigel Y. Relative infectivity of Theileria annulata (Dchunkovsky and Luhs, 1904) stabilates derived from female and male Hyalomma excavation (Koch,1844) ticks. Vet. Parasitol.,1982,10:21-27
    [26]李德昌.家畜梨形虫病及其防治.北京:金盾出版社,2004,45-54
    [27]Norval R A I, Fivaz B H, Lawrence J A, et al. Epidemiology of tick-borne diseases of cattle in Zimbabwe. I. Babesiosia.Tropical Animal Health and Production,1983,15:87
    [28]Mahoney D F, Mirre G B. A note on the transmission of Babesia bovis (Syn. B. argentina) by one-host tick, Boophilus microplus. Research in Veterinary Science,1979,26:253
    [29]Potgieter F T, Vuuren A S V. The transmission of Babesia bovis using frozen infective material obtained from Boophilus microplus larvae. Onderstepoort Jounal of Veterinary Research,1974,41: 79
    [30]Knuth P. Weitere mitteilungen uber Haemapysalis cinnabarina and uber umfangreiche Blutungen in die Muskulatur beim Rinde. Berl Tierarztl Wochenschr,1914,52:825
    [31]吕文顺,殷宏,余丰等.微小牛蜱对牛巴贝两虫和双芽巴贝西虫传播能力的研究.中国兽医科技,1989,7:10-11
    [32]Thompson K C A. A technique to establish a laboratory colony of Boophilus microplus infected with Babesia bigemina. Veterinary Papasitology,1976,2:223-225
    [33]Morzaria S P, Young A S, Hudson E B. Babesia bigemina in Kenya:experimental transmission by Boophilus decoloratus and the production of tick-derived stabilates. Parasitology,1977,74:29
    [34]Buscher G. The infection of various tick species with Babesia bigemina, its transmission and identification. Parasitology Research,1989,23:305-310
    [35]Brocklesby D W, Barnett S F. Large Babesia species transmitted to plenectomized calves by field collections of Britisht icks (Haemap salispuncta) Nature (London),1970,228:12-15
    [36]Yin H, Lu W S, Luo J X, et al. Experiments on the transmission of Babesia major and Babesia bigemina by Haemaphysalis punctata. Veterinary Parasitology,1996,67:89-98
    [37]Donnelly J, Peircema. Experiments on the transmission of Babesia divergens to cattle by the tick Ixodes ricinus. International Journal for Parasitology,1975,5:363
    [38]Enigk K, Friedhoff K T. Zur wirtsspezifitat von Babesia divergens. Z Parasitenkd,1962,21:238
    [39]Petrov V G. On the development of Babesiella bovis in Ixodes ricinus. Leningr Piroplaz Stn,1939, 1:58
    [40]Morzaria S P, Brocklesby D W, Harradine D L. Experimental transmission of Babesia major by Haemaphysalis punctata. Research in Veterinary Science,1977,23:261
    [41]刘钟灵,马丽华,高新山等.湖北省水牛巴贝斯虫病调查研究.Ⅱ.实验感染证实镰形扇头蜱是牛巴贝斯焦虫和双芽巴贝斯焦虫的传播者.畜牧兽医学报,1987,18(3):173-178
    [42]沈杰,黄兵.中国家率家禽寄生虫名录.北京:中国农业出版社,2004,24-25
    [43]Luaces I, Aguirre E, Garcia -Montijano M, et al. First report of an intraerythrocytic small piroplasm in wild Iberian lynx(Lynx pardinus). Wildl. Dis.,2005,41:810-815
    [44]Munag'andu H M, Siamudaala V M, Nambota A, et al. Disease constraints for utilization of the African buffalo (Syncerus caffer) on game ranches in Zambia. Vet. Res.,2006,54:3-13
    [45]Sawczuk M. Roe deer (Capreolus capreolus) and red deer (Cervus elaphus) as a reservoir of protozoans from Babesia and Theileria genus in north-western Poland. Wiad. Parazitol.,2005,51: 243-247
    [46]Yabsley M J. Theileriosis in a white-tailed deer (Odocoileus virginianus). Wildl. Dis.,2005,41: 806-809
    [47]Wright I G, Goodger B V. Pathogenesis of babesiosis. Ristic M (ed.), Babesiosis of Domestic Animals and man. Boca Raton, FL:CRC Press,1988,99-118
    [48]Hutchings C L, Li A, Fernandez K M, et al. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol. Microbiol.,2007,65:1092-1105
    [49]Lewis D, Williams H. Infection of the mongolian gerbil with the cattle piroplasm Babesia divergens. Nature,1979,278:170
    [50]Hooshmand-Rad P, Hawa N J. Malignant theileriosis of sheep and goats. Tropical Animal Health Production,1976,5:97-102
    [51]Shruti D N, Narayanasami S J. Epidemiology of Theileria annulata infection of dairy cattle in the Sudan using molecular techniques. Ann. N. Y. Acad. Sci.,1979,105:10525-10534
    [52]孔繁瑶.兽医寄生虫学].北京:中国农业大学出版社,1997,309-326
    [53]魏文康,谢宏料,吴惠贤等.南德文种牛发生巴贝斯虫病.中国兽医寄生虫病,1999,7(2):35-36
    [54]杜生海,李飞.牛巴贝斯虫病的诊疗.中国兽医科技,2002,32(2):40
    [55]刘钟灵,张光第,马丽华等.湖北省水牛巴贝斯虫病调查研究.畜牧兽医学报,1986,17(1):49-54
    [56]罗建勋,殷宏,吕文顺等.甘肃省牛蜱传性血液原虫生物学特性研究及病原的分离.中国兽医杂志,1998,24(5):9-11
    [57]陈天铎,深漪,陈华等.福建省水牛巴贝斯虫病流行病学调查.中国兽医科技,1989,5:7
    [58]Mckerzic R A. Veterinary laboratory user's guide. Department of Primary Industries, Qld, Australia, 1992,5:13
    [59]王修文.血液寄生性原虫的JSB快速染色法简介[J].中国兽医科技,1987,(8):4244
    [60]翟俊英.奶牛焦虫病的快速检验方法[J].中国兽医杂.志,1992,18(6):30-31
    [61]许应天,张守发,李顺玉,等.牛泰勒虫病的诊断及预防研究进展[J].延边大学农学学报,1997,(04):271-275
    [62]Hirato K, Ninomiya N, Uwano Y, et al. Studies on the complement fixation reaction for equine piroplasmosis. Japanese Journal of Veterinary Science,1945,1:204
    [63]Frerichs W M, Holbrook A A, Johnson A J. Equine piroplasmosis:complement fixation titers of horses injected with Babesia caballi. American Journal of Veterinary Research,1969,30:697
    [64]Holbrook A A, Frerichs W M, Allen P C. Laboratory diagnosis of equine piroplasmosis. Proceeding of the 3th international equine infectiousd iseases. Paris.,1972,3:467
    [65]Mahoney D F. Bovine babesiosis: An assessment of the significance of complement fixing antibodies based upon experimental infection. Australian Veterinary Journal,1964,40:369
    [66]Mahoney D F. Bovine babesiosis:diagnosis of infection by a complement fixation test. Australian Veterinary Journal,1962,38:48-52
    [67]Todorovic R A, Adams L G. Serodiagnosis of babesiosis. Proceeding of the 19th world veterinary congress, Mexico City,1971,3:11-14
    [68]Mahoney D F. Bovineb abesiosis:preparation and assessment of complement fixing antigen. Experimental Parasitology,1967,20:232
    [69]Mahoney D F. Bovine babesiosis: theimmunization of catle with killed Babesia argentina. Experimental Parasitology,1967,20:125
    [70]Mayer S, Tongio M M. A study of maternal-fetal anti-HL-Aimmunization Extension of immunization. Vox Sang,1973,25 (6):546-551
    [71]Todorovic R A, Long R F. Comparison of indirect fluorescent antibody (IFA) with complement fixation (CF) tests for diagnosis of Babesias pp. infectionin Clombian cattle. Tropenmed Parasitol., 1976,27:169
    [72]Weiland G Species sific serodiagnosis of equine piroplasma infections by means of complement fixation test(CFT), immunofluorescence (IF), and enzyme-linked immunosorbent assay(ELISA). Veterinary Parasitology,1986,20:4
    [73]Rehbein G, Heidrich-Joswig S. Use of schizont and piroplasm antigens of Babesia equi in the indirect fluorescent antibody and complement fixation tests. Veterinary Parasitology,1983,12:13
    [74]Donelly J, Joyner L P, Graham-Joneso, et al. A comparison of complement fixation and immunofluorescent antibody tests in a survey of the prevalence of Babesia equi and Babesia caballi in horses in the Sultanate of man. Tropical Animal Health and Production,1980,12:5
    [75]Pipano E, Cahana M. Fluorescent antibody test for the serodiagnosis of Theileria annulata. Parastitol.,1969,55:765
    [76]Shindler R, Wokatsch.Versuche zur differenzierung der Theilerien spezies des rinders durch serologische. Untersuchungen, eitschrift fur Tropenmedizin und Parasitologye,1965,166:17-23
    [77]Konyukhov M P, Poboluboyarinova G V. The role of CFT and prolonged CFT in revealing the immunity in animal having had theiriosis. Veterinariya,1967,10:56-58
    [78]Hooshmand-Rad P, Hashimi-Fishaki R. Compliment fixing antibodies in cattle experimentally infected with Theileria annulata or vaccinated witht issue culture. British Veterinary Journal, 1971,127:21-24
    [79]马世君,尚君凯,谭立新.牛环形泰勒焦虫补反抗体测定.兽医科技杂志,1983,10:27-29
    [80]殷宏,张其才,吕文祥等.补体结合试验诊断环形泰勒虫病的研究.中国兽医科技,1996,26(7):9-11
    [81]Ross J P J, Lohr K F. A capillary tube test for the detection and titration of Theileria parva and Theileria mutans antibodies in bovine serum. Res. Vet. Sci.,1972,13:405-410
    [82]Michael S A. Studies on a capillary tube agglutination test for diagnosing Theileria annulata infection. Journal of the Egyptian Society of Parasitology,1979,9:473-479
    [83]Dhar S, Gautam O P. Theileria annulata infection of cattle.1.Complement-fixation and conglutinating-complement absorption test for serodiagosis. Journal of Animal Sciences,1977,47: 458-462
    [84]Lohr K F, Ross J P J, Meyer H. Detection in game of fluorescent and agglutination antibodies to intraerythrocytic organisms. Tropenmedizin und Parasitologie,1974,25:217-226
    [85]Curnow J A, Curnow B A. An indirect haemagglutination test for the diagnosis of Babesia argentina infection in cattle. Australia Veterinary Journal,1967,49:286
    [86]Goodger B V, Mahoney D F. A rapid slide agglutination test for the diagnosis of Babesia argentina infection. Australia Veterinary Journal,1974,50:250
    [87]Goodger B V. Preparation and assessment of purified antigens in the passive haemagglutination test for bovine babesiosis. Australia Veterinary Journal,1971,47:251
    [88]Lopez G, Todorovic R A. Rapid latex agglutination (RIA) test for the diagnosis of Babesia a rgentine. Veterinary Parasitology,1978,4:1
    [89]Montenegro, Jamesma, Levy M G,et al. Utilization of culture-derived souluble antigen in the latex agglutination test for bovine babesiosis and anaplasmosis.Veterinary Parasitology,1981,8:291
    [90]邓干臻,刘钟灵.乳胶凝集试验诊断水牛巴贝斯虫病的研究.华中农业大学学报,1993,12(3):265-273
    [91]Ristic M, Sibinovic S. Equine Babesiosis:Diagnosis by a precipitation in gel and by a one-step fluorescent antibody-inhibition Test.1964,25,1519-1526
    [92]Gray J S, Kaye B. Studies on the use of gerbil-derived Babesia divergens antigen for diagnosis of bovine babesiosis. Vet. Parasitol.,1991,39:215-224.
    [93]Mahoney D F. Bovineb abesiosis:preparation and assessment of complement fixing antigen. Experimental Parasitology,1967,20:232
    [94]Rehbein G, Heidrich-Joswig S. Use of schizont and piroplasm antigens of Babesia equi in the indirect fluorescent antibody and complement fixation tests. Veterinary Parasitology,1983,12:135
    [95]Burridge M J, Brown C G, Kimber C D. Theileria annulata:Cross-reaction between a cell culture schizont antigen and antigens of East African species in the indirect fluorescent antibody test Exper. Parasitol.,1974,35 (3):374-380
    [96]Kiltz H H. Theileria orientalist occurs in Central Africa. Vet. Sci.,1986,40:197-200
    [97]吴鉴三,张肖正,梁建波.间接免疫荧光抗体试验检测瑟氏泰勒焦虫病的研究.中国动物检疫,1996,4:32-33
    [98]张守发,许应天,梁晚枫等.间接荧光抗体试验对牛瑟氏泰勒虫病的诊断.中国兽医科技,2003,33(8):59-61
    [99]Pernell R E, Hendry D J, Bidwell D E, et al. Microplate enzyme linked immunosorbent assay for antibody to Babesia divergens in cattle. Veterinary Record,1976,99:102
    [100]Young E R, Purnell R E. Evaluation of dried blood samples as a source of antibody in the micro-ELISA test for Babesia divergens. Veterinary Record,1980,106:60
    [101]Barry D N, Rodwell B J, Timms P, et al. Amicroplate enzyme immunoassay for detecting and measuring antibogies to Babesia bovis in cattle serum. Australian Veterinary Journal,1982,59: 136
    [102]d' Donoghue P J, Friedhoff K T, Vizcaino G, et al. The detection of IgM and IgG antibodies against Babesia bigemina in bovine sera using semi-defined antigens in enzyme immunoassay. Veterinary Parasitology,1985,18:1
    [103]Molloy J B, Bowles P M, Bock R E, et al. Evaluation of an ELISA for detection of antibodies to Babesia bovis in catle in Ausrtalia and Zimbabwe. Prev. Vet. Med.,1998,33:59-67
    [104]Araujo F R, Madruga C R, Lea C R B, et al. Comparison between enzyme-linked immunosorbent assay, indirect fluorescent antibody and rapid conglutination tests in detecting antibodies against Babesia bovis. Veterinary Parasitology,19981,74:'101-108
    [105]Cray M A, Lukins A G, Rae P F, et al. Evaluation of An enzyme immunoassay for serodiagnosis of infections with Theileria Parva and T. annulata. Res. Vet. Sci.,1980,29:360-366
    [106]Mclaughlin G L, Edlind T D, Ihler G M, et al. Detection of Babesia bovis using DNA hy bridization. Protozool,1986,33 (1):125-128
    [107]Jasmer D P, Reduker D W, Goff W L, et al. DNA probes distinguish geographical isolates and identify a novel molecule of Babesia bovis. Journal of Parasitology,1990,76:834-841
    [108]Buening G M, Barbet A, Myler P, et al. Haracterizationo farepetitive DNA probe for Babesia bigemina. Veterinary Parasitology,1990,36:11-20
    [109]Petchpoow, Tan-ariya, Boonsaeng V, et al. A specific DNA probe which identifies Babesia bovis in whole blood. Veterinary Parasitology,1992,42:189-198
    [110]陈启军,李德吕,闫仲堂等.吉氏巴贝斯虫cDNA探针的制备及杂交实试验.中国动物检疫,1995,2:8-10
    [111]Calder J A M, Reddy G R, Chieves L, et al. Monitoring Babesia bovis infection in cattle by using PCR-based tests. Journall of Clinical Microbiology,1996,11:2748-2755
    [112]Figueroa J V, Chieves L P, Johnson G S, et al. Detection of Babesia bigemina-infected carriers by polymeras hainreactiona mplification. Journal of Clinical Microbiology,1992,30:2576-2582
    [113]Figueroa J V, Chieves L P, Johnson G S, et al. Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet. Parasitol.,1993,50:69-81
    [114]DeKok J B, d'Oliveira C and Jongejan F. Detection of the protozoan parasite Theileria annulata in Hyalomma ticks by the polymerase chain reaction. Exp. Appl. Acarol,1993,17:839-846
    [115]Mason P J, Shiels B R, Tait A, et al. Sequence and Expression of agenef rom Theileria annulata coding for a 72-kilodalton Heat-shock protein. Mol. Biochem. Parasitol.,1989,37 (1):27-35
    [116]Kajiwara N, Onuma M, Kawakami Y, et al. Specific DNA probe for the detection of Theileria sergenti infection in cattle. Nippon Juigaku Zasshi,1990,52 (6):1199-1204
    [117]Hirano A, Kirisawa R, Matsuba T, et al. Evaluation of high sensitive DNA probe for the detection of Theileria sergenti infectionln cattle. Vet. Med. Sci.,1991,53 (5):933-935
    [118]Matsuba T, Kubota H, Tanaka M, et al. Analysis of mixed parasite populations of Theileria sergenti using cDNA probes encoding a major piroplasm surface protein. Parasitology,1993,107 (Pt4): 369-377
    [119]Bishop R, Sohanpal B, Kariuki D P, et al. Detection of a Carrier state in Theileria parva-infected cattle by the polymerase chain Reaction. Parasitol.,1992,104:215-232
    [120]d'Oliveira C, vander Weide M, Habela M A, et al. Detection of Theileria annulata in blood samples of carrie cattlt by PCR. Clin. Microbiol.,1995,33 (10):2665-2669
    [121]Kirvar E, Ilhan T, Katzer F, et al. Detection of Theileria annulata Lestoquardi (hirci) in cattle and vector ticks by PCR using the Tams1 Geng sequence. Ann. Parasitol.,2000,120:245-254
    [122]Roy K. C, Ray D, Bansal G C, et al.Detection of Theileria annulata carrier cattle by PCR[J].Indian J Exp Biol,2000,38 (3):283-284.
    [123]De Kok J B, d'Oliveira C, Jongejan F, et al. Detection of the Protozoan parasite Theileria annulata in Hyalomma ticks by the Polymerase chain reaction. Expeimental Applied Acarology,1993,1(11): 839-846
    [124]Baek B K, Rim B M, Lee W J, et al. Verification by polymerase chain reaction of vertical transmission of Theileria sergenti in cows. Can. J. Vet.Res.,2003,67 (4):278-282
    [125]Vatansever Z and Nalbantoglu S. Detection of cattle infected with Theileria annulata in fields by nested PCR, IFAT and microscopic examination of blood smears. Turkish J. Vet. Animal Sci.,2002, 26:1465-1469
    [126]Tanya L, Shawn J, Kelly A B, et al. The Babesia bovis merozoite surface antigen 2 locus contains four tandemly arranged and expressed genes encoding immunologically distinct Proteins. Infection and immunity,2002,70:3566-3575
    [127]Florin-Christensen M, Suarez C E, Hines S A, et al. The Babesia bovis Merozoite Surface Antigen 2 locus contains four tandemly arranged and expressed genes encoding immunologically distinct proteins. Infect. Immun,2002,70:3566-3575
    [128]Mosqueda J, Terry F, McElwain, et al. Babesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infection and immunity,2002,70:6448-6455
    [129]Wilkowsky S E, Farber M, Echaide I, et al. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol. Biochem. Parasitol.,2003,127:133-141
    [130]Berens S J, Brayton K A, Molloy J B, et al. Merozoite surface antigen 2 proteins of Babesia bovis vaccine breakthrough isolates contain a unique hypervariable region composed of degenerate repeats. Infect. Immun.,2005,73:7180-7189
    [131]Mosqueda J, McElwain T F, Palmer G H, et al. Babesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infect. Immun.,2002,70:6448-6455
    [132]Wilkowsky S, Farber M, Echaide I, et al. Taking advantage of the polymorphism of the MSA-2 family for Babesia bovis strain characterization. Parassitologia,2007,49 (S1):63-66
    [133]Juliann G K, George C T. Heat shock protein 70 kDa: Molecular biology, biochemistry and physiology. Pharmacol Ther.,1998,80 (2):183-201
    [134]FederM E, Hofmann G E. Heat-shock proteins, molecular chaperones and the stress response. Annu. Rev. Physiol.,1999,61:243-282
    [135]Krebs R A, Feder M E. Deleterious consequences of HSP70 over-expression in Drosophila melanogaster larvae. Cell Stress Chaperones,1997,2(1):60-71
    [136]Qu L Y, Sun X Q, Xiang J H, et al. Advances in study on heat shock protein. Advances In Marine Science,2004,22 (3):386-391
    [137]Sharma K K, Kumr R S, Kumar G S, et al. Synthesis and characterization of a peptide identified as a functional element ina A-crystallin. Biol. Chem.,2000,275:3767-3771
    [138]Wang X Y, ManjiliM H, Chen X, et al. Development of cancer vaccines using autologous and recombinant high molecular weight stress proteins. Methods,2004,32 (1):13-20
    [139]Udono H, Saito T, Ogawa M, et al. HSP-antigen fusion and their use for immunization. Methods, 2004,32:21-24
    [140]Borrelli M J, Bernock L J, Landry J, et al. Stress protection by a fluorescent Hsp27 chimera that is independent of nuclear translocation or multimeric dissociation. Cell Stress Chaperones,2002,7: 281-296
    [141]DeWitN J W, Verschuure P, Kappe G, et al. Testis-specific human small heat shock protein HSPB9 is a cancer/testis antigen, and potentially interacts with the dynein subunit TCTEL1. Eur. J. CelLBiol.,2004,83:337-345
    [142]Qiu Z J, Bossier P, Wang X M, et al. Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics.2006,88 (2):230-240
    [143]Tamura Y, Tsuboi N.70-KDa heat shock cognate protein is a transformation-associated antigen and a possible target for the hosts anti-tumor immunity. Immunol.,1993,151:5516-5524
    [144]Tamura Y, Peng P, Srivastava P K, et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science,1997,278:117-120
    [145]胡晓燕,曲音波.热休克蛋白的研究进展.生命科学,1999,11(S):6
    [146]Suarez C E, Palmer G H, Florin-Christensen M, et al. Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Biochem. Parasitol.,2003, 127(2):101-112
    [147]Fisher T G, McElwain T F, Palmer G H, et al. Molecular basis for variable expression of merozoite surface antigen gp45 among American isolates of Babesia bigemina. Infect. Immun.,2001,69 (6): 3782-3790
    [148]Mishra V S, Stephens E B, Dame J B, et al. Immunogenicity and sequence analysis of recombinant p58:a Neutralization sensitive, antigenically conserved Babesia bigemina merozoite surface protein. Biochem. Parasitol.,1991,47 (2):207-212
    [149]Brown W C, Ruef B J, Norimine J, et al. A novel 20-kilodalton protein conserved in Babesia bovis and B.bigemina stimulates memory CD4(+) T lymphocyte responses in B.bo vis-immune cattle. Biochem. Parasitol.,2001,118 (1):97-109
    [150]Norimine J, Mosqueda J, Palmer G H, et al. Conservation of Babesia bovis small heat shock protein (HSP20) among strains and definition of T helper cell epitopes recognized by cattle with diverse mayor histocompatibility complex class Ⅱ haplotypes. Infection and Immunity,2004,2: 1096-1106
    [151]Boulter N, Hall R. Immunity and vaccine development in the bovine theilerioses. Adv Parasitol, 1999,44:41-97.
    [152]Boulter N R, Brown C Q Kirvar E, et al. Different vaccine strategies used to protect against Theileria annulata. Ann. N. Y. Acad. Sci.,1998,849:234-246
    [153]Boulter N, Brown D, Wilkie G, et al. Evaluation of recombinant sporozoite antigen SPAG1 as a vaccine candidate against Theileria annulata by the use of different delivery systems. Trop. Med.Int.Health,1999,4:71-77
    [154]Bakheit M A, Seitzer U, Ahmed J S. A new recombinant proteinbased ELISA for the Diagnosis of malignant theileriosis of sheep and goats. Parasitol. Res.,2006,98:145-149
    [155]Miranda J, Bakheit M A, Liu Z, et al. Development of a recombinant indirect ELISA for the Diagnosis of Theileria spp infection in small ruminants. Parasitol. Res.,2006,98:561-567
    [156]Glascodine J, Tetley L, Tait A, et al. Developmental expression of a Theileria annulata merozoite surface antigen. Molecular and Biochemical Parasitology,1990,40:105-112
    [157]Tanaka M, Onoe S, Matsuba T, et al. Detection of Theileria sergenti infection in cattle by polymerase chain reaction amplification of parasite-specific DNA. Clin. Microbiol.,1993,31: 2565-2569
    [158]d' Olivcira C, vander Weide M, Jacquiet P, et al. Detection of Theileria annulata by the PCR in ticks (Acari Ixodidae) collected from cattle in Mauritania. Exp. Appl. Acarol.,1997,21 (5): 279-291
    [159]d' Oliveira C, Feenstra A, Vos H, et al. Induction of protective immunity to Theileria annulata using two major merozo surface antigens presented by different delivery sytems. Vaccine,1997,15 (16):1796-1804
    [160]Altay K, Aktas M, Dumanli N, et al. PCR-RFLP analysis of the Tams1 gene of Theileria annulata. Turkiye Parazitol. Derg.,2007,31:173-175
    [161]Altay K, Aydin M F, Uluisik U, et al. Use of Multiplex PCR for the diagnosis of Theileria annulata and Theileria buffeli. Turkiye Parazitol. Derg.,2008,32:1-3
    [162]Kirvar E, Ilhan T, Katzer F, et al. Detection of Theileria annulata in cattle and vector ticks by PCR using the Tamsl gene sequences. Parasitology,2000,120 (3):245-254
    [163]Gubbels M J, d'Oliveira C, Jongejan F, et al. Development of an indirect Tams1 enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Clin. Diagn. Lab. Immunol.,2000,7:404-411
    [164]Katzer F, McKellar S, Miled L B, et al. Selection for antigenic diversity of Tamsl, the major merozoite antigen of Theileria annulata. Ann. N. Y. Acad. Sci.,1998,849:96-108
    [165]Shiels B R, d'Oliveira C, McKellar S, et al. Selection of diversity at putative glycosylation sites in the immunodominant merozoite/piroplasm surface antigen of Theileria parasites. Mol. Biochem. Parasitol.,1995,72:149-162
    [1]Uilenberg G. International collaborative research:significance of tick-borne hemoparasitic disease to world animal health. Vet. Parasitol.,1995,57:19-41
    [2]Rios L, Alvarez G and Blair S. Serological and parasitological study and report of the first case of human babesiosis in Colombia. Revista da Sociedade Brasileira de Medicina Tropical.,2003,36 (4):493-498
    [3]Bork S, Yokoyama N, Ikahara Y, et al. Growth-inhibitory effect of heparin on babesia parasites.. Antimicrob. Agents Chemother.,2004,48 (1):236-241
    [4]McCosker P J. The global importance of babesiosis. In: Ristic M (Ed.), Babesiosis. New York Academic Press,1981,1-24
    [5]Risic M. Babesiosis In Ristic M and MacIntyre I (Ed.), Disease of cattle in the tropics. The Hague (Netherlands):Martinus Nijhof Publishers,1981,443-468
    [6]Weiland G and Reiter I. Methods for serological respone to Babesia. In Ristic M (Ed.), Babesiosis of demestic and man. Boca Raton (Fla.):CRC Press,1988,143-158
    [7]Goff W L, McElwain T F, Suarez C E, et al. Competitive enzyme-linked immunosorbent assay based on a rhoptry-associated protein1 epitope specifically identifies Babesia bovis-infected cattle. Clinical and Diagnostic laroratory immunology,2003,10 (1):38-43
    [8]Hope M, Riding G, Menzies M, et al. Potential for recombinant Babesia bovis antigens to protect against a highly virulent isolate. Parasite Immunol.,2005,27:439-451
    [9]Boonchit S, Xuan X, Yokoyama N, et al. Improved enzyme-linked immunosorbent assay using c-terminal truncated recombinant antigens of babesia bovis rhoptry-associated protein-1 for detection of specific antibodies. Journal of Clinical Microbiology,2004,42 (4):1601-1604
    [10]Suarez C E, Palmer GH, Hines S A, et al. Immunogenic B-cell epitopes of Babesia bovis rhoptry-associated protein 1 are distinct from sequences conserved between species. Infect. Immun., 1993,61:3511-3517
    [11]Shompole S, McElwain T F, Jasmer D P, et al. Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunol.,1994, 16:119-127
    [12]Palmer G H, McElwain T F, Perryman L E, et al. Strain variation of Babesia bovis merozoite surface-exposed epitopes. Infect. Immun.,1991,59:3340-3342
    [13]Wilkowsky S E, Farber M, Echaide I, et al. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol. Biochem. Parasitol.,2003,127(2):133-141
    [14]袁江铃,马素贞,沈炯玉等.牛巴贝斯虫新疆株MSA—2c基因重组质粒的构建、真核表达及免疫反应性研究.新疆农业大学学报,2008,31(4):19-82
    [15]简子健,袁江铃,马素贞等.牛巴贝斯虫新疆株MSA—2c基因的克隆表达以及重组蛋白免疫原性.中国兽医学报,2009,29(10):1263-1285
    [16]Florin-Christensen M, Suarez C E, Hines S A, et al. The Babesia bovis merozoite surface antigen 2 locus contains four tandemly arranged and expressed genes encoding immunologically district proteins. Infactions and immunity,2002,70 (7):3566-3575
    [17]Mosqueda J, McMlwain T F and Palmer G H, et al. Babesia bovis are expressed on the merozoite and sporozoite snrface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infactions and immunity,2002,70 (11):6448-6455
    [18]Zintl A., Mukcahy G, Skerret H E, et al. Babesia divergens, a bovin blood parasite of veterinary and zoonotic importance. Clinical Microbiology Reviews,2003,16 (4):622-636
    [1]Buening G M, Barbet A F, Myler P, et al. Characterization of a repetitive DNA probe for Babesia bigemina. Vet. Parasitol.,1990,36:11-20
    [2]Chomczynski P and Sacchi N. Single-step method of RNA isolation by acid guanidinium isothiocyanate-phenol-chloroform extraction. Anal. Biochem.,1987,162:156-159
    [3]Passos L M F, Bell-Sakyib L and Brown C G D. Immunochemical characterization of in vitro culture-derived antigens of Babesia bovis and abesia bigemina. Veterinary Parasitology,1998, 7:6239-249
    [4]McLaughlin G L, Edlind T D and Ihler G M. Detection of Babesia bovis using DNA hybridization. J. Protozool.,1986,33:125-128
    [5]Posnett E S and Ambrosio R E. DNA probes for the detection of Babesia caballi. Parasitology, 1991,102:357-365
    [6]Waters A P and McCutchan T F. Ribosomal RNA:nature's own polymerase amplified target for diagnosis. Parasitol.,1990,6:56-59
    [7]Reddy G R D, Chakrabarti C A, Yowell, et al. Sequence microheterogeneity of the three small subunit ribosomal RNA genes of Babesia bigemina:expression in erythrocyte culture. Nucleic Acids Res.,1991,19:3641-3645
    [8]Redd G R and Dame J B. rRNA-Based Method for sensitive detection of Babesia bigemina in bovine blood. Journal of Clinical Microbiology,1992,30 (7):1811-1814
    [9]Bose R, Jacobson R H, Gale K R, et al. An improved ELISA for the detection of antibodies against Babesia bovis using either a native or a recombinant B. bovis antigen. Parasitol. Res.,1990,76: 648-652
    [10]Gaffa F R, Franssen F F J and Vries E D. Babesia bovis invade human, ovine, equine, porine, caprine erythrocytes by a sialic acid-dependent mechanisim followed by developmental arrest after a single round of cell fission. International journal of parasiology,2003,33:1595-1603
    [11]Suarez C E, Palmer G H, Florin-Christensen M, et al. Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Biochem. Parasitol.,2003, 127(2):101-112
    [12]Fisher T G, McElwain T F, Palmer G H, et al. Molecular basis for variable expression of merozoite surface antigen gp45 among American isolates of Babesia bigemina. Infect. Immun.,2001,69 (6):3782-3790
    [13]Mishra V S, Stephens E B, Dame JB, et al. Immunogenicity and sequence analysis of recombinant p58:a Neutralization sensitive, antigenically conserved Babesia bigemina merozoite surface protein. Biochem. Parasitol.,1991,47 (2):207-212
    [14]Brown W C, Ruef B J, Norimine J, et al..A novel 20-kilodalton protein conserved in Babesia bovis and B.bigemina stimulates memory CD4(+) T lymphocyte responses in B.bovis-immune cattle. Biochem. Parasitol.,2001,118(1):97-109
    [15]Norimine J, Mosqueda J, Palmer G H, et al. Conservation of Babesia bovis small heat shock protein (HSP20) among strains and definition of T helper cell epitopes recognized by cattle with diverse mayor histocompatibility complex class II haplotypes.Infection and immunity,2004,2:1096-1106
    [16]Wendy C, Brown A, Barbara J, et al. A novel 20-kilodalton protein conserved in Babesia bovis and B. bigemina stimulates memory CD4+ T lymphocyte responses in B. bovis-immume cattle. Molecular and Biochemical Parasitology,2001,118:97-109
    [17]Lee. S, Carson K, Rice-Ficht A, et al. Hsp20, a novel a-crystallin, prevents Aβ fibril formation and toxicity. Protein Science,2005,14:593-596
    [18]简子健,孙其喆,马素贞等.牛双芽巴贝斯虫新疆株HSP20基因的克隆和真核表达质粒的构建.新疆农业科学,2009,46(2):359-363
    [1]Uilenberg G. Theilerial species of domestic livestock. In:Irvin A D, Cunningham M P, Young A S (Eds.), Advances in the Control of Theileriosis. The Hague:Martinus Nijhoff Publishers,1981, 4-37
    [2]Neitz W O. Theileriosis, gonderioses and cytauxzoonoses:a review. Onderstepoort J. Vet. Res., 1957,27:275-430
    [3]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology,2001, 99:249-259
    [4]Kiltz H H, Uilenberg G, Franssen F F J, et al. Theileria orientalis occurs in Central Africa. Res. Vet. Med.,1986,40:197-200
    [5]d'Oliveira C, vander Weide M, Habela M A, et al. Detection of Theileria annulata in blood samples of carrier cattle by PCR. J. Clin. Microbiol.,1995,33:2665-2669
    [6]Papadopoulos B, Brossard M, Perie N M, et al. Piroplasms of domestic animals in the Macedonia region of Greece.2. Piroplasms of cattle. Vet. Parasitol.,1996a,63:57-66
    [7]McCosker P J. The global importance of babesiosis. In: Ristic M, Kreier J P (Eds.), Babesiosis. New York:Academic Press,1981,1-24
    [8]Papadopoulos B, Perie N M, Uilenberg G, et al. Piroplasms of domestic animals in the Macedonia region of Greece.1. Serological cross-reactions. Vet. Parasitol.,1996b,63:41-56
    [9]Lew A E, Dalrymple B P, Jeston P J, et al. PCR methods for the discrimination of Babesia bovis isolates. Vet. Parasitol.,1997,223-237
    [10]Calder J A M, Reddy G R, Chieves L, et al. Monitoring Babesia bovis infections in cattle using PCR-based tests. J. Clin. Microbiol.,1996,34 (11):2748-2755
    [11]Figueroa J V, Chieves L P, Johnson G S, et al. Detection of Babesia bigemina infected carriers by polymerase chain reaction amplification. J. Clin. Microbiol.,1992,30:2576-2582
    [12]Figueroa J V, Chieves L P, Johnson G S, et al. Multiplex polymerase chain reaction for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet. Parasitol.,1993,50:69-81
    [13]Tanaka M, Onoe S, Matsuba T, et al. Detection of Theileria sergenti infection in catlle by polymerase chain reaction amplification of parasite-specific DNA. J. Clin. Microb.,1993,31: 2565-2569
    [14]Bishop R P, Sohanpal B, Kariuki D P, et al. Detection of a carrier state in Theileria parva-infected cattle by polymerase chain reaction. Parasitology,1992,104:215-232
    [15]Fahrimal Y, Goff W L and Jasmer D P. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA. J. Clin. Microbiol.,1992,30:1374-1379
    [16]Altay k, Aydin M F, Uluisk U, et al. Using of multiplex PCR for the diagnosis of Theilaria annulata and Theilaria buffeli. Tukiye Prazitol. Derg.,2008,32:1-3
    [17]Kirvar E, Ilhan T, Katzer F, et al. Detection of Theileria annulata in cattle and vector ticks by PCR using the Tarms 1 gene sequences. Parasitology,2000,120 (3):245-254
    [18]d'Olivcira C,vander Weide M, Jacquiet P, et al. Detection of Theileria annulata by the PCR in ticks(Acari Ixodidae) collected from cattle in Mauritania. Exp. Appl. Acarol.,1997,21(5):279-291
    [19]Glascodine J, Tetley L, Tait A, et al. Developmental expression of a Theileria annulata merozoite surface antigen. Molecular and Biochemical Parasitology,1990,40:105-112
    [20]简子健(南京农业大学署名作者),黄家雨,马素贞等.新疆牛环形泰勒虫Tams Ⅰ基因的克隆与表达.中国预防兽医学报,2008,30(10):784-789
    [21]Gubbels M J, d'Oliveira C, Jongejan F, et al. Development of an indirect Tams1 enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Clin. Diagn. Lab. Immunol.,2000,7:404-411
    [22]d' Oliveira C, Feenstra A, Vos H, et al. Induction of protective immunity to Theileria annulata using two major me rozo surface antigens presented by different delivery sytems. Vaccine,1997,15 (16): 1796-1804
    [1]LevineN D. Taxonomy of the piroplasms. Trans. Am. Microsc. Soc.,1971,90:2-33
    [2]Levine N D, Corliss J O, Cox F E, et al. A newly revised classification of the protozoa. J. rotozool., 1980,27:37-58
    [3]Mehlhorn H, Peters W and Haberkorn A. The formation of kinetes and oocysts in Plasmodium gallinaceum and considerations on phylogenetic relationships between Haemosporidia, Piroplasmida, and other Coccidia. Protistologica,1980,16:135-154
    [4]Brandt F, Healy G R and Welch M. Human babesiosis: the isolation of Babesia microti in golden hamsters. J. Parasitol.,1977,63:934-937
    [5]Etkind P J, Piesman T, Ruebush H, et al. Methods for detecting Babesia microti infection in wild rodents. J.Parasitol.,1980,66:107-110
    [6]Moore J A, and Kuntz R E. Babesia microti infections in nonhuman primates. J. Parasitol.,1981, 67:454-456
    [7]Ruebush T H, Juranek D D, Chisholm E S, et al. Human babesiosis on antucket Island: evidence for self-limited and subclinical infections. N. Engl. J. Med.,1977,297:825-827
    [8]Spielman A, Etkind P, Piesman J, et al. Reservoir hosts of human babesiosis on Nantucket Island. Am. J. Trop. Med. Hyg.,1981,30:560-565
    [9]Olmeda A S, Armstrong P M, Rosenthal B M, et al. A subtropical case of human babesiosis. Acta Trop.,1997,67:229-234
    [10]Mary J H, Aguilar-Delfin I, Sanm R, et al. Babesiosis. Clin.Microbio. Review,2000,13 (3):451-469
    [11]Weiland G and Reiter I. Methods for serological reponse in babesia spp in Ristic M (ed), Babesiosis of domestic animal and man. Boca Raton(Fla.):CRC Press,1988,142-158
    [12]Boonchit S, Xuan X, Yokoyama N, et al. Evaluation of an ELISA assay with recombinant RAP1 antigen against babesia bovis for ditection of specific antibodies in cattle. Journal of clinical microbiology,2002,40(10):3771-3775
    [13]Bose R W R, Jorgensen R J, Dalgliesh K T, et al. Current state future trends of babesiosis. Vet. Parasitol.,1995,57:61-64
    [14]Fuginaga T T, Minami and Ishihara T. Serological relationship between a large Babesia found in Jepanese cattle and Babesia major, Babesia bigemina, and Babesia bovis. Res.Vet. Sci.,1980, 29:30
    [15]Boonchit S, Xuan X, Yokoyama N, et al. Improved ELISA assay using c-terminal truncated recombinant antigen of babesia bovis RAP-1 for detection of specific antibodies. Journal of clinical microbiology,2004,42 (4):1601-1604
    [16]Ikadai H, Xuan X, Igarashi I, et al. Cloning and expression of a 48-kDa babesia cabolli merozoite rhoptry protein and potential use of the recombinant antigen in an enzyme-linked immunosorbent assay. J. Clin. Microbiol.,1999,37:3475-3480
    [17]简子健,沈炯玉,马素贞等.新疆牛巴贝斯虫MSA-2c可溶性融合蛋白的高效表达.新疆农业科学,2009,46(4):835-838
    [18]Xuan X, Larsen A, Ikadai H, et al. Expression of Babesia equi merozoite antigen 1 in insect cell by recombinant baculovirus and evaluation of its diagnosis potential in an enzyme-linked immunosorbent assay. J. Clin. Microbiol.,2001,39:705-709
    [19]Wilkowsky S E, Farber M, Echaide I, et al. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol. Biochem. Parasitol.,2003,127(2):133-141
    [20]袁江铃,马素贞,沈炯玉等.新疆牛巴贝斯虫株MSA-2c基因重组质粒的构建、真核表达以及免疫反应性研究.新疆农业大学学报,2008,31(4):29-82
    [1]Ristic M. Babesiosis, In Ristic M and McIntyre I (Eds.), diseases of cattle in the tropics. Boston (Martinus):Nijhoff Publishers,1981,443-468
    [2]Mahoney D F, Wright I G and Mirre G B. Bovine babesiasis:the persistence of immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after naturally acquired infection. Ann. Trop. Med. Parasitol,1973,67:197-203
    [3]Kuttler K L. Diagnosis of anaplasmosis and babesiosis. An overview. Proc.7th Natl. Anaplasmosis Conf., Starkville, Miss. Mississippi State University,1981,245-268
    [4]Buening G M, Barbet A, Myler P, et al. Characterization of a repetitive DNA probe for Babesia bigemina. Vet. Parasitol.,1990,36:11-20
    [5]Figueroa J V, Chieves L P, Byers P E, et al. Evaluation of a DNA-based probe for the detection of cattle experimentally infected with Babesia bigemina. Ann. N.Y. Acad. Sci.,1992,653:131-145
    [6]Figueroa J V, Chives L P, Johnson G S, et al. Detection of Babesia bigemina-Infected Carriers by Polymerase Chain Reaction Amplification. Journal of Clinical Micraobiology,1992,30(10): 2576-2582
    [7]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology,2001,99: 249-259
    [8]孙其喆,马素贞,简子健等.牛双芽巴贝斯虫热休克基因外显子的克隆与表达.新疆农业大学学报,2009,32(1):1-4
    [9]蒋金书.动物原虫病.北京:中国农业大学出版社,2000,87-126
    [10]Brown W C, Ruef B J, Norimine J, et al. A novel 20-kilodalton protein conserved in Babesia bovis and B.bigemina stimulates memory CD4(+) T lymphocyte responses in B.bovis-immune cattle. Biochem. Parasitol.,2001,118(1):97-109
    [11]Lee. S, Carson K, Rice-Ficht A, et al. Hsp20, a novel a-crystallin, prevents Aβ fibril formation and toxicity. Protein Science,2005,14:593-596
    [12]Norimine J, Mosqueda J, Palmer G H, et al. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes. Infection and Immunity,2004,72 (2): 1096-1106
    [13]简子健,孙其喆,马素贞等.牛双芽巴贝斯虫新疆株HSP20基因的克隆与真核表达质粒的构建.新疆农业科学,2009,46(2):359-363
    [14]孙其喆.牛双芽巴贝斯虫HSP20基因的克隆表达及其重组蛋白的免疫反应性研究.新疆农业大学硕士研究生论文,2009
    [1]Luo J X and Lu W S. Cattle Theileriosis in China.Tropical Animal Health and Production,1997,29 (S4):4-7
    [2]吕文祥,吕文顺,张其才等.我国牛蜱传性血液原虫的虫种调查和分布特征的研.中国兽医科技,1995,25(8):13-17
    [3]Williamson S, Tait A, Brown D, et al. Theileria annulata sporoziote surface Antigen expresse in Escherichia coli elicits neutralizing antibody. Proc. Natl. Acad. Sci.,1989,86 (12):4639-4643
    [4]Schnittger L, Katzer F, Biermann R, et al. Characterization of a polymorphic Theileria annulata surface protein (TaSP) closely related to PIM of Theileria parva: implications for use in diagnostic tests and subunit vaccines. Mol. Biochem. Parasitol.,2002,12:247-256
    [5]Darghouth M A, Boulter N R, Gharbi M, et al. Vaccination of calves with an attenuated cell line of Theileria annulata and the sporozoite antigen SPAG-1 produces a synergistic effect. Vet. Parasitol., 2006,142:54-62
    [6]Altay K, Aktas M, Dumanli N. PCR-RFLP analysis of the Tamsl gene of Theileria annulata. Turkiye Parazitol. Derg.,2007,31:173-175
    [7]Katzer F, McKellar S, Ferguson MA, et al. A role for tertiary structure in the generation of antigenic diversity and molecular association of the Tamsl polypeptide in Theileria annulata. Mol. Biochem. Parasitol.,2002,122:55-67
    [8]Seitzer U, Bakheit M A, Salih D E, et al. From molecule to diagnostic tool:Theileria annulata surface protein TaSP. Parasitol. Res.,2007,101(S2):S217-23
    [9]Salih D E, Ahmed J S, Bakheit M A, et al. Validation of the indirect TaSP enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Parasitol. Res.,2005, 97:302-308
    [10]Shiels B R, d'Oliveira C, McKellar S, et al. Selection of diversity at putative glycosylation sites in the immunodominant merozoite/piroplasm surface antigen of Theileria parasites. Mol. Biochem. Parasitol.,1995,72:149-162
    [11]Gubbels M J, Viseras J, Habela M A. Characterization of attenuated Theileria annulata vaccines from Spain and the Sudan. Ann. N. Y. Acad. Sci.,2000,916:521-532
    [12]Boulter N R, Brown C G, Kirvar E. Different vaccine strategies used to protect against Theileria annulata. Ann. N. Y. Acad. Sci.,1998,849:234-246
    [13]Gubbels M J, d'Oliveira C, Jongejan F, et al. Development of an indirect Tams1 enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Clin. Diagn. Lab. Immunol.,2000,7:404-11
    [14]Boulter N, Hall R. Immunity and vaccine development in the bovine theilerioses. Adv. Parasitol., 1999,44:41-97
    [15]简子健(南京农业大学署名作者),黄家雨,马素贞等.新疆牛环形泰勒虫Tarms I基因的克隆与表达.中国预防兽医学报,2008,30(10):784-789
    [16]苗中秋,马素贞,孙其喆等.新疆牛环形泰勒虫Tams 1基因的原核表达条件的优化和纯化.Xi新疆农业大学学报,2009,31(1):18-21
    [17]Cray M A, Lukins A G, Rae PF, et al. Evaluation of An enzyme immunoassay for serodiagnosis of infections with Theileria Parva and T.annulata. Res. Vet. Sci.,1980,29:360-366
    [18]Kachani M, Spooner R L. Anti-lymphocyte antibodies Generated in animals immunized with Theileria annulata-infected cells.Vet. Immunopatho.1,1992,33:163-169
    [19]Bakheit M A., Seitzer U, Ahmed J S. A new recombinant proteinbased ELISA for the diagnosis of malignant theileriosis of sheep and goats. Parasitol. Res.,2006,98:145-149
    [20]Salih D E, Ahmed J S, Bakheit M A, et al. Validation of the indirect TaSP enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Parasitol. Res.,2005, 97:302-308
    [21]Salih D E, Ahmed J S, Bakheit M A, et al. Validation of the indirect TaSP enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Parasitol. Res.,2005, 97:302-308
    [22]简子健,苗中秋,马素贞等.新疆牛环形泰勒虫Tams1基因的真核表达载体的构建及免疫反应性研究.新疆农业科学,2009,46(3):651-656
    [1]Gaffa F R, Franssen F F J and Vries E D. Babesia bovis invade human, ovine, equine, porine, caprine erythrocytes by a sialic acid-dependent mechanisim followed by developmental arrest after a single round of cell fission. International journal of parasiology,2003,33:1595-1603
    [2]Goff W C, McElwain T F, Suarez C E, et al. Competitive enzyme-linked immunosorbent assay on a rhoptry-associated protein 1 epitope specifically identifies babesia bovis-infeced catlle. Clinical and diagnosis laboratory immunology,2003,10(1):38-41
    [3]Mahoney D F. Bovine babesia diagnosis of infection by a complement fixcatin test. Aust. Vet. J., 1962,38:48-52
    [4]Goodger B V. Preparation and preliminary assessment of purified antigens in the positive haemagglutination test for bovine babesiosis. Aust. Vet. J.,1971,47:251-256
    [5]Goff W L, Wagner T M, Craig G G, et al. The bovine immune response to tick-derived babesia bovis infection:serological studies of isolated immunoglobulins.Vet Parasitol.,1982,11:109-120
    [6]Wilkowsky S E, Farber M., Echaide I, et al. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol. Biochem. Parasitol.,2003,127(2):133-141
    [7]Weiland G and Reiter I. Methods for serological response to Babesia, In M. Ristic (ed.), Babesiosis of domestic animal and man. CRC Press:Fla.1988,143-158
    [8]de Vos A J and Potgieter F T Bovine babesiosis, In Coetzer J A W, Thomson G R and. Tustin R C (ed.), Infectious diseases of livestock. Oxford University Press:South Africa,1994,278-294
    [9]Boonchit S, Xua n X, Yokoyama N, et al. Evaluation of an enzyme-linked immunosorbent assay with recombinant rhoptry-associated protein-1 antigen of Babesia bovis for the detection of specific antibodies in cattle. J. Clin. Microbiol.,2002,40:3771-3775.
    [10]Bose R W, Jorgensen K, Dalgliesh R J K et al. Current state and future trends in the diagnosis of babesiosis. Vet. Parasitol.,1995,57:61-74
    [11]Barros S L, Madruga C R, Araujo F R, et al. Serological survey of Babesia bovis, Babesia bigemina, and Anaplasma marginale antibodies in cattle from the semi-arid region of the state of Bahia, Brazil, by enzyme-linked immunosorbent assays. Rio de Janeiro,2005,100(6):613-617
    [12]Goff W L, Molloy J B, Johnson W C, et al. Validation of a Competitive Enzyme-Linked Immunosorbent Assay for Detection of Antibodies against Babesia bovis.2006,13(11):1212-1216
    [13]Boonchit S, Xuan X, Yokoyama N, et al. Improved Enzyme-Linked Immunosorbent Assay Using C-Terminal Truncated Recombinant Antigens of Babesia bovis Rhoptry-Associated Protein-1 for Detection of Specific Antibodies. Jounral of Clinical Mirobiology,2004,42(4):1601-1604
    [14]袁江玲,马素贞,沈炯玉等.牛巴贝斯虫新疆株MSA-2c基因重组质粒的构建、真核表达及其免疫反应性研究.新疆农业大学学报,2008,31:79-82
    [15]简子健,袁江玲,马素贞等.牛巴贝斯虫新疆株MSA-2c基因的克隆表达及其重组蛋白的免疫源性研究.中国兽医学报,2009,29(10):1282-1285
    [16]简子健,马素贞,沈炯玉等.牛巴贝斯虫巢式PCR诊断方法的建立.中国兽医学报(待发表)
    [17]Calder J A M, Reddy G R, Chieves L, et al. Monitoring Babesia bovis infections in cattle by using PCR-based tests. Journal of Clinical Microbiology,1996,34(11):2748-2755
    [18]Fahrimal Y, Goff W L AND Jasmer D P. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA. Journal of Clinical Microbiology,1992, 30(6):1374-1379
    [19]Almeria S, Castella J, Ferrer D et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology.2001, 99:249-259
    [20]Silva M G, Henriques G, Sa'nchez C, et al. First survey for Babesia bovis and Babesia bigemina infection in cattle from Central and Southern regions of Portugal using serological and DNA detection methods. Veterinary Parasitology,2009,166:66-72
    [1]Buening G M, Barbet F A, Myler P, et al. Characterization of a repetitive DNA probe for Babesia bigemina. Vet. Parasitol.,1990,36:11-20
    [2]Chomczynski P and Sacchi N. Single-step method of RNA isolation by acid guanidinium isothiocyanate-phenol-chloroform extraction. Anal. Biochem.,1987,162:156-159
    [3]Gray J S, Murphy T M, Waldrup K A, et al. Comparative studies of Babesia spp. from white-tailed and sika deer. J. Wildl. Dis.,1991,27:86-91
    [4]Leeflang P and Perie N M. Comparative immunofluorescent studies on 4 Babesia species of cattle. Res. Vet. Sci.,1972,13:342-346
    [5]Gern L, Kindler A and Brossard M. Annual evolution of cattle immunity against Babesia divergens in Northern Switzerland. Prev. Vet.Med.,1988,6:9-16
    [6]Taylor S M, Kenny J and Strain A The distribution of Babesia divergens infection within the cattle population of Northern Ireland. Br. Vet. J.,1982,138:384-392
    [7]Chauvin A, L'Hostis M, Valentin A, et al. Babesia divergens: an ELISA with soluble parasite antigen for monitoring the epidemiology of bovine babesiosis. Parasite,1995,2:257-262
    [8]Wendy C, Brown A, Barbara J, et al. A novel 20-kilodalton protein conserved in Babesia bovis and B. bigemina stimulates memory CD4+ T lymphocyte responses in B. bovis-immune cattle. Molecular and Biochemical Parasitology,2001,118:97-109
    [9]Norimine J, Mosqueda J, Palmer G H, et al. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class Ⅱ haplotypes. Infection and Immunity,2004,72(2): 1096-1106
    [10]Lee S, Carson K, Rice-Ficht A, et al. Hsp20, a novel a-crystallin, prevents Aβ fibril formation and toxicity. Protein Science,2005,14:593-596
    [11]Brown W C, Ruef B J, Norimine J, et al. A novel 20-kilodalton protein conserved in Babesia bovis and B.bigemina stimulates memory CD4(+) T lymphocyte responses in B.bovis-immune cattle. Biochem. Parasitol.,2001,118(1):97-109
    [12]Ristic, M. Babesiosis, InRistic M and McIntyre I (ed.), diseases of cattle in the tropics. Martinus Nijhoff Publishers:Boston,1981,443-468
    [13]Mahoney D F, Wright I G, Mirre G B. Bovine babesiasis:the persistence of immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after naturally acquired infection. Ann. Trop. Med. Parasitol.,1973,67:197-203
    [14]Brown W C, Norimine J, Knowles D P, et al. Immune control of Babesia bovis infection. Vet. Parasitol.,2006,138:75-87
    [15]Buling A, Criado-Fornelio A, Benitez D, et al. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Veterinary Parasitology,2007,147:16-25
    [16]Araujo F R, Madruga C R, Leal C R, et al. Comparison between enzyme-linked immuno-sorbent assay, indirect fluorescent antibody and rapid conglutination tests in detecting antibodies against Babesia bovis. Vet. Parasitol.,1998,74:101-108
    [17]Barros S L, Madruga C R, Araujo F R, et al. Serological survey of Babesia bovis, Babesia bigemina, and Anaplasma marginale antibodies in cattle from the semi-arid region of the state of Bahia, Brazil, by enzyme-linked immunosorbent assays. Rio de Janeiro,2005,100(6):613-617
    [18]Boonchit S, Alhassan A, Chan B, et al. Expression of C-terminal truncated and full-length Babesia bigemina rhoptry-associated protein 1 and their potential use in enzyme-linked immunosorbent assay. Vet. Parasitol.,2006,137:28-35
    [19]Goff W L, McElwain T F, Suarez C E, et al. Validation of a competitive enzyme-linked immunosorbent assay for detection of Babesia bigemina antibodies in cattle. Clin. Vaccine Immunol,2008,15:1316-1321.
    [20]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection Veterinary Parasitology,2001,99: 249-259
    [21]Reddy G R and Dame J B. rRNA-based method for sensitive detection of Babesia bigemina in Bovine Blood. Journal of Clinical Microbiology,1992,30(7):1811-1814
    [22]Figueroa J V, Chieves, Johnson G S, et al. Detection of Babesia bigemina-infected carriers by polymerase chain reaction amplification. Journal of Clinical Microbiology,1992,30(10): 2576-2582
    [23]Oura C A L, Bishop R P, Wampande E M, et al. Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. International Journal for Parasitology,2004,34:603-613
    [24]Gubbels J M, Devos A P, Weide M V D, et al. Simultaneous detection of Bovine Theileria and Babesia species by reverse line blot hybridization. Journal of Clinical Microbiology,1999,37(6): 1782-1789
    [25]Figueroa, J. V., L. P. Chieves, G. S. Johnson, and G. M. Buening. Multiplex polymerase chain reaction-based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet. Parasitol.1993.50:69-81.)
    [26]Guerrero F D, Bendele K G, Davey R B, et al. Detection of Babesia bigemina infection in strains of Rhipicephalus (Boophilus) microplus collected from outbreaks in South Texas. Veterinary Parasitology,2007,145:156-163
    [27]Oliveira M C S, Oliveira-Sequeira T C G, Regitano L C A, et al. Detection of Babesia bigemina in cattle of different genetic groups and in Rhipicephalus (Boophilus) microplus tick. Veterinary Parasitology,2008,155:281-286
    [28]Silva M G, Henriques G, Sa'nchez C, et al. First survey for Babesia bovis and Babesia bigemina infection in cattle from Central and Southern regions of Portugal using serological and DNA detection methods. Veterinary Parasitology,2009,166:66-72
    [1]Luo j X, Lu W S. Cattle Theileriosis in China. Tropical Animal Health and Production,1997, 29(S4):4-7
    [2]Schnittger L, Katzer F, Biermann R, et al. Characterization of a polymorphic Theileria annulata surface protein (TaSP) closelyrelated to PIM of Theileria parva:implications for use in diagnostic tests and subunit vaccines. Mol. Biochem. Parasitol.,2002,120 (2):247-256
    [3]Darghouth M A,Boulter N R,Gharbi M, et al. Vaccination of calves with an attenuated cell line of Thei leria annulata and the sporozoite antigen SPAG-1 produces a synergistic effect. Vet. Parasitol.,2006,142:54-62
    [4]Altay K, Aktas M, Dumanli N, et al. PCR-RFL P analysis of the Tams1 gene of Theileria annulata. Turkiye Parazitol. Derg.,2007,31:173-175
    [5]Katzer F, Mckellar S, Ferguson M A, et al. A role for tertiary structure in the generation of antigenic diversity and molecular association of the Tamsl polypeptide in Theileria annulata. Mol. Biochem. Parasitol.,2002,122:55-67
    [6]Seitzer U, Bakheit M A, Salih D E, et al. From molecule to diagnostic tool:Theileria annulata surface protein TaSP. Parasitol. Res.,2007,101 (S2):217-223
    [7]Salih D E, Ahmed J S, Bakheit M A, et al. Validation of the indirect TaSP enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Parasitol. Res.,2005, 97:302-308
    [8]Shiels BR, d'Oliveira C, McKellar S, et al. Selection of diversity at putative glycosylation sites in the immunodominant merozoite/piroplasm surface antigen of Theileria parasites. Mol. Biochem. Parasitol.,1995,72:149-162
    [9]Gubbels M J, Viseras J, Habela M A. Characterization of attenuated Theileria annulata vaccines from Spain and the Sudan. Ann. N. Y. Acad. Sci.,2000,916:521-532
    [10]简子健,黄家雨,马素贞等.牛环形泰勒虫巢式PCR诊断方法的建立.新疆农业大学学报,2008,31(6):59-62
    [11]Uilenberg G Theilerial species of domestic livestock, In Irvin A D, Cunningham M P and Young A S (ed.), Advances in the control of theileriosis. Martinus Nijhoff:The Netherlands,1981,4-37
    [12]Oura C A L, Bishop R P, Wampande E M, et al. Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. International Journal for Parasitology,2004, 34:603-613
    [13]Yamada S, Konnai S, Imamura S, et al. PCR-based detection of blood parasites in cattle and adult Rhipicephalus appendiculatus ticks. Veterinary Journal,2009,182:352-355
    [14]Irvin A D. Characterization of species and strains of Theileria. Adv. Parasitol.,1987,26:145-197
    [15]Gubbels J M, Devos A P, Weide M V D, et al. Simultaneous detection of Bovine Theileria and Babesia species by reverse line blot hybridization. Journal of Clinical Microbiology,1999,37(6): 1782-1789
    [16]d' Oliveira C, Weide M V D, Habela M A, et al. Detection of Theileria annulata in blood samples of carrier cattle by PCR Journal of Clinical Microbiology,1995,33(10):2665-2669
    [17]Neitz W O. Theileriosis, gonderioses and cytauxzoonoses:a review. Onderstepoort J. Vet. Res., 1957,27:275-430
    [18]Burridge M J, Brown C G D and Kimber C D. Theileria annulata:cross reactions between a cell culture schizont antigen and antigens of East African Theileria species in the indirect fluorescent antibody test. Exp. Parasitol.,1974,35:374-380
    [19]Grootenhuis J G, Young A S, Dolan T T, et al. Characteristics of Theileria species (eland) infections in eland and cattle. Res. Vet. Med.,1979,27:59-68
    [20]Kiltz H H, Uilenberg G, Franssen F F J, et al. Theileria orientalis occurs in Central Africa. Res. Vet. Med.,1986,40:197-200
    [21]Gubbels M J, d'Oliveira C, Jongejan F, et al. Development of an indirect Tamsl enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Clin. Diagn. Lab. Immunol.,2000,7:404-411
    [22]Bakheit M A, Seitzer U, Ahmed J S. A new recombinant proteinbased ELISA for the Diagnosis of malignant theileriosis of sheep and goats. Parasitol. Res.,2006,98:145-149
    [23]Miranda J, Bakheit M A, Liu Z, et al. Development of a recombinant indirect ELISA for the Diagnosis of Theileria spp infection in small ruminants. Parasitol. Res.,2006,98:561-567
    [24]殷宏,张其才,吕文祥等.补体结合试验诊断环形泰勒虫病的研究.中国兽医科技,1996,26(7):9-11
    [1]Homer M J, Aguilat-Delifin I, Telford, et al. Babesiosis. Clinical Microbiology Revuews,2000,13 (3):451-469
    [2]Zintl A, Mulcahy G, Skerrett H E, et al. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clinical Microbiology Revuews,2003,16 (4):451-469
    [3]Swanson S, Neitzel D, Reed K D, et al. Coninfectios Acquired from Ixodes Tick.. Clinical Microbiology Revuews,2006,19 (4):708-727
    [4]Dammin G J, Spielman A, Benach J L, et al. The rising incidence of clinical Babesia microti infection. Hum. Pathol.,1981,12:398-400
    [5]Parry M F, Fox M, Burka S A, et al. Babesia microti infection in man. J. A. M. A,1977,238: 1282-1283
    [6]Quick R E, Herwaldt B L, Thomford J W, et al. Babesiosis in Washington State: a new species of Babesia? Ann. Intern. Med.,1993,119:284-290
    [7]Thomford J W P, Conrad A, Telford S R, et al. Cultivation and phylogenetic characterization of a newly recognized human pathogenic protozoan. J. Infect. Dis.,1994,169:1050-1056
    [8]Skotarczak B and Cichocka A. Isolation and amplification by polymerase chain reaction DNA of Babesia microti and Babesia divergens in ticks in Poland. Ann. Agric. Environ. Med.,2001,8: 187-189
    [9]Garcia-Sanmartin J, Nagore D, Garcia-Perezl A L, et al. Molecular diagnosis of Theileria and Babesia species infecting cattle in Northern Spain using reverse line blot macroarrays. BMC Veterinary Research,2006,2:16-223
    [10]Barros S, Madruga C R, R Araujo F, et al. Serological survey of Babesia bovis, Babesia bigemina, and Anaplasma marginale antibodies in cattle from the semi-arid region of the state of Bahia, Brazil, by enzyme-linked immunosorbent assays. Mem Inst Oswaldo Cruz, Rio de Janeiro,2005,100 (6): 613-617
    [11]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology,2001,99: 249-259
    [12]Goff W L, Terry F, Suarez C E, et al. Competitive ELISA assay base on a RAP-1 epitope specific identifies Babesia bovis-infecte callte. Clinical and diagnostic laboratory immunology,2003,10(3): 38-43
    [13]Boonchi S, Xuan.X, Yokoyama N, et al. Evaluation of a ELISA assy with recombinant RAP-1 antigen against Babesia bovis for ditection of specific antibodies in Cattle. Journal of Clinical Microbiology,2002,40 (10):3771-3775
    [14]Boonchi S, Xuan.X, Yokoyama N, et al. Improved ELISA assay using c-terminal truncated recombinant antigen of Babesia bovis RAP-1 for ditection of specific 15 antibodies. Journal of Clinical Microbiology,2002,42(4):1601-1604
    [15]Goff W L, Molloy J B, Johnson W C, et al. Validation of a competitive enzyme-linked immunosorbent assay for detection of antibodies against Babesia bovis. Clin. Vaccine Immunol., 2006,13:1212-1216
    [16]Silva M G, Henriques G, Sa'nchez C, et al. First survey for Babesia bovis and Babesia bigemina infection in cattle from Central and Southern regions of Portugal using serological and DNA detection methods. Vet. Parasio.,2009,66:66-72
    [17]罗建勋,殷宏,刘光远等.牛的巴贝斯虫18S rRNA基因序列比较.中国畜牧兽医学报,2005,36(9):906-911
    [18]吕文顺,殷宏,罗建勋等.新疆伊犁地区发现牛的大巴贝斯虫.中国畜牧兽医学会寄生虫分会第三次学术讨论会论文集(广州),1992,220
    [19]Luo J X, Chen F Y, Lu W S, et al. Experimemntal transmission of an unnamed bovine Babesia by Hyalomma spp., Haemaphysalis longicornis and Boophilus microplus. Vet.Parastol.,2003, 116:115-124
    [20]Ica A, Vatansever Z, Yildirim A, et al. Detection of Theileria and Babesia species in ticks collected from cattle. Veterinary Parasitology,2007,148:156-160
    [21]Luo J X, Yin H, Guan G Q, et al. Description of a new Babesia sp. Infective for cattle in Chian. Parasitology Research,2002,88(s):13-15
    [1]Ristic M. Babesiosis. In Ristic M andMcIntyre I (Eds.), diseases of cattle in the tropics. Boston (Martinus):Nijhoff Publishers,1981,443-468
    [2]Mahoney D F, Wright I G and Mirre G B. Bovine babesiasis:the persistence of immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after naturally acquired infection. Ann. Trop. Med. Parasitol.,1973,67:197-203
    [3]Kuttler K L. Diagnosis of anaplasmosis and babesiosis, An overview. Proc.7th Natl. Anaplasmosis Conf.,Starkville, Miss. Mississippi State University,1981,245-268
    [4]Figueroa J V, Chives L P, Johnson G S, et al. Detection of Babesia bigemina-Infected Carriers by Polymerase Chain Reaction Amplification. Journal of Clinical Micraobiology,1992,30 (10): 2576-2582
    [5]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology,2001,99: 249-259
    [6]Garcia-Sanmartin Josune, Nagore D, Garcia-Perezl A L, et al. Molecular diagnosis of Theileria and Babesia species infecting cattle in Northern Spain using reverse line blot macroarrays. BMC Veterinary Research,2006,2:16-23
    [7]Reddy G R and Dame J B. rRNA-Based Method for Sensitive Detection of Babesia bigemina in bovine blood. Journal of Clinical Microbiology,1992,30 (7):1811-1814
    [8]Figuero J V, Chieves L, Johnson S, et al. Detection of Babesia bigemina-Infected Carriers by Polymerase Chain Reaction Amplification,1992,30 (10):2576-2582
    [9]Barros S, Madruga C R, R Araujo F, et al. Serological survey of Babesia bovis, Babesia bigemina, and Anaplasma marginale antibodies in cattle from the semi-arid region of the state of Bahia, Brazil, by enzyme-linked immunosorbent assays. Mem Inst Oswaldo Cruz, Rio de Janeiro,2005,100 (6): 613-617
    [10]Boonchit S, Alhassan A, Chan B, et al. Expression of C-terminal truncated and full-length Babesia bigemina rhoptry-associated protein 1 and their potential use in enzyme-linked immunosorbent assay. Vet. Parasitol.,2006,137:28-35
    [11]Goff W L, Johnson W C, Molloy J B, et al. Validation of a competitive enzyme-linked immunosorbent assay for detection of Babesia bigemina antibodies in cattle. Clin. Vaccine Immunol.,2008,15:1316-1321
    [12]Silva M G, Henriques G, Sa'nchez C, et al. First survey for Babesia bovis and Babesia bigemina infection in cattle from Central and Southern regions of Portugal using serological and DNA detection methods.Vet. Parasio.,2009,66:66-72
    [13]罗建勋,殷宏,刘光远等.牛的巴贝斯虫18S rRNA基因序列比较.中国畜牧兽医学报,2005,36(9):906-911
    [14]廖梅,张立,罗伟等.牛双芽巴贝斯焦虫病的防治.贵州畜牧兽医,2004,28(2):31
    [15]郑伟,王茂法,符正根等.牛双芽巴贝斯虫三诊治.浙江畜牧兽医,2003,1:31
    [16]周金林,沈洁,王权等.牛双芽巴贝斯虫病的防治研究.中国兽医寄生虫病,1997,5(1):7-10
    [17]白启,尹世兴,陈振环等.双芽巴贝斯虫纯种虫株的分离.中国兽医科技,1987,9:25-27
    [18]Oliveira M C S, Oliveira-Sequeira T C G, Regitano L C A, et al. Detection of Babesia bigemina in cattle of different genetic groups and in Rhipicephalus (Boophilus) microplus tick. Veterinary Parasitology,2008,155:281-286
    [19]Guerrero F D, Bendele K G, Davey R B,et al. Detection of Babesia bigemina infection in strains of Rhipicephalus (Boophilus) microplus collected from outbreaks in South Texas. Veterinary Parasitology,2007,145:156-163
    [1]Dolan T T. Theileriosis:a comprehensive review. Rev. Sci. Tech. Off. Int. Epizoot.,1989,8:11-36
    [2]Sparagano O. Molecular diagnosis of Theileria and Babesia species. J. Vet. Parasitol.,1999,13 (2):, 83-92
    [3]Tait A, Hall F R. T. annulata:control measures, diagnosis and the potential use of subunit vaccines. Rev. Sci. Tech. Off. Int. Epiz.,1990,9:387-403
    [4]Robinson P M. Theileria annulata and its transmission- a review. Trop. Anim. Health Prod.,1982, 14:3-12
    [5]Uilenberg G. Theilerial species of domestic livestock. In:Irvin A D, Cunningham M P, Young A S (Eds.), Advances in the Control of Theileriosis. The Hague (Martinus):Nijhoff Publishers,1981, 4-37
    [6]d'Oliveira C, vander Weide M, Habela M A, et al. Detection of Theileria annulata in blood samples of carrier cattle by PCR. J. Clin. Microbiol.,1995,33:2665-2669
    [7]殷宏,张其才,吕文祥等.补体结合试验检测环形泰勒病的研究.中国兽医科技,1996,26(7):9-11
    [8]王光雷,李水清,努尔巴蛤提等.蜱害引起家畜大批死亡的调查死亡报告.草食家畜,1997,95(2):45
    [9].Garcia-Sanmartin J, Nagore D, Garcia-Perezl A L, et al. Molecular diagnosis of Theileria and Babesia species infecting cattle in Northern Spain using reverse line blot macroarrays. BMC Veterinary Research,2006,2:16-23
    [10]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology,2001,99: 249-259
    [11]Uilenberg G. International collaborative research: significance of tick-borne hemoparasitic diseases to world animal health. Vet. Parasitol.,1995,57:19-41
    [12]Neitz W O. Theileriosis, gonderioses and cytauxzoonoses: a review. Onderstepoort J. Vet. Res., 1957,27:275-430
    [13]Urquhart G M, Armour J, Duncan J L et al Veterinary Parasitology. Blackwell:Oxford,1996.
    [14]Ica A, Vatansever Z, Yildirim A, et al. Detection of Theileria and Babesia species in ticks collected from cattle. Veterinary Parasitology,2007,148:156-160
    [15]Altay K, Aktas M. Molecular detection of Theileria and Babesia infections in cattle. Veterinary Parasitology,2008,158(4):295-301
    [16]Yamada S, Konnai S, Imamura S, et al. PCR-based detection of blood parasites in cattle and adult Rhipicephalus appendiculatus ticks. Veterinary Journal,2009,182:352-355
    [17]Barros S, Madruga C R, Araujo F R, et al. Serological survey of Babesia bovis, Babesia bigemina, and Anaplasma marginale antibodies in cattle from the semi-arid region of the state of Bahia, Brazil, by enzyme-linked immunosorbent assays. Rio de Janeiro,2005,100(6):613-617
    [18]Magona J W, Walubengo J, Olaho-Mukani W et al. Clinical features associated with seroconversion to Anaplasma marginale, Babesia bigemina and Theileria parva infections in African cattle under natural tick challenge. Veterinary Parasitology,2008,155:273-280
    [I]Bruning K L. World-wide impact of Babesiosis. In:Ristic M (Ed.), Babesiosis of domestic animals and man. Boca Raton(FL.):CRC Press,1988,1-22
    [2]Preston P M. Theilerioses. In: Service M W (Ed.), Encyclopedia of rthropod-Transmitted Infections of Man and Domesticated Animals. Wallingford:CABI Publishing,2001,487-502
    [3]Uilenberg G. Babesiosis. In: Service M W (Ed.), Encyclopedia of rthropod-Transmitted Infections of Man and Domesticated Animals. Wallingford:CABI Publishing,2001,53-60
    [4]CaccioA S, CammaA C, Onuma M, et al The b-tubulin gene of Babesia and Theileria parasites is an informative marker for species discriminationq. International Journal for parasitology,2000, 1181-1185
    [5]Papadopoulos B, Brossard M, Perie N M, et al. Piroplasms of domestic animals in the Macedonia region of Greece.3. Piroplasms of small ruminants. Vet. Parasitol.,1996,63:67-74
    [6]El-Ghaysh A, Sundquist B, Christensson D A, et al. Observations on the use of ELISA for detection of Babesia bigemina specific antibodies. Veterinary Parastology,1996,62:51-61
    [7]Goff W L, McElwain T F, Suarez C E, et al. Competitive enzyme-linked immunosorbent assay based on a rhoptry-associated protein 1 epitope specifically identifies Babesia bovis-infected cattle. Clinical and Diagnostic laroratory immunology,2003,10 (1):38-43
    [8]Garcia-Sanmartin J, Nagore D, Garcia-Perezl A L, et al. Molecular diagnosis of Theileria and Babesia species infecting cattle in Northern Spain using reverse line blot macroarrays. BMC Veterinary Research,2006,2:16-23
    [9]Barros S, Madruga C R, Araujo F R, et al. Serological survey of Babesia bovis, Babesia bigemina, and Anaplasma marginale antibodies in cattle from the semi-arid region of the state of Bahia, Brazil, by enzyme-linked immunosorbent assays. Mem Inst Oswaldo Cruz, Rio de Janeiro,2005,100 (6): 613-617
    [10]Almeria S, Castella J, Ferrer D, et al. Bovine piroplasms in Minorca (Balearic Islands, Spain):a comparison of PCR-based and light microscopy detection. Veterinary Parasitology,2001,99: 249-259
    [11]Gubbels J M, Devos A P, Weide M V D, et al. Simultaneous detection of Bovine Theileria and Babesia species by reverse line blot hybridization. Journal of Clinical Microbiology,1999,37(6): 1782-1789
    [12]Buling A, Criado-Fornelio A, Asenzo G, et al. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Veterinary Parasitology,2007,147:16-25
    [13]Silva M G, Henriques G, Sa'nchez C, et al. First survey for Babesia bovis and Babesia bigemina infection in cattle from Central and Southern regions of Portugal using serological and DNA detection methods. Veterinary Parasitology,2009,166:66-72
    [14]Martins T M, Pedro O C, Caldeira R A, et al.Detection of bovine babesiosis in Mozambique by a novel seminested hot-start PCR method. Veterinary Parasitology,2008,153:225-230
    [15]Oliveira-Sequeiraa T C G, Oliveirab M C S, Araujo J P, et al. PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. International Journal for Parasitology,2005,35:105-111
    [16]Ica A, Vatansever Z, Yildirim A, et al. Detection of Theileria and Babesia species in ticks collected from cattle. Veterinary Parasitology,2007,148:156-160
    [17]Altay K, Aktas M. Molecular detection of Theileria and Babesia infections in cattle. Veterinary Parasitology,2008,158(4):295-301
    [18]Yamada S, Konnai S, Imamura S, et al. PCR-based detection of blood parasites in cattle and adult Rhipicephalus appendiculatus ticks. Veterinary Journal,2009,182:352-355
    [19]Ravindran R, Jammi R R, Mishra A K. Detection of Babesia bigemina DNA in ticks by DNA hybridization using a nonradioactive probe generated by arbitrary PCR. Veterinary Parasitology, 2006,141:181-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700