障碍物对甲烷—煤粉爆炸强度影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来我国煤炭行业矿井瓦斯煤尘爆炸事故频繁发生。而几乎所有的爆炸情况下都存在设备、机械等大量的障碍物,正是这些障碍物的存在,增大了爆炸的威力,造成了更大的损失。要防止煤尘与可燃气体混合物的爆炸,首先要确定煤尘和燃气混合物的爆炸威力和特性,而目前对于含杂混合物煤尘爆炸,尤其是障碍物对瓦斯-煤尘混合物爆炸影响的研究还比较少。本文针对有障碍物存在条件下甲烷—煤粉混合物的爆炸特性进行了实验研究。本次研究的主要工作和结论如下:
     (1)根据标准设计了一套可抽式障碍物粉尘-燃气爆炸实验装置系统,实现了对煤尘、甲烷、障碍物参数的控制和对爆炸压力波、最大爆炸压力、最大压力上升速率以及爆炸时间等粉尘爆炸特性参数的实验测试。
     (2)障碍物对煤尘-甲烷爆炸具有显著的加速效果,与没有障碍物相比,有障碍物存在时,爆炸时间从70ms减少到约20ms:压力波在管道中传播的加速机理,主要应归因于障碍物诱导的湍流对燃烧过程的正反馈。
     (3)研究了障碍物结构、障碍物位置、障碍物数目、障碍物阻塞比对最大爆炸压力,最大压力上升速率以及爆炸时间在管道中的变化情况的影响。从研究的六种不同形状的障碍物来看,正方形障碍物具有最大的爆炸增速作用,圆形障碍物的增速效果最差,三角形的增幅效果处于它们之间:当障碍物之间间距接近管径长时,管内具有最大的压力上升速率;当障碍物个数为15个时,管内出现最大爆炸压力和最大压力上升速率;当阻塞率k为0.5时,爆炸压力和压力上升速率最大。
     (4)研究了甲烷—煤粉混合物组成特性对爆炸的影响。随煤粉粒径的减少,最大爆炸压力和最大压力上升速率都增加;随着煤粉浓度的增加,最大爆炸压力和最大压力上升速率先增加后减少,并在500g/m~3时它们都达到最大值;随着甲烷浓度的增加,最大爆炸压力和最大压力上升速率都先增加后减少,在甲烷体积分数约为6—7%时,管内出现最大爆炸压力和最大压力上升速率的最大值。
     本文的创新点:
     (1)对管道内存在障碍物时甲烷-煤粉混合物的爆炸特性进行研究,获得了障碍物形状、尺寸、数量等对爆炸特性的影响规律。即从研究的六种不同形状的障碍物来看,正方形障碍物具有最大的爆炸增速作用,圆形障碍物的增速效果最差,三角形的增幅效果处于它们之间;当障碍物之间间距接近管径长时,管内具有最大的压力上升速率;当障碍物个数为15个时,管内出现最大爆炸压力和最大压力上升速率;当阻塞率k为0.5时,爆炸压力和压力上升速率最大。
     (2)煤尘-甲烷混合物爆炸实验结果表明,煤尘粒径越小,爆炸威力越大;煤尘浓度为500g/m~3、甲烷浓度为6-7%时,爆炸威力最大。
More and more explosions of gas and coal-dust occurred frenquently in recent years. There are lots of obstructions such as apparatus and machines etc. almost in all explosions locales. The obstructions make explosion more powerful and loss greater. In order to prevent the explosions of coal-dust and combustible gas, the explosion power and characteristics of the mixtures must be confirmed firstly. But the studies on the mixtures explosion especially the explosive effect of obstruction on methane-coal dust mixtures are few. The explosion characteristics of methane-coal-dust aiming at having obstructions and having no obstructions were studied experimentally in this paper. The main work and conclusions are as follows:
     (1) The experimental system of obstruction twitched coal-dust-gas explosion equipment was set up according to the standard. The equipment could control coal-dust, methane and obstruction parameters, explosion pressure, the maximum pressure rising rate and explosion time etc.
     (2)The obstructions accelerated remarkabaly the explosion of coal-dust-methane. Comparing with no obstruction, the explosion time decreased from 70ms to 20ms; accelerating mechanism of pressure wave in pipeline is that the positive feedback between overfall obstruction inducing and inflammation.
     (3) The effects of structure, position, amount, block-rate of obstruction on the maximum explosion pressure, the maximum pressure rising rate and explosion time in the pipeline were studied. In six different shapes obstructions, the square has the most ability to accelerate and the rotundity has the least ability and the triangle has the middle ability to accelerate. When the distance of obstructions is approaching to the diameter of the pipeline, the pressure rising rate reached the maximum. When the amount of obstructions is 15, the pressure and the pressure rising rate both reached the maximum, respectively. When the block-rate of obstruction reach 0.5, the pressure and the pressure rising rate also both reached the maximum, respectively.
     (4) The effects of composion of methane and coal-dust on explosion were studied. With coal-dust particular size decreasing, the maximum explosion pressure and maximum pressure rising rate increased, and; with coal dust concentration increasing, the maximum explosion pressure and maximumrate pressure rising rate increased first then decreased, and when the concentration was 500g/m~3, the both reached the maximum; with the methane concentration increasing, the maximum explosion pressure and maximum pressure rising rate increased first then decreased, and when the methane concentration was 6-7%, the maximum explosion pressure and maximum pressure rising rate reached the maximum.
     The main ideas are presented in this paper are as follows:
     (1) The paper has studied the explosion characteristics of methane-coal dust mixtures with obstructions in the pipeline, and the explosion characteristics affected by shapes, size and amount etc. of obstruction has been gotten. In six different shapes obstructions, the square has the most ability to accelerate and the rotundity has the least ability and the triangle has the middle ability to accelerate. When the distance of obstructions is approaching to the diameter of the pipeline, the pressure rising rate reached the maximum. When the amount of obstructions is 15, the pressure and the pressure rising rate both reached the maximum, respectively. When the block-rate of obstruction reach 0.5, the pressure and the pressure rising rate also both reached the maximum, respectively.
     (2) The results indicated the smaller coal-dust particular was, the bigger the explosion power, and when the concentrations of coal-dust and methane were 500g/m~3 and 6-7%, respectively, the explosion power was the most.
引文
[1]王志荣,蒋军成.受限空间工业气体爆炸研究进展.工业安全与环保.2005,31(3):43-46.
    [2]李延鸿,谭立新.管道式气体、粉尘爆炸实验装置设计尺寸的确定.工业安全与环保.2006,32(1):53-55.
    [3]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [4]W.Bartlrnecht.Explosion course prevention protection[M].Springer-Verlag,Berlin,1981.
    [5]李刚.工业设备抗粉尘爆炸性能研究[D].沈阳:东北大学,2001.
    [6]Shengjun Zhong.Modeling and numerical simulation of coal dust-air Explosions[Dissertation].Poland:Warsaw University of Technology,2002.
    [7]汪佩兰,王海福,李盛,曾象志.含能材料粉尘爆炸压力和压力上升速率的研究[J].兵工学报,1995,3(3):59-63.
    [8]范宝春,丁大玉,浦以康,汤明钧.球形密闭容器中铝粉爆炸机理的研究[J].爆炸与冲击,1994,14(2):148-156.
    [9]徐景德,周心权,吴兵.瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析[J].煤炭科学技术,2001,29(11):15-17.
    [10]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研[J.]中国安全科学学报,2001,11(6):36-40.
    [11]王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究[J].火灾科学,2001,10(4):209-212.
    [12]周凯元.气体爆燃火焰在狭缝中的淬熄[J].火灾科学,1998,8(1):22-33.
    [13]郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究[J].爆炸与冲击,2000,20(4):289-295.
    [14]费国云.独头巷道中瓦斯爆炸引爆沉积煤尘的实验[J].煤炭工程师,1997(4):16-19.
    [15]费国云.瓦斯爆炸沿巷道传播特性探讨[J],煤矿安全,1996,2(2):31-34.
    [16]Ritsu Dohashi.Experimental study on gas explosion behavior in enclosure[J].Journal of Loss Prevention in the Process Indnstries,1997,10(2):83-89.
    [17]A.Masri,S.Ibrahim,N.Nehiat,A.Green.Experimental study of premixed flamepropagation over various solid obstructions[J].Experimental Thermal and Fluid Science,2000,21:19-116.
    [18]S.S.Ibrahim,A.R.Masri.The effects of obstructions on overpressure resultingfrom premixed flame deflagration[月.Journal of Loss Prevention in the ProcessIndustries,2001,14:213-221.
    [19]张志杰.TNT粉尘爆炸特性参数测取及研究.硕士学位论文.太原机械学院,1989.
    [20]Baker W E等著,张国顺等译,爆炸危险性及其评估,北京:群众出版社,1998.
    [21]David.C,Bull.Review of Large-Scale Explosion Experiments.Plant/operations Progress,1991,11(1):33-40.
    [22]Mercx W.P.M.,Johnson D M,Puttock J.Validation of Scaling Techniques for ExperimentalVapor Cloud.Explosion Investigations.Atlanta,Georgia,USA:AIChE Loss PreventionSymposium,1994:1-20.
    [23]桂晓宏.瓦斯爆炸过程中动态、非稳定火焰与爆炸波传播规律的研究[D].徐州:中国矿业大,2002
    [24]刘晓利,李鸿志,叶经方.障碍物对铝粉火焰加速作用的实验研究[[J].爆炸与冲击1995,15(1):11-19.
    [25]J.Nags,E.C.Seiler,J.W.Corm,et al.Explosion development in closedvessels[R].Inv.No.7507,US Bureau of Mines,1971
    [26]K.Lars,H.Risto.Simulation of flame acceleration in unconfined vapor cloiexplosions[J].Helsinki,Finland:Nuclear Energy Laboratory,Technical Researc Center of Finland(VTT),1985.
    [27]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24(1):56-59.
    [28]王成,宁建国等.煤气火焰传播规律及其加速机理研究.爆炸与冲击.2004,24(4):305-311.
    [29]何学秋,杨艺等.速机理研究障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究.煤炭学报.2004,92(2):186-189.
    [30]邓军,李会荣等.瓦斯爆炸微观动力学和热力学分析.煤炭学报.2006,31(4):488-491.
    [31]林桕泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J1.煤炭学报,1999,24(1):56-59.
    [32]张丽,周玲玲.瓦斯爆炸机理及预防措施.化学教育.2006,1(1):1-3.
    [33]R.K.Eckhoff Use of(dp/dt)_(max)from closed bomb test for predicting violence of accidental dust explosion in industrial plants[J].Fire Safety Journal,1984,8:159-168.
    [34]吴志远.多元爆炸性混合气体爆炸压力及其抑爆技术研究[D].太原:华北工学院,2004.
    [35]Mercx W.P.M.,van deberg A.C.,Hayhurst C.J.et al.Developments in vapor cloud explosionblast modeling.Journal of Hazardous Materials 2000,71:301-319.
    [36]吴红波,陆守香,张立.障碍物对瓦斯煤尘火焰传播过程影响的实验研究.矿业安全与环保.2004,31(3):6-8.
    [37]Evan M W,Scheer M D,Schoen L J et al.A study of high velocity flames developed by grid sintubes.Industry processof 3rd symposium(International)on combustion.Pittsburgh:Combustion Institute,1949:168-185.
    [38]Moen L O.,Lee J.H.S.Pressure Development Due to Turbulent Flame Propagation inLarge-Scale Methane-Air Explosions.Combust Flame.1982,47:31-52.
    [39]M.赫茨贝格,K.L凯什多勒.粉尘爆炸知识介绍.防爆电机,1994,1:42-51.
    [40]中国科协.工业粉尘防爆和治理.北京:中国科技出版社,1990.
    [41]张守中.爆炸基本原理.北京:国防工业出版社,1988.
    [42]周从章,张瑞萍,于永芳.关于粉尘云爆炸下限浓度的讨论.中国安全科学学报,1995,5(3):5-10.
    [43]胡双启,张景林.燃烧与爆炸.北京:兵器工业出版社,1992.
    [44]周力行.湍流气粒两相流动和燃烧的数值模拟.北京:科学出版社,1994.
    [45]刘晓利,李鸿志.玉米粉一氧气混合物中爆炸波的数值模拟.爆炸与冲击,1994,14(3):208-216.
    [46]黄婉莉,郭汗彦.一维粉尘爆轰结构的数值计算.爆炸与冲击,1992,12(1):23-26.
    [47]陆守香,范宝春.激波后沉积粉尘的燃烧特征.南京理工大学学报,1996,20(1):17-20.
    [48]刘庆明,范宝春,李鸿志.铝粉燃烧诱导激波现象的数值模拟与实验研究.兵工学报,1998,19(2):176-181
    [49]邓康清,王光天,王桂兰.超细铝粉的燃烧特性及燃烧模型.固体火箭技术,1996,19(1):28-34.
    [50]王桂兰,李疏粉,夏强等.超细铝粉燃烧性能研究.兵工学报,1996,2:23-25.
    [51]刘晓利,李鸿志,郭建国等,铝粉一空气混合物燃烧转爆轰(DDT)过程的实验研究.爆炸与冲击,15(3):217-227.
    [52]John E.Going,Kris Chatrathi,Kenneth L.Cashdollar.Flammability limit measurements fordusts in 20-L and l-m' vessel s.Journal of Loss Prevention in the ProcessIndustries,2000,13:209-219.
    [53]Ju Wen-Jun,Ritsu Dobashi,Toshisuke Hirano.Dependence of flammability limits of acombustible particle cloud on particle diameter distribution.Journal of Loss Preventionin the Process Industries,1998,11:177-185.
    [54]郑波,胡栋.铝粉尘激波点火的实验研究.爆炸与冲击,1997,17(2):174-180.
    [55]弗·尔特克拉西特(德国),何宏达译.爆炸过程和防护措施.北京:化学工业出版社,1985.
    [56]Lunn G.A.,Nicol A.M.,Collins P.D.et al.Effects of vent ducts on the reduced pressuresfrom explosions in dust collectors.Journal of Loss Prevention in the ProcessIndustries,1998,11:109-121.
    [57]Michael J.Sapko,Eric S.Weiss,Kenneth L.Cashdollar et al.Experimental mine and laboratory dust explosion research at NIOSH.Journal of Loss Prevention in the Process Industries,2000,13:229-242.
    [58]Gummer J,Lunn G.A..Ignitions of explosive dust clouds by smouldering and flaming agglomerates.Journal of Loss Prevention in the Process Industries,2003,16:27-32.
    [59]Markus Roser,Albrecht Vogl,Siegfried Radandt et al.Investigations of flame frontpropagation between interconnected process vessels.Development of a new flame froutpropagation time predictiou model.Journal of Loss Prevention in the ProcessIndustries,1999,12:421-436.
    [60]Eckhoff R.K..Minimum ignition energy(MIE)- a basic ignition sensitivity parameterin design of intrinsically safe electrical apparatus for explosive dust clouds.Journal of Loss Prevention in the Process Industries,2002,15:305-310.
    [61]Masabaru Nifuku,I'bei Matsuda,Heiji Enomoto.Recent development of standardization of testing methods for dust explosion in Japan.Journal of Loss Prevention in the Process Industries,2000,13:243-251.
    [62]Gummer J.,Lunn G.A.Ignitions of explosive dust clouds by smouldering and flaming agglomerates.Journal of Loss Prevention in the Process Industries.2003,16:27-32.
    [63]Conde La zaro E.,Garc J.Torrent.Experimental.research。 。 explosibilityo。:high initial pressures of combustible dusts.Journal of Loss Prevention in the Process Industries,2000,13:221-228.
    [64]钟圣俊,邓煦帆.有机粉尘爆炸的数值模拟.中国粉体技术,2000,6(3):239-243.
    [65]理查德·西威克.粉尘爆炸技术的最新发展.中国安全科学学报,1995,5(3):11-20.
    [66]R.K.耳克霍夫.工业生产粉尘爆炸预防和缓解-近期研究与发展综述.中国安全科学学报,1995,5(3):5-10.
    [67]浦以康,贾复,胡俊.等容燃烧条件下粉尘等效燃烧速度的确定.燃烧科学与技术,2002,8(2):2-5.
    [68]任守宏,林萍,董永福.建筑设备工程专业常见的爆炸及其预防措施.内蒙古科技与经济,2000,1:48-49.
    [69]陈网桦,宋述忠,胡毅亭等.铝粉及黑索金粉尘爆炸的特性研究.含能材料,2003,11(2):91-93.
    [70]刘庆明,白春华.铝粉粉尘云和戊烷云雾燃烧诱导爆炸研究.北京理工大学学报,1999,19(5):567-568.
    [71]Ashok G.Dastidar,Paul R.Amyotte~*,Michael J.Pegg:Factors influencing the suppressionof coal dust explosions.Fuel,1997,76(7):663-670.
    [72]罗宏昌.粉尘爆炸及“杂混合物”对其特性的影响.交通部上海船舶运输科学研究所瑞报,2000,23(1):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700