基于全基因组的灵芝药用模式真菌创建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝(Ganoderma lucidum)又称仙草,是担子菌纲(Basidiomycetes)多孔菌目(Polyporales)多孔菌科(Polyporaceae)灵芝属(Ganodermae)真菌,是传统珍贵药材,最早记载于《神农本草经》中,被列为上品。灵芝作为药用真菌已被《中国药典》(2010版)和《美国草药药典》中收录。灵芝具有扶正固本等功效,现代药理和临床研究表明,灵芝在抗肿瘤,抗病毒,调节血糖,增强免疫力等方面均具有显著的作用。灵芝被誉为“生物活性化合物的细胞工厂”,已经从灵芝中分离得到400多种活性成分,其中三萜和多糖是灵芝的主要活性成分。灵芝次生代谢产物的种类和含量与其发育密切相关,同时,灵芝的遗传转化体系成熟、栽培技术完善,便于室内培养和研究,因此灵芝也被看作研究次生代谢产物合成与发育调控的潜在药用模式生物。
     对灵芝的遗传背景研究不足,这阻碍了其作为模式生物被广泛研究。本研究首先评估了灵芝作为模式生物的可行性,并应用二代测序技术及光学图谱绘制整染色体级的灵芝基因组精细图。结果显示,灵芝基因组大小约为43.3Mb,包含13条染色体,82个scaffolds。应用ab initio方法和比较方法预测灵芝可能的编码基因并进行注释,整合工作由MAKER程序包完成,对部分预测基因应用Apollo软件进行人工校正。转录本序列和基因表达分析分别应用454和RNA-seq检测。预测结果显示,灵芝基因组编码16,113个基因,基因的表达水平在不同的发育阶段差异显著,以羊毛甾醇合酶为代表的次生合成及调控的相关酶与灵芝发育有关联。分析结果还显示,灵芝富含细胞色素P450、转运蛋白和转录调控蛋白,这些蛋白家族在生物次生代谢产物合成中发挥重要作用。灵芝也是在已测序的担子菌中编码木质素降解酶基因最丰富的物种之一,在生物能源的应用中有很大潜力。P450基因被认为是三萜下游修饰的关键基因。灵芝中78个CYP基因与羊毛甾醇合成酶共表达,其中16个与动物中具有特异睾酮羟化功能的CYP基因高度相似,这些基因更可能是三萜生下游的修饰基因。此外,灵芝基因组中存在24个CYP基因簇。基因组研究进一步巩固了灵芝在药用生物中的模式地位。
     灵芝中的代谢物多样性早就为人们所关注。本文以灵芝免疫球蛋白家族,灵芝倍半萜类物质及灵芝三萜类物质为例,分析探讨灵芝活性物质多样性的成因。结果显示,灵芝中不同种类代谢物多样产生原因各有不同。以灵芝免疫球蛋白家族为代表的蛋白多肽类活性物质,其多态性来自于基因复制后的序列变异。倍半萜类物质的多态性与植物类似,来源于合成酶的多态性和不专一性,部分倍半萜合酶位于基因簇内,因此,灵芝倍半萜类物质的多样性也部分源多种修饰酶的修饰。灵芝中有超过150种三萜类物质,它们都来源于共同的前体——羊毛甾醇。分析结果显示,灵芝中只存在一个三萜环化酶即羊毛甾醇合酶但存在着大量的单加氧酶等修饰酶。多种修饰酶的存在、表达和调控是导致灵芝三萜类多态性的重要因素。多种多样性机制共存使灵芝也成为研究药源生物代谢产物多样性的良好模式。
     基于本研究的研究成果我们还开发了一些研究辅助平台,以期在灵芝栽培、育种、发酵和生产中有应用的价值。如1、灵芝交配型座位的确定及单倍型的快速鉴定。通过基因组分析,灵芝交配型座位A位于Scaffoldl,跨度90kb,编码31个基因,包括两个同源异型结构编码基因HD1和HD2。交配型座位B位于scaffoldl4,跨度为100kb,包含6个费洛蒙编码基因和7个STE3-like费洛蒙受体基因。RNA-seq结果显示不同费洛蒙和费洛蒙受体编码基因在不同的发育阶段表达水平不同,推测不同类型的费洛蒙及其受体在灵芝不同时期执行不同的功能。MIP是真菌交配型座位中的保守蛋白,基于14种真菌的进化分析表明,灵芝属MIP中具有一段保守的特征序列。PCR结果表明,这段共有序列可作为灵芝属物种单倍体型快速鉴定的通用序列。2、qRT-PCR的内参基因筛选。荧光定量PCR (qRT-PCR)是一种快速、灵敏的基因表达检测技术。qRT-PCR的准确度及可靠性取决于内参基因的稳定性。因此系统性的评估内参基因是必需的。本研究从灵芝基因组数据中选择了10个qRT-PCR内参候选基因。所选的基因序列通过手动校正并根据严格的条件设计引物。通过统计分析评估候选基因的稳定性。实验结果显示,发酵条件下,protein phosphatase2A (PP2A)为最适的内参基因;在灵芝发育研究中,Ribosomal protein L4(RPL4)是最适的内参基因。在所有的检测条件下,RPL4, PP2A和P-Tubulin (BTU)是最适的内参基因并建议选用。
     本研究通过全基因组测序填补了当前灵芝研究中在遗传信息方面的空白,使灵芝研究进入分子生物学前沿,巩固了灵芝在真菌次生代谢产物与发育研究中的模式地位,为下一步灵芝次生代谢产物生源合成研究及发育研究奠定了基础。研究同时发现,灵芝存在多种次生代谢产物多样性形成机制,是研究药源生物代谢产物多样性的良好模式。灵芝也是目前中药源物种中第一个完成染色体级基因组精细图的物种,一定程度上可以作为应用大数据进行药用生物研究的范例。
Ganoderma lucidum, a white rot basidiomycete belonging to the order Polyporales, is one of the most well-known medicinal mushrooms in the world. G. lucidum has been used as a remedy for thousands years in East Asia. This species is documented as LingZhi in Chinese Pharmacopoeia and is included in the American Herbal Pharmacopoeia and Therapeutic Compendium. G. lucidum is known as a "cellular factory for biologically useful compounds," and more than400bioactive compounds have been identified in G. lucidum, including polysaccharides, triterpenoids, fatty acids and alkaloids. Modern studies have reported that G. lucidum possesses multiple pharmacological activities, including antitumor. anti-hypertensive, anti-inflammatory and immunomodulatory activities. This species is amenable to genetic transformation and artificial cultivation, making it an ideal system for traditional medicine research.
     Here, we sequenced and assembled its genome using next-generation sequencing and optical mapping approaches. The43.3-Mb genome of G. lucidum contained13chromosomes and was assembled into82scaffolds. The gene prediction and annotation was using MAKER pipeline, combining the ab initio method and comparative ways, constructed gene models were further manual curated using Apollo programm. Gene expression profile was detected using454transcriptome technology and RNA-seq technology. Results show that G.lucidum's genome encoded16,113predicted genes, some genes'expression level changed dramatically during different development stages. More importantly, the analysis revealed an impressive array of genes encoding cytochrome P450s (CYPs), transporters, and regulatory proteins which cooperate in secondary metabolism. The genome also encodes one of the richest sets of wood degradation enzymes among all sequenced basidiomycetes. Twenty-four physical CYP gene clusters were identified. Moreover,78CYP genes were co-expressed with lanosterol synthase, and16of these show high similarity to fungal CYPs that specifically hydroxylate testosterone, suggesting their possible roles in triterpenoid biosynthesis. The elucidation of the relationship between G.lucidum secondary metabolites and development based on omic scale analysis enables this organism to be a potential model system for the study of secondary metabolic pathways and their regulation in fungi.
     The G. lucidum genome and transcriptome have wild applications in this specie's breeding, cultivation, production and research. In this paper, we introduced two examples. First, mating-type loci were identified based on genomic data. A90kb region in scaffold1was deemed as mating type A(matA) locus, two genes (GL30604and GL30607) in this region were inferred to encoding the HDl and HD2proteins. There are also29other genes in this region. Thirteen sequences were identified as mating type B (matB) locus genes. Six pheromone encoding genes were clustered with seven STE3-like pheromone receptor genes in a region of approximately100kb on scaffold14. The results suggested that mating-type locus in G. lucidum were conserved with other fungi which have been sequenced. The RNA-seq analysis showed that the expression level of different pheromone coding genes and pheromone receptor coding genes were not the same. This result indicated that different pheromones and their receptors may play diverse roles in variety conditions. The phylogenetic analysis of MIP coding genes from14fungi indicated a conserved region in Ganodermae. Based on the consensus sequences of mip in Ganodermae, a pair of primer was designed for the identification of the ploidy and the mating type of fungi strains from Ganodermae. Second, reference genes for qRT-PCR were selected from predicted gene models. Quantitative real-time reverse transcription PCR (qRT-PCR) is a rapid, sensitive and reliable technique for gene expression studies. The accuracy and reliability of qRT-PCR results depend on the stability of the reference genes used for gene normalization. Therefore, a systematic process of reference gene evaluation is needed. Ganoderma lucidum is a famous medicinal mushroom in East Asia. In the current study,10potential reference genes were selected from the G. lucidum genomic data. The sequences of these genes were manually curated, and primers were designed following strict criteria. The experiment was conducted using qRT-PCR, and the stability of each candidate gene was assessed using4commonly used statistical programs-geNorm, NormFinder, BestKeeper and RefFinder. According to our results, PP2A was expressed at the most stable levels under different fermentation conditions, and RPL4was the most stably expressed gene in different tissues. RPL4, PP2A and β-tubulin are the most commonly recommended reference genes for normalizing gene expression in the entire sample set.
引文
[1]林志彬.灵芝的现代研究[M].3rd.北京:北京大学医学出版社,2007.25-198
    [2]Sanodiya B S, Thakur G S, Baghel R K, et al.Ganoderma lucidum:a potent pharmacological macrofungus[J].Curr Pharm Biotechnol.2009,10(8):717-742
    [3]Boh B, Berovic M, Zhang J, et al.Ganoderma lucidum and its pharmaceutically active compounds[J].Biotechnol Annu Rev.2007,13(265-301
    [4]Paterson R R M.Ganoderma-A therapeutic fungal biofactory[J].Phytochemistry.2006,67(18):1985-2001
    [5]Lee S C, Ni M, Li W, et al.The evolution of sex:a perspective from the fungal kingdom[J].Microbiol Mol Biol Rev.2010,74(2):298-340
    [6]Ni M, Feretzaki M, Sun S, et al.Sex in fungi[J].Annu Rev Genet.2011,45(405-430
    [7]Raudaskoski M and Kothe E.Basidiomycete mating type genes and pheromone signaling[J].EukaryotCell.2010,9(6):847-859
    [8]郝俊江,陈向东and兰进.光质对灵芝生长与灵芝多糖含量的影响[J].中国中药杂志.2010,17):2242-2245
    [9]郝俊江,陈向东and兰进.光质对灵芝生长及抗氧化酶系统的影响[J].中草药.2011,12):2529-2534
    [10]Montagnes D, Roberts E, Lukes J, et al.The rise of model protozoa[J].Trends Microbiol.2012,20(4):184-191
    [11]Xu J W, Zhao W and ZhongJ J.Biotechnological production and application of ganoderic acids[J].Appl Microbiol Biotechnol.2010,87(2):457-466
    [12]Fang Q-H and Zhong J-J.Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide[J].Biochemical Engineering Journal.2002,10(1):61-65
    [13]Fang Q-H and Zhong J-J.Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum[J].Process Biochemistry.2002,37(7):769-774
    [14]Tang Y-J and Zhong J-J.Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid[J].Enzyme and Microbial Technology.2003,32(3-4):478-484
    [15]Zhang W and Tang Y J.A novel three-stage light irradiation strategy in the submerged fermentation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides[J].Biotechnol Prog.2008,24(6):1249-1261
    [16]龚海刚and钟建江Hydrodynamic Shear Stress Affects Cell Growth and Metabolite Production by Medicinal Mushroom Ganoderma lucidum[J].Chinese Journal of Chemical Engineering.2005,03):426-428
    [17]Liang C X, Li Y B, Xu J W, et al.Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction[J].Appl Microbiol Biotechnol.2010,86(5):1367-1374
    [18]Zhu L-W, Zhong J-J and Tang Y-J.Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum[J].Process Biochemistry.2008,43(12):1359-1370
    [19]Zhang W X, Tang Y J and Zhong J J.Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum[J].Bioprocess Biosyst Eng.2010,33(6):683-690
    [20]Wang J L, Gu T and Zhong J J.Enhanced recovery of antitumor ganoderic acid T from Ganoderma lucidum mycelia by novel chemical conversion strategy[J].Biotechnol Bioeng.2012,109(3):754-762
    [21]Xu Y-N and Zhong J-J.Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum[J].Biotechnology Advances.2012;30(6):1301-1308
    [22]Xu J W, Xu Y N and Zhong J J.Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum[J].Appl Environ Microbiol.2012,78(22):7968-7976
    [23]Kino K, Mizumoto K, Sone T, et al.An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice[J].Diabetologia.1990,33(12):713-718
    [24]Lin Z B.Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum[J].J Pharmacol Sci.2005/99(2):144-153
    [25]Gao Y, Tang W, Dai X, et al.Effects of water-soluble Ganoderma lucidum polysaccharides on the immune functions of patients with advanced lung cancer[J]J Med Food.2005,8(2):159-168
    [26]Chen X, Hu Z P, Yang X X, et al.Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer[J].lnt lmmunopharmacol.2006,6(3):499-508
    [27]Ji Z, Tang Q, Zhang J, et al.lmmunomodulation of bone marrow macrophages by GLIS, a proteoglycan fraction from Lingzhi or Reishi medicinal mushroom Ganoderma lucidium (W.Curt.:Fr.) P. Karst[J].lnt J Med Mushrooms.2011,13(5):441-448
    [28]Tsai C C, Yang F L, Huang Z Y, et al.Oligosaccharide and peptidoglycan of Ganoderma lucidum activate the immune response in human mononuclear cells[J].J Agric Food Chem.2012,60(11):2830-2837
    [29]Sliva D.Ganoderma lucidum in cancer research [J].Leukemia Research.2006,30(7):767-768
    [30]Wang S Y, Hsu M L, Hsu H C, et al.The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes[J].lnt J Cancer.1997,70(6):699-705
    [31]Kimura Y, Taniguchi M and Baba K.Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum:mechanism of action and isolation of an active substance[J].Anticancer Res.2002,22(6A):3309-3318
    [32]Cao Q Z and Lin Z B.Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide[J].Acta Pharmacol Sin.2004,25(6):833-838
    [33]Li C H, Chen P Y, Chang U M, et al.Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells[J].Life Sci.2005,77(3):252-265
    [34]Xu T, Beelman R B and Lambert J D.The Cancer Preventive Effects of Edible Mushrooms[J].Anticancer Agents Med Chem.2012,
    [35]Wu Q P, Xie Y Z, Deng Z, et al.Ergosterol peroxide isolated from Ganoderma lucidum abolishes microRNA miR-378-mediated tumor cells on chemoresistance[J].PLoS One.2012,7(8):e44579
    [36]Liu J, Shiono J, Shimizu K, et al.Ganoderic acid DM:anti-androgenic osteoclastogenesis inhibitor[J].Bioorg Med Chem Lett.2009,19(8):2154-2157
    [37]Zheng J, Yang B, Yu Y, et al.Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting beta-cells[J].Comb Chem High Throughput Screen.2012,15(7):542-550
    [38]Lee S Y and Rhee H M.Cardiovascular effects of mycelium extract of Ganoderma lucidum:inhibition of sympathetic outflow as a mechanism of its hypotensive action[J].Chem Pharm Bull (Tokyo).1990,38(5):1359-1364
    [39]Hajjaj H, Mace C, Roberts M, et al.Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors[J].Appl Environ Microbiol.2005,71(7):3653-3658
    [40]Kim S D.Isolation and structure determination of a cholesterol esterase inhibitor from Ganoderma lucidum[J].J Microbiol Biotechnol.2010,20(11):1521-1523
    [41]李晔,朱忠敏,姚渭溪,et al.灵芝三萜类化合物的研究进展[J].中国中药杂志.2012,02):165-171
    [42]Sun L, Cai H, Xu W, et al.Efficient transformation of the medicinal mushroomGanoderma lucidum[J].Plant Mol Biol Rep.2001,19(4):383-384
    [43]李刚,王强,刘秋云,et al.利用PEG法建立药用真菌灵芝的转化系统[J].菌物学报.2004,02):255-261
    [44]Shi L, Fang X, Li M, et al.Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum[J].World J Microbiol Biotechnol.2012,28(1):283-291
    [45]Ren A, Ouyang X, Shi L, et al.Molecular characterization and expression analysis of GIHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum (Ling-zhi) in ganoderic acid biosynthesis pathway[J].World J Microbiol Biotechnol.2012,
    [46]Shang C H, Zhu F, Li N, et al.Cloning and characterization of a gene encoding HMG-CoA reductase from Ganoderma lucidum and its functional identification in yeast[J].Biosci Biotechnol Biochem.2008,72(5):1333-1339
    [47]Shi L, Qin L, Xu Y, et al.Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from Ganoderma lucidum[J].Mol Biol Rep.2012,39(5):6149-6159
    [48]Ding Y X, Ou-Yang X, Shang C H, et al.Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum[J].Biosci Biotechnol Biochem.2008,72(6):1571-1579
    [49]Zhao M W, Liang W Q, Zhang D B, et al.Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum[J].J Microbiol Biotechnol.2007,17(7):1106-1112
    [50]Shang C-H, Shi L, Ren A, et al.Molecular Cloning, Characterization, and Differential Expression of a Lanosterol Synthase Gene fromGanoderma lucidum[J].Bioscience, Biotechnology, and Biochemistry.2010,74(5):974-978
    [51]方星,师亮,徐颖洁,et al.灵芝甾醇14α-脱甲基酶基因的克隆及超量表达对三萜合成的影响[J].菌物学报.2011,02):242-248
    [52]Joo S S, Ryu I W, Park J K, et al.Molecular cloning and expression of a laccase from Ganoderma lucidum, and its antioxidative properties[J].Mol Cells.2008,25(1):112-118
    [53]Ornston L N and Yeh W K.Origins of metabolic diversity:Evolutionary divergence by sequence repetition[J].Proceedings of the National Academy of Sciences.1979,76(8):3996-4000
    [54]Yeh W K and Ornston L N.Origins of metabolic diversity:substitution of homologous sequences into genes for enzymes with different catalytic activities[J].Proceedings of the National Academy of Sciences.1980,77(9):5365-5369
    [55]Wilfried S.Metabolome diversity:too few genes, too many metabolites?[J].Phytochemistry.2003,62(6):837-849
    [56]Erich G.Plant metabolic diversity:a regulatory perspective[J].Trends in Plant Science.2005,10(2):57-62
    [57]Kittendorf J D and Sherman D H.The methymycin/pikromycin pathway:A model for metabolic diversity in natural product biosynthesis[J].Bioorganic & amp; Medicinal Chemistry.2009,17(6):2137-2146
    [58]Agger S, Lopez-Gallego F and Schmidt-Dannert C.Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus[J].Mol Microbiol.2009,72(5):1181-1195
    [59]Lopez-Gallego F, Agger S A, Abate-Pella D, et al.Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus:catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers[J].Chembiochem.2010,11(8):1093-1106
    [60]Wawrzyn G T, Quin M B, Choudhary S, et al.Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota[J].Chem Biol.2012,19(6):772-783
    [61]Li G, Kollner T G, Yin Y, et al.Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases[J].Proceedings of the National Academy of Sciences.2012,109(36):14711-14715
    [62]Nelson D and Werck-Reichhart D.A P450-centric view of plant evolution[J].The Plant Journal.2011,66(1):194-211
    [63]Davis R H.The age of model organisms[J].Nat Rev Genet.2004,5(1):69-76
    [64]朱作言.模式生物研究[J].生命科学.2006,05):419
    [65]Traver D, Herbomel P, Patton E E, et al.The zebrafish as a model organism to study development of the immune system[J].Adv lmmunol.2003,81(253-330
    [66]Wu H-J, Zhang Z, Wang J-Y, et al.Insights into salt tolerance from the genome of Thellungiella salsuginea[J].Proceedings of the National Academy of Sciences.2012,109(30):12219-12224
    [67]Wink M.Medicinal plants:a source of anti-parasitic secondary metabolites[J].Molecules.2012,17(11):12771-12791
    [68]Kliebenstein D J and Osbourn A.Making new molecules-evolution of pathways for novel metabolites in plants[J].Curr Opin Plant Biol.2012,15(4):415-423
    [69]Meldau S, Erb M and Baldwin I T.Defence on demand:mechanisms behind optimal defence patterns[J].Ann Bot.2012,110(8):1503-1514
    [70]Vanstraelen M and Benkova E.Hormonal interactions in the regulation of plant development[J].Annu Rev Cell Dev Biol.2012,28(463-487
    [71]Tissier A.GIandular trichomes:what comes after expressed sequence tags?[J].Plant J.2012,70(1):51-68
    [72]陈士林,孙永珍,徐江,et al.本草基因组计划研究策略[J].药学学报.2010,07):807-812
    [73]Julsing M K, Koulman A, Woerdenbag H J, et al.Combinatorial biosynthesis of medicinal plant secondary metabolites[J].Biomol Eng.2006,23(6):265-279
    [74]Fields S and Johnston M.Whither model organism research?[J].Science.2005,307(5717):1885-1886
    [75]Yan Y-p and Wang Z-z.Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method[J].Plant Cell Tiss Organ Cult.2007,88(2):175-184
    [76]Sun L, Cai H, Xu W, et al.CaMV 35S promoter directs beta-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus[J].Mol Biotechnol.2002,20(3):239-244
    [77]Kiselev K V, Kusaykin M I, Dubrovina A S, et al.The rolC gene induces expression of a pathogenesis-related beta-1,3-glucanase in transformed ginseng cells[J].Phytochemistry.2006,67(20):2225-2231
    [78]Hwang S J.Catapol production in Chinese foxglove (Rehmannia glutinosa Libos.) hairy roots transformed with Agrobacterium rhizogenes ATCC15834[J].Methods Mol Biol.2009,547(263-273
    [79]Geu-Flores F, Sherden N H, Courdavault V, et al.An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis[J].Nature.2012,492(7427):138-142
    [80]Graham I A, Besser K, Blumer S, et al.The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drugartemisinin[J].Science.2010,327(5963):328-331
    [81]Paddon C J, Westfall P J, Pitera D J, et al.High-level semi-synthetic production of the potent antimalarial artemisinin[J].Nature.2013,
    [82]Joyce A R and Palsson B O.The model organism as a system:integrating'omics'data sets[J].Nat Rev Mol Cell Biol.2006,7(3):198-210
    [83]Dunwell J M.Haploids in flowering plants:origins and exploitation[J].Plant Biotechnol J.2010,8(4):377-424
    [84]Germana M A.Gametic embryogenesis and haploid technology as valuable support to plant breeding[J].Plant Cell Rep.2011,30(5):839-857
    [85]Ravi M and Chan S W.Haploid plants produced by centromere-mediated genome elimination[J].Nature.2010,464(7288):615-618
    [86]Kump K L, Bradbury P J, Wisser R J, et al.Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J].Nat Genet.2011,43(2):163-168
    [87]Tian F, Bradbury P J, Brown P J, et al.Genome-wide association study of leaf architecture in the maize nested association mapping population[J].Nat Genet.2011,43(2):159-162
    [88]Lai Z, Jing J, Aston C, et al.A shotgun optical map of the entire Plasmodium falciparum genome[J].Nat Genet.1999,23(3):309-313
    [89]Lin J, Qi R, Aston C, et al.Whole-genome shotgun optical mapping of Deinococcus radiodurans[J].Science.1999,285(5433):1558-1562
    [90]Shendure J and Lieberman Aiden E.The expanding scope of DNA sequencing[J].Nat Biotechnol.2012,30(11):1084-1094
    [91]Eid J, Fehr A, Gray J, et al.Real-time DNA sequencing from single polymerase molecules[J].Science.2009,323(5910):133-138
    [92]Koren S, Miller J R, Walenz B P, et al.An algorithm for automated closure during assembly[J].BMC Bioinformatics.2010,11(457
    [93]Li R, Yu C, Li Y, et al.SOAP2:an improved ultrafast tool for short read alignment[J].Bioinformatics.2009,25(15):1966-1967
    [94]Morrow J F and Berg P.CIeavage of Simian virus 40 DNA at a unique site by a bacterial restriction enzyme[J].Proc Natl Acad Sci U S A.1972,69(11):3365-3369
    [95]Jackson D A, Symons R H and Berg P.Biochemical method for inserting new genetic information into DNA of Simian Virus 40:circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli[J].Proc Natl Acad Sci U S A.1972,69(10):2904-2909
    [96]Frandsen R J.A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation[J].J Microbiol Methods.2011,87(3):247-262
    [97]Shrawat A K and Lorz H.Agrobacterium-mediated transformation of cereals:a promising approach crossing barriers[J].Plant Biotechnol J.2006,4(6)575-603
    [98]Sheludko Y V.Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants[J].Recent Pat Biotechnol.2008,2(3):198-208
    [99]Sidorov V A, Kasten D, PangS Z, et al.Stable chloroplast transformation in potato:use of green fluorescent protein as a plastid marker[J].Plant J.1999,19(2):209-216
    [100]Day A and Goldschmidt-Clermont M.The chloroplast transformation toolbox: selectable markers and marker removal[J].Plant Biotechnol J.2011,9(5):540-553
    [101]Krichevsky A, Zaltsman A, King L, et al.Expression of complete metabolic pathways in transgenic plants[J].Biotechnol Genet Eng Rev.2012,28(1-13
    [102]Sundar I K and Sakthivel N.Advances in selectable marker genes for plant transformation[J]J Plant Physiol.2008,165(16):1698-1716
    [103]Tuteja N, Verma S, Sahoo R K, et al.Recent advances in development of marker-free transgenic plants:regulation and biosafety concern[J].J Biosci.2012,37(1):167-197
    [104]Lee J H and Lee S Y.Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid[J].Plant Cell Tiss Organ Cult.2002,71(2):165-171
    [105]Proano V A and Greene G L.Endogenous gibberellins of a radiation induced single gene dwarf mutant of bean[J].Plant Physiol.1968,43(4):613-618
    [106]Kumar A and Snyder M.Emerging technologies in yeast genomics[J].Nat Rev Genet.2001,2(4):302-312
    [107]Alonso J M, Stepanova A N, Leisse TJ, et al.Genome-wide insertional mutagenesis of Arabidopsis thaliana[J].Science.2003,301(5633):653-657
    [108]Zhang J, Li C, Wu C, et al.RMD:a rice mutant database for functional analysis of the rice genome[J].Nucleic Acids Res.2006,34(Database issue):D745-748
    [109]Kuromori T, Takahashi S, Kondou Y, et al.Phenome analysis in plant species using loss-of-function and gain-of-function mutants[J].PIant Cell Physiol.2009,50(7):1215-1231
    [110]Fang Q. H and Zhong J J.Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum[J].Biotechnol Prog.2002,18(l):51-54
    [111]Talano M A, Oller A L, Gonzalez P S, et al.Hairy roots, their multiple applications and recent patents[J].Recent Pat Biotechnol.2012,6(2):115-133
    [112]Lee W S, Hammond-Kosack K E and Kanyuka K.Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens:virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein[J].Plant Physiol.2012,160(2):582-590
    [113]许亮,卢向阳and田云.后基因组时代基因功能分析的策略[J].中国生物工程杂志.2003,23(8):
    [114]Senthil-Kumar M and Mysore K S.New dimensions for VIGS in plant functional genomics[J].Trends Plant Sci.2011,16(12):656-665
    [115]Winzer T, Gazda V, He Z, et al.A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J].Science.2012,336(6089):1704-1708
    [116]Hatlestad G J, Sunnadeniya R M, Akhavan N A, et al.The beet R locus encodes a new cytochrome P450 required for red betalain production[J].Nat Genet.2012,44(7):816-820
    [117]Tang Y, Wang F, Zhao J, et al.Virus-based microRNA expression for gene functional analysis in plants[J].PIant Physiol.2010,153(2):632-641
    [118]Allemand I and Angulo J F.Transgenic and knock-out models for studying'DNA repair[J].Biochimie.1995,77(10):826-832
    [119]Bedell V M, Wang Y, Campbell J M, et al.ln vivo genome editing using a high-efficiency TALEN system[J].Nature.2012,491(7422):114-118
    [120]Kim Y, Kweon J, Kim A, et al.A library of TAL effector nucleases spanning the human genome[J].Nat Biotechnol.2013,31(3):251-258
    [121]Ding Q, Lee Y K, Schaefer E A, et al.A TALEN genome-editing system for generating human stem cell-based disease models[J].Cell Stem Cell.2013,12(2):238-251
    [122]Sung Y H, Baek I J, Kim D H, et al.Knockout mice created by TALEN-mediated gene targeting[J].Nat Biotechnol.2013,31(1):23-24
    [123]Zu Y, Tong X, Wang 1, et al.TALEN-mediated precise genome modification by homologous recombination in zebrafish[J].Nat Methods.2013,10(4):329-331
    [124]Lei Y, Guo X, Liu Y, et al.Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs)[J].Proc Natl Acad Sci U S A.2012,109(43):17484-17489
    [125]Zhang Y, Zhang F, Li X, et al.Transcription activator-like effector nucleases enable efficient plant genome engineering[J].Plant Physiol.2013,161(1):20-27
    [126]Li T, Liu B, Spalding M H, et al.High-efficiency TALEN-based gene editing produces disease-resistant rice[J].Nat Biotechnol.2012,30(5):390-392
    [127]Qi X, Bakht S, Leggett M, et al.A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants[J].Proc Natl Acad Sci U S A.2004,101(21):8233-8238
    [128]Field B and Osbourn A E.Metabolic diversification-independent assembly of operon-like gene clusters in different plants[J].Science.2008,320(5875):543-547
    [129]Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTGl/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J].Plant J.2008,53(5):814-827
    [130]Gou J Y, Felippes F F, Liu C J, et al.Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J].Plant Cell.2011,23(4):1512-1522
    [131]肖小河,陈士林,黄璐琦,et al.中国道地药材研究20年概论[J][J].中国中药杂志.2009,34(5):519-523
    [132]孟祥才,陈士林and王喜军.论道地药材及栽培产地变迁[J].中国中药杂志.2011,36(13):1687-1692
    [133]邓庄.大型真菌人工栽培的研究[J].植物学报.1966,14(2):150-171
    [134]Cao Y, Wu S-H and Dai Y-C.Species clarification of the prize medicinal Ganoderma mushroom "Lingzhi"[J].Fungal Diversity.2012,56(1):49-62
    [135]Wang X-C, Xi R-J, Li Y, et al.The Species Identity of the Widely Cultivated Ganoderma,'G. lucidum'(Ling-zhi), in China[J].PLoS One.2012,7(7):e40857
    [136]Keller A, Schleicher T, Schultz J, et al.5.8 S-28S rRNA interaction and HMM-based ITS2 annotation[J].Gene.2009,430(1-2):50
    [137]Zhou X W, Su K Q. and Zhang Y M.Applied modern biotechnology for cultivation of Ganoderma and development of their products[J].Appl Microbiol Biotechnol.2012,93(3):941-963
    [138]Miller S E.DNA barcoding and the renaissance of taxonomy[J].Proceedings of the National Academy of Sciences.2007,104(12):4775-4776
    [139]Ebach M C and Holdrege C.DNA barcoding is no substitute for taxonomy[J].Nature.2005,434(7034):697-697
    [140]Chen S, Yao H, Han J, et al.Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J].PLoS One.2010,5(1):e8613
    [141]石文权,贾琦,尹兰霞,et al.鹿角灵芝栽培技术[J].食用菌.2004,6(029
    [142]吴振忠,冀春花and陈兵.橡胶林下鹿角灵芝栽培技术[J].食用菌.2010,003):39-41
    [143]Da J, Wu W-Y, Hou J-J, et al.Comparison of two officinal Chinese pharmacopoeia species of< i> Ganoderma based on chemical research with multiple technologies and chemometrics analysis[J].Journal of Chromatography A.2012,1222(59-70
    [144]Lv G-p, Zhao J, Duan J-a, et al.Comparison of sterols and fatty acids in two species of Ganoderma[J].Chemistry Central Journal.2012,6(1):1-8
    [145]Dolezel J, Greilhuber J and Suda J.Estimation of nuclear DNA content in plants using flow cytometry[J].Nat. Protocols.2007,2(9):2233-2244
    [146]DOLEZEL J and BARTOS J.Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size[J].Annals of Botany.2005,95(1):99-110
    [147]Pel H J, de Winde J H, Archer D B, et al.Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J].Nat Biotech.2007,25(2):221-231
    [148]Schwartz D C and Cantor C R.Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis[J].Cell.1984,37(1):67-75
    [149]Horton J S and Raper C A.Pulsed-field gel electrophoretic analysis of Schizophyllum commune chromosomal DNA[J].Current genetics.1991,19(2):77-80
    [150]Zolan M E, Crittenden J R, Heyler N K, et al.Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome-specific libraries[J].Nucleic acids research.1992,20(15):3993-3997
    [151]Tiersch T R, Chandler R W, Wachtel S S, et al.Reference standards for flow cytometry and application in comparative studies of nuclear DNA content[J].Cytometry.1989,10(6):706-710
    [152]Arabidopsis G I.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J].Nature.2000,408(6814):796
    [153]Goffeau A, Barrell B, Bussey H, et al.Life with 6000 genes[J].Science.1996,274(5287):546-567
    [154]唐国华,贺修胜,龙治峰,et al.流式细胞仪每秒进样细胞数对细胞周期分布的影响[J].中南医学科学杂志.2011,39(1):49-51
    [155]余知和,高元钢,曾昭清,et al.真菌基因组学研究进展[J].菌物学报.2008,27(5):778-787
    [156]Zhao J and Chang S-T.Monokaryotization by protoplasting heterothallic species of edible mushrooms[J].World Journal of Microbiology and Biotechnology.1993,9(5):538-543
    [157]Ma L-J, van der Does H C, Borkovich K A, et al.Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium[J].Nature.2010,464(7287):367-373
    [158]Miller J R, Delcher A L, Koren S, et al.Aggressive assembly of pyrosequencing reads with mates[J].Bioinformatics.2008,24(24):2818-2824
    [159]Pirovano W, Boetzer M, Henkel C V, et al.Scaffolding pre-assembled contigs using SSPACE[J].Bioinformatics.2011,27(4):578-579
    [160]Li R, Yu C, Li Y, et al.SOAP2:an improved ultrafast tool for short read alignment[J].Bioinformatics.2009,25(15):1966-1967
    [161]Ashburner M, Ball C A, Blake J A, et al.Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J].Nat Genet.2000,25(1):25-29
    [162]Cantarel B L, Korf I, Robb S M C, et al.MAKER:An easy-to-use annotation pipeline designed for emerging model organism genomes[J].Genome Research.2008,18(1):188-196
    [163]Salamov A A and Solovyev V V.Ab initio gene finding in Drosophila genomic DNA[J].Genome Research.2000,10(4):516-522
    [164]Radakovits R, Jinkerson R E, Fuerstenberg S I, et al.Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana[J].Nat Commun.2012,3(686
    [165]Korf I.Gene finding in novel genomes[J].BMC Bioinformatics.2004,5(1):59
    [166]Lander E S, Linton L M, Birren B, et al.Initial sequencing and analysis of the human genome[J].Nature.2001,409(6822):860-921
    [167]Flutre T, Duprat E, Feuillet C, et al.Considering Transposable Element Diversification in De Novo Annotation Approaches[J].PLoS ONE.2011,6(1):e16526
    [168]Hunter S, Apweiler R, Attwood T K, et al.lnterPro:the integrative protein signature database[J].Nucleic Acids Research.2009,37(suppl 1):D211-D215
    [169]Finn R D, Mistry J, Tate J, et al.The Pfam protein families database[J].Nucleic Acids Res.2010,38(Database issue):D211-222
    [170]Cantarel B L, Coutinho P M, Rancurel C, et al.The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics[J].Nucleic Acids Res.2009,37(Database issue):D233-238
    [171]Ruiz-Duenas F J and Martinez A T.Microbial degradation of lignin:how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this[J].MicrobialBiotechnology.2009,2(2):164-177
    [172]Guillen F, Gomez-Toribio V c, Martinez M a J, et al.Production of Hydroxyl Radical by the Synergistic Action of Fungal Laccase and Aryl Alcohol Oxidase[J].Archives of Biochemistry and Biophysics.2000,383(1):142-147
    [173]Medema M H, Blin K, Cimermancic P, et al.antiSMASH:rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J].Nucleic Acids Research.2011,39(suppl 2):W339-W346
    [174]Khaldi N, Seifuddin F T, Turner G, et al.SMURF:Genomic mapping of fungal secondary metabolite clusters[J].Fungal Genetics and Biology.2010,47(9):736-741
    [175]Williams R B, Henrikson J C, Hoover A R, et al.Epigenetic remodeling of the fungal secondary metabolome[J].Org Biomol Chem.2008/6(11):1895-1897
    [176]Strauss J and Reyes-Dominguez Y.Regulation of secondary metabolism by chromatin structure and epigenetic codes[J].Fungal Genetics and Biology.2011,48(l):62-69
    [177]Bayram O, Krappmann S, Ni M, et al.VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism[J].Science.2008,320(5882):1504-1506
    [178]Sarikaya Bayram 0, Bayram 0, Valerius 0, et al.LaeA Control of Velvet Family Regulatory Proteins for Light-Dependent Development and Fungal Cell-Type Specificity[J].PLoS Genet.2010,6(12):e1001226
    [179]Stajich J E, Wilke S K, Ahren D, et al.Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)[J].Proceedings of the National Academy of Sciences of the United States of America.2010,107(26):11889-11894
    [180]D'Souza C A, Kronstad J W, Taylor G, et al.Genome Variation in Cryptococcus gattii, an Emerging Pathogen of Immunocompetent Hosts[J].mBio.2011,2(1):
    [181]Loftus B J, Fung E, Roncaglia P, et al.The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans[J].Science.2005,307(5713):1321-1324
    [182]Galagan J E, Calvo S E, Cuomo C, et al.Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae[J].Nature.2005,438(7071):1105-1115
    [183]Martin F, Aerts A, Ahren D, et al.The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis[J].Nature.2008,452(7183):88-U87
    [184]Duplessis S, Cuomo C A, Lin Y-C, et al.Obligate biotrophy features unraveled by the genomic analysis of rust fungi[J].Proceedings of the National Academy of Sciences.2011,108(22):9166-9171
    [185]Galagan J E, Calvo S E, Borkovich K A, et al.The genome sequence of the filamentous fungus Neurospora crassa[J].Nature.2003,422(6934):859-868
    [186]Martinez D, Larrondo L F, Putnam N, et al.Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J].Nature Biotechnology.2004,22(6):695-700
    [187]Martinez D, Challacombe J, Morgenstern I, et al.Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion[J].Proc Natl Acad Sci U S A.2009,106(6):1954-1959
    [188]Ohm R A, de Jong J F, Lugones LG, et al.Genome sequence of the model mushroom Schizophyllum commune[J].Nature Biotechnology.2010,28(9):957-U910
    [189]Eastwood D C, Floudas D, Binder M, et al.The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi[J].Science.2011,333(6043):762-765
    [190]Kamper J, Kahmann R, Bolker M, et al.Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis[J].Nature.2006,444(7115):97-101
    [191]De Bie T, Cristianini N, Demuth J P, et al.CAFE:a computational tool for the study of gene family evolution[J].Bioinformatics.2006,22(10):1269-1271
    [192]Brakhage A A, Schuemann J, Bergmann S, et al.Activation of fungal silent gene clusters:a new avenue to drug discovery[J].Prog Drug Res.2008,66(1,3-12
    [193]Kino K, Yamashita A, Yamaoka K, et al.Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium[J].J Biol Chem.l989,264(1):472-478
    [194]Tanaka S, Ko K, Kino K, et al.Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions[J].J Biol Chem.1989,264(28):16372-16377
    [195]Xu Y, Zhu X, Gong Y, et al.Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR[J].Biochem Biophys Res Commun.2012,424(3):398-403
    [196]Han X, Lu M, Chen Y, et al.Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development[J].PLoS One.2012,7(8):e43084
    [197]Chiang P W, Song W J, Wu K Y, et al.Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance[J].Genome Res.1996,6(10):1013-1026
    [198]Heid C A, Stevens J, Livak K J, et al.Realtime quantitative PCR[J].Genome Res.1996,6(10):986-994
    [199]Ferguson J A, Boles T C, Adams C P, et al.A fiber-optic DNA biosensor microarray for the analysis of gene expression[J].Nat Biotechnol.1996,14(13):1681-1684
    [200]Trapnell C, Hendrickson D G, Sauvageau M, et al.Differential analysis of gene regulation at transcript resolution with RNA-seq[J].Nat Biotechnol.2012,31(1):46-53
    [201]Schmittgen T D and Livak K J.Analyzing real-time PCR data by the comparative C(T) method[J].Nat Protoc.2008,3(6):1101-1108
    [202]Yuan J S, Reed A, Chen F, et al.Statistical analysis of real-time PCR data[J].BMC Bioinformatics.2006,7(85
    [203]Tasara T and Stephan R.Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR[J].FEMS Microbiology Letters.2007,269(2):265-272
    [204]Wan H, Yuan W, Ruan M, et al.Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.)[J].Biochem Biophys Res Commun.2011,416(1-2):24-30
    [205]Vandesompele J, De Preter K, Pattyn F, et al.Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J].Genome Biol.2002,3(7):RESEARCH0034
    [206]Andersen C L, Jensen J L and Orntoft T F.Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J].Cancer Res.2004,64(15):5245-5250
    [207]Pfaffl M W, Tichopad A, Prgomet C, et al.Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations[J].Biotechnol Lett.2004,26(6):509-515
    [208]Xie F, Sun G, Stiller J W, et al.Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database[J].PLoS One.2011,6(11):e26980
    [209]Vahaboglu H.A critical step for relative quantification of mRNAs is selecting the correct internal controls[J].FEMS Microbiology Letters.2005,245(1):191-192
    [210]Cao S, Zhang X, Ye N, et al.Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR[J].Biochem Biophys Res Commun.2012,424(1):118-123
    [211]Casselton L A and Olesnicky N S.Molecular Genetics of Mating Recognition in Basidiomycete Fungi[J].Microbiol. Mol. Biol. Rev.1998,62(1):55-70
    [212]Kothe E, Gola S and Wendland J.Evolution of multispecific mating-type alleles for pheromone perception in the homobasidiomycete fungi[J].Curr Genet.2003,42(5):268-275
    [213]Stankis M M, Specht C A, Yang H, et al.The A alpha mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins[J].Proceedings of the National Academy of Sciences.1992,89(15):7169-7173
    [214]van der Nest M, Slippers B, Stenlid J, et al.Characterization of the systems governing sexual and self-recognition in the white rot homobasidiomycete <i>Amylostereum</i><i>areolatum</i>[J].Curr Genet.2008,53(6):323-336
    [215]Niculita-Hirzel H, Labbe J, Kohler A, et al.Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci[J].New Phytologist.2008,180(2):329-342
    [216]James T Y, Kues U, Rehner S A, et al.Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi[J].Fungal Genetics and Biology.2004,41(3):381-390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700