铝纳米粉尘爆炸及其抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构通常是指尺寸在100纳米以下的微小结构,纳米技术其实就是一种用单个原子、分子射程物质的技术。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。美国国家科学基金会更统计出,在2010~2015年间全球纳米科技与材料的商机,估计有一兆美元左右。但是,纳米是把“双刃剑”,它表现出特殊的性质,具有全新的用途。然而,在2003年美国化学学会年会上,有3个研究小组发表了纳米材料具有特殊毒性的报告,却未对纳米的爆炸之安全特性进行研究。
     粉尘爆炸是工业企业防火工作中不可忽视的重要问题,中国每年都有发生粉尘爆炸事故,而且还常常属于重、特大火灾。在这些火灾中,最严重的是铝粉尘爆炸,铝粉是一个具有粉尘特质更具火灾爆炸之特性,值得进一步研究探讨。影响火灾或爆炸之因素中粒径与粒度分布与粒子形状与表面状态具关键性;纳米科技及技术是最新科技及产业,面临此纳米时代的来临,对其安全特性了解却十分所限,这是十分危险情况。没有安全作为基础,一但发生事故,其产业发展将受到束缚与限制发展;而没有了解纳米安全特性(包括:最小点火能量,最低爆炸下限,最大爆炸压力等),就无法有效作好本质安全的预防措施(如惰性化及耐爆)和损失控制(如泄爆,抑爆或隔爆);所以说这是预防性措施,更能体现安全是产业发展基础之理念,并章显安全设计重要性与应用性。
     目前,国内外研究包括针对煤炭方面(含煤尘及瓦斯)爆炸之研究,瓦斯爆炸方面之探讨,燃烧过程中的化学动力学特性的研究,瓦斯(可燃气体)爆炸传播规律研究,爆炸的数值模拟,铝粉爆炸,实验方法,火灾及爆炸控制措施在预防措施及限制损失均有所研究,但是没有对纳米铝粉的安全性进行研究。
     本文采用理论及实验相结合的研究方法对铝纳米(纳米)金属粉尘爆炸及其抑制技术开展研究。理论研究包括:燃烧与爆炸的理论基础,可燃气体爆炸机理,可燃固体的燃烧与爆炸机理,含碳粒的燃烧理论,可燃粉尘的爆炸机理,铝粉的燃烧与爆炸机理研究,含铝粉遇水燃烧机理及铝粉爆炸机理。实验设备主要是20升钢球爆炸试验仪,同时选用纳米及非纳米铝粉样本进行比对分析,实验项目:包括最小点火能量,最大爆炸压力,爆炸最大压力上升速率,最低含氧浓度及爆炸下限。
     在理论研究和实验研究的基础上,提出了可使用的防治技术,其中包括:
     1爆炸的预防技术(1)含氧气浓度控制,(2)可燃性物质浓度控制。
     2.爆炸损失控制技术包括(1)抑爆控制技术,(2)耐爆控制技术,(3)火焰侦测及灭火系统,(4)隔爆控制技术,包括:旋转阀、灭焰器、自动快速反应阀系统,、火焰前端转向器、化学隔爆系统和泄爆控制技术。
     防治技术可应用于下列场所,1.制造,处置,处理可燃性物质场所,2.在铝粉的制造场所,3.在铝粉的处置(含研磨及抛光)之场所;具体内容从系统的安全设计,设备选用,危害评价及控制,灭火系统,到管理系统安全要求。
     最后,本论文提出了未来可进一步研究的方向:即,可进一步运用其它灭火剂如二氧化碳或碳酸氢纳或碳酸氢纳钙进行灭火效果研究,可进一步开展针对水份(或湿度)对纳米铝粉安全特性的影响研究,增加对纳米铝粉对非纳米铝粉其它安全特性的研究,及利用原子力妇描探针显微仪来探讨纳米铝粉的结构研究。
Nano-structures generally refer to the size of 100 nm.This is because of the nano-materials with small particle size and large surface area,high surface energy,so as to form their specific three major effects: surface effects,small size effect and macroscopic quantum tunneling. National Science Foundation of Unit States estimates around one million million US dollars value of output for related nano–production in global market by the year 2015 from 2010. However,the Nano is a double-edged sword,problems arise; there are three research groups published a nano-materials report with special toxicity in the annual meeting of the American Chemical Society in 2003. Yet no study of the safety characteristics on nano-explosion has been conducted. Both dust explosion and fire prevention in industrial enterprises are critical issues. China has yearly experienced many dust explosion specialized in aluminum dust explosion , which is belong to the catastrophic accidents. It is worth further investigation because aluminum powder bears the properties of powder dust and fire explosive as well. Both particle size distribution and the shape of a particle surface are the most important factors to contribute the fire or explosion. Nano-technology is the latest technology and developing industry.So,it’s very dangerous to develop a technology without understanding of their characteristics. Industry development will be affected and limited by an accident. We can not develop any control measures for explosion without understanding the safety characteristics of material which includes: MIE (minimum ignited energy),LEL (lower explosion limit),Pmax (maximum explosion pressure),dP/dt (maximum rate of pressure rise) and LOC (limiting oxygen concentration). This paper is a preventive measures and supporting concept and application of safety which is the foundation of industrial development.
     Literature including coal dust and gas explosion , gas explosion , the characteristics of chemical kinetics during process of combustion,the mechanization of propagation of gas (flammable gases) explosion , research on numerical simulation of the explosion,aluminum powder explosion,experimental methods,control measures of preventive measures and loss control for fire and explosion have been reviewed; but there is no safety research on any naon- aluminum powder.
     Both theoretical and experimental methods are employed to conduct this study. Theoretical approach to the basic combustion and explosion,the mechanization of combustion and explosion on combustible gas and solid are processed .In addition,topic on conbustion of carbon is covered. Especially,the mechanization of combustion and explosion on aluminum powder is proposed. In experimental approaching a 20- l sphere apparatus is used as the major testing equipment. Samples include 35,75,80 and 100nm of aluminum powder have been selected. Additionally,a non-nano dimension“100μm”of aluminum powder also is tested for contrast between nano and non-nano.
     The explosion indices include MIE (minimum ignited energy),LEL (lower explosion limit),Pmax (maximum explosion pressure); dP/dt (maximum rate of pressure rise) and LOC (limiting oxygen concentration) are measured.
     These technologies of prevention or loss control for fire and explosion which include oxygen concentration reduction,combustible concentration reduction,Deflagration Suppression , Pressure Containment , Spark Detection and Extinguishing Systems,Isolation Systems which will cover Rotary Valves,Flame Arresters,Automatic Fast-Acting Valve Systems,Flame Front Diverters,Chemical Isolation System and Venting of Deflagration can be referred and used. The application from system design to safety management system for these technologies of prevention or loss control for fire and explosion can be to facilities where are the manufacturing or processing and handling of combustible particulate solids,manufacture of Aluminum powder and processing and finishing of Aluminum. In the future,we may consider further investigation on other extinguishing agents like carbon dioxide or sodium hydroxide or calcium hydroxide and their performance on nano Aluminum powder,the influence of moisture on nano Aluminum,other studying on safety characteristics between nano and non-nano Aluminum powder,and the structure of nano Aluminum powder by atomic force microscope.
引文
[1]彭超才.无机功能纳米材料的水热合成和形貌控制[D].上海:上海大学,2008.
    [2]叶长辉.PbS纳米结构组装体系的制备及光学特性[D],合肥:中国科学技术大学,2000.
    [3]王贵.稀土氧化物纳米材料的可控合成机相关物性研究[D].济南:山东大学,2005.
    [4]汪国忠.半导体和金属纳米材料的制备及自组织生长和物性研究[D].合肥:中科院固体所2002.
    [5]李洪涛.泡沫金纳米孔结构的定量表征及演变研究[D].淄博:山东理工大学,2009.
    [6]祁有丽.纳米氧化物粉体的低温燃烧法制备及其催化应用研究[D].兰州:西北师范大学,2004.
    [7]范敬辉,张凯,吴菊英,马艳.纳米铝粉的活性分析及寿命预测[J].含能材料,2004,l2(4):239-242.
    [8]张凯.功能性无机/有机复合粒子的制备、表征及应用[D].成都:四川大学,2005.
    [9]马云歌.烟草加工系统粉尘防爆安全评价的研究[D].淮南:安徽理工大学2006.
    [10]王洪雨.密闭空间甲烷-煤尘复合爆炸强度研究[D].大连:大连理工大学,2007.
    [11]刘义.甲烷、煤尘火焰结构及传播特性的研究[D].合肥:中国科技大学,2007.
    [12]薄涛,谈迎新.粉尘爆炸事故预防及其扑救对策研究[J].武警学院学报,2008,04.
    [13]轻金属——铝[J].中国有色冶金,2004.02.
    [14]沈思,周乃如,朱凤德.袋式除尘器粉尘防爆方法研究[J].粮食与油脂.2003.10.
    [15]中国科学院高能物理研究所.香山科学会议探讨纳米安全性,2004-12-17.
    [16]杜志明,蔡瑞娇,冯长根.燃烧理论与火的科学[M].北京:北京理工大学出版社.1991.
    [17]邓煦帆.粉尘爆炸及其与气体爆炸之间同异[J].防爆电机.1992,(2):2-11.
    [18] John E. Going, Krts chatrathi, Kenneth L. Cashdollar. Flammability limit measurements for dusts in 20-L and 1-m3 vessals. Journal of loss Prevention in the Process industries, 2000, 13:209-219.
    [19] Sanchez-Lopez J C, Caballero A, Fernandez A. Characterization of passivated aluminum nanopowders: An XPS and TEM/EELS study [J]. Journal of the European Ceramic Society, 1998,18:1195-1200.
    [20] Amyote P R, Mintz K J, et al. Laboratory investigation of the dust explosibility characteristics of three Nova Scotia coals. Journal of loss Prevention in the Process industries, 1991,4(2):102-109.
    [21]郑波,胡栋.铝粉尘激波点火的实验研究[J].爆炸与冲击,1997-02.
    [22]洪滔,秦承森.悬浮铝粉尘爆轰波参数[J].材料,2004,12(3):129-133.
    [23]叶青.管内瓦斯爆炸传播特性及其抑制技术研究[D] .徐州:中国矿业大学,2007.
    [24] Ch. Cesana R.Siwek. KSEP设备操作手册-20升钢球6.0版.
    [25] N.F.P.A. Standard On Explosion Prevention System[J].Fire Code 69,2002.
    [26]霍然,杨振宇,柳静献.火灾爆炸预防控制工程学[M].机械工业出版社,2007.8.
    [27]工业技术研究院(工业安全卫生技术发展中心),化学物质意外泄漏排放扩散模拟与风险评估技术.2000.7.
    [28] Rolf K. Eckhoff. Dust Explosions In Process Industries,2003.
    [29]夏洪永,俞章毅.电气安全技术[M].化学工业出版社,2008.7.
    [30]戴留生.传热学[M].高等教育出版社,1998.12.
    [31]严永禄.工程热力学[M].高等教育出版社,1998.2.
    [32]李引擎,边久荣,熊洪,李淑忠,王维中.建筑安全防火设计手册[M].河南科学技术出版社,1998.2.
    [33]王凯全,邵辉.危险化学品安全经营-储运与使用[M],中国石化出版社,2005.5.
    [34]赵庆贸,邵辉.危险化学品安全管理[M].中国石化出版社,2005.5.
    [35] N.F.P.A. Guide for Venting of Deflagrations. Fire Code 68,1994.
    [36] N.F.P.A. Exhaust System for Air Conveying of Material. Fire Code 91,1995.
    [37] N.F.P.A. Recommendation Practice on Static Electricity. Fire Code 77,1993.
    [38] N.F.P.A. Standard for the Installation of Lightning Protection System. Fire Code 780,1997.
    [39] N.F.P.A. Standard for Processing and Finishing of Aluminum. Fire Code 65,1993.
    [40] N.F.P.A. Standard for the Manufacture of Aluminum Powder. Fire Code 651,1993.
    [41] N.F.P.A. Standard for the Prevention of Fire and Dust Explosion from Manufacturing Processing and Handling of Combustible Particulate Solids. Fire Code 654,1997.
    [42] N.F.P.A. Standard on Type of Building Construction.Fire Code 220,1995.
    [43] N.F.P.A. Standard for Purged and Pressurized Enclosure for Electrical Equipment.Fire Code 496,1993.
    [44] Gieras M, Klemens R, Rarata G, Wolanski P. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature. Journal of loss Prevention in the Process industries, 2006, 19(2-3):263-270.
    [45] Gummer J.Lunn G.A. Ignitions of explosive dust clouds by souldering ang flaming agglomerates. Journal of loss Prevention in the Process industries, 2003, 16:27-32.
    [46] Moen I.O., Lee J.h.s. Pressure Development Due to Turbulent Flame Propagation in large-scale Methane-air Explosions. Combust Flame, 1982, 47:31-52.
    [47] Torrent J G, et al. Flammability and Explosion Propagation of Methane-Coal Dust Hybrid Mixtures. Proceedings of International Conference of Safety in Mines Research Institute: 1989(9):11-15.
    [48] Cashdollar K L. Coal dust explosibility. Journal of loss Prevention in the Process industries, 1996,9(1):65-76.
    [49]美国金属学会编.金属手册:第七卷,第九版[M].韩凤麟,译.北京:机械工业出版社,194:803-814.
    [50] Kwok Q S M, Fouchard R C, Turcotte A M, Lightfoot P D, Bowes R and Jones D E G. Characterisation of aluminium nanopowders. Submitted for publication in Propellant, Explosives and Pyrotechnics.
    [51]贾宝贤,李文卓.微纳米科学技术导论[M].化学工业出版社,2007.8.
    [52]谢明宏.纳米金属安全特性研究(未发表之文章).
    [53]爆炸和火灾危险环境电力设置设计规范(GB50058-92).
    [54]方富民.流体力学[M].大中国图书公司,1996,6.
    [55]台湾经济部工业局2009台湾纳米生活馆.
    [56]陈弘毅.火灾学[M].鼎茂图书出版公司,1989.
    [57] Alberty Daniels,陈志雄译.物理化学(第五版)[M].晓圆出版社.
    [58] J.P.Holman,王镇雄,朱朝煌,李世荣,刘传仁,蔡丰钦,译.热传递学[M].希尔国际股份有限公司,2000,02.
    [59] Paul G.Hewitt,常云惠译.观念物理Ⅰ牛顿运动定律·动量[M].2001,06.
    [60] Paul G.Hewitt,常云惠译.观念物理Ⅴ电磁学·核物理[M].2001,06.
    [61] Philip Ball,周业仁,李千毅,译.现代化学(Ⅱ)[M].2003,12.
    [62] William F. Kenney. Process Risk Management[M].1993.
    [63]李增华.燃烧学[M].263-264.
    [64] G.l. Wells, Safety in Process Plant Design[M].1980.
    [65] Guidelines for Hazard Evaluation Procedures[M]. American Institute of Chemical Engineers,1992.
    [66] Daniel A. Crowl. Inherently Safer Chemical Process[M].1996.
    [67] Guidelines for Chemical Process Quantitive Risk Analysis[M].American Institute of Chemical Engineers,1989.
    [68] Hazard Assessment, Relicbility and Safety Analysis[M].Industrial Technology Research Institute ,Taiwan 1989,06.
    [69] N.F.P.A. National Fire Alarm Code.1996.
    [70] N.F.P.A. Manual for Classification of Gas ,Vapor ,and Dusts for Electrical Equipment in Hazardous Locations. Fire Code 497,M 1991.
    [71] N.F.P.A. Standard for Dry Chemical Extinguishing System, Fire Code 17 1994.
    [72] N.F.P.A. Standard for Prevention of Fire and Dust Explosions in Facilites Manufacturingand Handling Starch, Fire Code 61A 1989.
    [73] N.F.P.A. Standard for Prevention of Fire and Dust Explosions in Feed Mills, Fire Code 61C 1989.
    [74] N.F.P.A. Standard for Coal Preparation Plants, Fire Code 120 1994.
    [75] N.F.P.A. Standard for Storage,Handling and Processing of Magnesium Solids and Powders, Fire Code 480 1993.
    [76] N.F.P.A. Standard for Production,Processing,Handling and Storage of Titanium, Fire Code 481 1987.
    [77] N.F.P.A. Standard Methods of Tests of Fire Entrance of Building Construction and Materials, Fire Code 251 1995.
    [78] N.F.P.A. Standard Methods of Test of Surface Burning Characteristics of Building Materials, Fire Code 255 1990.
    [79] N.F.P.A. Standard Methods of Test for Potential Heat of Building Materials, Fire Code 255 1990.
    [80] George T, Tamura. Smoke Movement & Control in High Buildings[M].1994.
    [81] Fire Protection Handbook Eighteenth Edition 1997.
    [82]饲料厂粉尘爆炸帆理与防爆措施,高放[J].通风除尘,1992,(2):37-41.
    [83]刘永芹,许春家.可燃性粉尘的爆炸特性、分类及防爆措施[J].防爆电机,2006,41(3):14-18.
    [84]粉尘爆炸及“杂混合物”对其特性的影响[J].交通部上海船舶运输科学研究所学报,2006.6,23(1):21-26.
    [85]不同粒度铝粉爆炸实验研究[J].山西化工,2008.12,(6):8-11.
    [86] TNT粉尘爆炸特性研究[J].华北工学院学报,1995,16(4):308-313.
    [87]洪滔,秦承森.铝颗粒激波点火机制初探[J].爆炸与冲击.2003,23(4).295-299.
    [88]洪滔,秦承森.爆轰波管中铝粉尘爆轰的数值模拟[J],爆炸与冲击,2004,5,24(3).
    [89]张景林.气体、粉尘爆炸灾害及其安全技术[J].中国安全科学学报,2002,12(5):9-14.
    [90]范敬辉,张凯,吴菊英,马艳.纳米铝粉的活性分析及寿命预测,含能材料[J]., 2004,8,l2(4):239-242.
    [91]范宝春、丁大玉、浦以康等,球形密闭容器中铝粉爆炸机理的研究,爆炸与冲击,1994.4,14(2),148~156.
    [92] R.K.Eckhoff.Current status and expected future trends in dust explosion research [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(2005):225-237.
    [93] R.K.耳克霍夫.工业生产粉尘爆炸预防和缓解-近期研究与发展综述[J].1995,5(3):5-10.
    [94]谢波,王克全.工业粉尘爆炸抑制技术研究现状及存在的问题[J].矿业安全与环保,2002,27(l):13-16.
    [95]陈爱平.粉尘爆炸的特点、危险性评估及防护[J].化工劳动保护,1994,2:3-6.
    [96] Ashok G. Dastidar, Paul R. Amyotte, Michael J.Pegg. Factors influencing the suppression of coal dust explosions [J]. Fuel, 1997, 76(7):663-670.
    [97] P. Oleszczak, R.Klemens. Mathematical modeling of dust-air mixture explosion suppression [J]. Journal of Loss Prevention in the Process Industries, 2005.
    [98]范宝春,谢波,张小和,等.惰性粉尘抑爆过程的实验研究[J].流体力学实验与测量,2001,15(4):20-25.
    [99] Tulis A J,et al. Detonation Tube Studies of Aluminum Particles Dispersed in Air. In:19th Symposium (International) on Combustion,USA:1982,655-633.
    [100] Glor M. Electrostatic hazards in powder handling. Research Studies press Ltd, John Wiley & Sons Inc, 1988.
    [101] Stauss W A. Investigation of the Detonation of Aluminum Powder-Oxygen Mixtures. AIAA J, 1968, 6(9):1753~1756.
    [102] Peukert W. Trends in solids process engineering (in German). Chemie -Ingenieur-Technik 66(10), 1254-1263 (1996).
    [103]邓康清,王光天,王桂兰.超细铝粉的燃烧特性及燃烧模型[J].固体火箭技术,1996,19(1):28-34.
    [104]洪滔,秦承森.爆轰波管中铝粉尘爆轰的数值模拟[J].爆炸与冲击.2004.5:193-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700