CoFeSiB合金熔体抽拉成丝特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔体抽拉非晶丝由于其独特的原子组态和几何尺寸,拥有良好的磁学和力学性能,在诸多领域具有广阔应用前景。熔体抽拉制备非晶丝过程中,润湿行为和熔潭特性决定了丝材成形能力,进而对后续丝材性能及其应用具有重要影响。因此研究熔体抽拉过程中成丝特性具有重要工程应用价值和意义。
     本文以Co_(68.15)Fe_(4.25)Si_(12.25)B_(15.25)合金为研究对象,耦合质量守恒、动量守恒、能量守恒方程,同时考虑熔体抽拉非晶丝成丝过程特定的工艺条件,结合流函数Ф的特性,建立了二维熔体抽拉润湿模型,并分析了不同热量传输控制因素和动量传输控制因素下熔体抽拉过程中的润湿行为。利用Fluent软件进行了熔体抽拉熔潭特性数值模拟,详细介绍了熔体抽拉辊轮参数和基本工艺参数对熔潭特性的影响规律,对模拟结果进行相应的理论分析,预测熔体抽拉缺陷形成并在此基础上与实验结果对比。
     不同轮盘材质下的动态抽拉润湿性:Cu轮As a result of the excellent magnetic and mechanical properties, melt extracted amorphous wires have been widely used for potential industrial application. During melt extraction process, the filamentization property is determined by the wetting and puddle properties, as a result to affect the property and application of amorphous wires. So it plays an important role in industry application to study on the filamentization property during melt extraction.
     This paper bases on the Mass Conservation Equation, Momentum Conservation Equation, Energy Conservation Equation and the specially process condition of melt extraction technique, which is combined with the characteristic of flow function, found the 2D wetting model during the melt extracting. The influence of different heat transmission and momentum transmission parameters on the wetting property is analyzed. The Fluent software is applied to simulate its puddle property. By altering concerned parameters, the influence of wheel and basic process parameters to puddle property is investigated in detail. The simulation results indicate that it can forecast the defects of melt extracted amorphous wires, and can be compared with the experiment data.
     The wettability of different wheel: copper wheel (less than molybdenum wheel) less than 45# steel wheel consists with static wetting result. The wettability remains as a constant if changing the static wettability between the wheel surface and molten alloy only, so do the temperature and velocity in the puddle. By enhancing the thermal conductivity of wheel, the temperature and the wettability will decrease. It can be obtained much better wettability with an increase of the wheel velocity, the decrease of the puddle length and thickness of the extracted layer. The amorphous wires will form Rayleigh waves defect on the surface when the wheel velocity is low. The molten layer becomes discontinuous with the high wheel velocity easily. The feed rate does not play a important role in the temperature and velocity distribution. The increasing temperatures of the puddle and the molten can effectively improve the wetting behavior during melt extraction process.
引文
[1] Ogasawara, S. Ueno. Preparation and properties of amorphous wires[J]. IEEE Transactions on Magnetics. 1995, 31(2): 1219-1223
    [2]卢志超,李德仁,周少雄.非晶软磁合金丝材的国内外发展现状及应用展望[J].新材料产业. 2004, 11: 46-52
    [3] S trom-Olsen, G. Rudkowska, P. Rudkowski. Fine metallic and ceramic fibers by melt extraction[J]. Materials Science and Engineering. 1994, 179-180: 158-162
    [4] P. T Squire, D. Atkinson, S. Atalay. Amorphous wires and their applications[J]. Journal of Magnetism and Magnetic Materials. 1994, 132: 10-21
    [5] V. A.Vasiliev, B. S. Mitin, I. N. Pashkov, I. V. Rodin. Production of rapid quenched copper-based solder using the melt-extraction technique[J]. Materials Science and Engineering: A. 1991, 133: 742-745
    [6]武继文.熔融抽拉法制备非晶态软磁合金纤维及其巨磁阻抗效应研究[D].南京:南京师范大学. 2003: 13-15
    [7] P. Rudkowski, G. Rudkowska, Strom-Olsen. The fabrication of fine metallic fibers by continuous melt-extraction and their magnetic and mechanical properties [J]. Materials Science and Engineering: A. 1991, 133: 158-161
    [8] M. Allahverdi, Robin A. L. Drew, Strom-Olsen. Wetting and melt extraction characteristics of ZrO2-Al2O3 based materials[J]. Journal of American Ceramic Society. 1997, 80: 2910-2916
    [9] R. E. Maringer, A. Rudnick, C. E. Mobley. Filaments from molten materials[P]. American: 3838185, 1974
    [10] R. Rudowski, Strom-Olsen. Apparatus and method for fabrication of metallic fibers having a small cross section[P]. American: 5027886, 1991
    [11]武继文,李春贵,屠国华.高导磁非晶合金纤维的研制[J].南京师大学报(自然科学版). 2002, 25: 53-56
    [12]孙剑飞,邢大伟,曹福洋.制取金属非晶丝的方法及其装置[P].中国: CN101519758, 2009
    [13]王一禾,杨膺善.非晶态合金[M].北京:冶金工业出版社. 1989: 36-37
    [14]张伟堂,白敏丽.单辊法制备非晶合金中冷却速率的数值计算[J].金属功能材料. 2002, 9(1): 12-18
    [15] E. Vogt. Heat transfer mechanism by the single roller rapid quenched process[J]. Internal Rapid Solidification.1987, 3: 131-146
    [16] K. Takeshita, P. H. Shingu. An analysis of the ribbon formation process by thesingle roller rapid solidification technique[J]. Transactions of the Japan Institute of Metals. 1987, 24(7): 529-536
    [17] M. Allahverdi, R. A. L. Drew, Strom-Olsen. Melt extraction and properties of ZrO2-Al2O3-Based fibers[J]. Ceramic Engineering and Science Proceedings. 2008: 1015-1025
    [18] M. Allahverdi. Melt extraction of oxide ceramic fibers[D]. Montreal: McGill University. 1995: 57-60
    [19] A. Cramer, V. Galindo. Tailored magnetic fields in the melt extraction of metallic filaments[J]. Metallurgical and Materials Transactions B. 2009, 40: 337-344
    [20] E. A. Aguilar, R. A. L. Drew. Melt extraction processing of structural Y2O3-Al2O3 fibers[J]. Journal of the European Ceramic Society. 2000, 20: 1091-1098
    [21] M. Allahverdi, G. Rudkowski, Strom-Olsen. Amorphous CaO-Al2O3 fibers by melt extraction[J]. Materials Science and Engineering A. 1996, 207: 12-21
    [22]邓延波,王学亮,耿浩然.熔体过热处理对铝基合金非晶形成能力的影响[J].特种铸造及有色合金. 2009, 29(8): 756-759
    [23] G. Lotze, G. Stephani. Fundamentals of fiber formation during melt extraction[J]. Materials Science and Engineering A. 1991, 133: 680-683
    [24] A. Inoue, A. Katsuya, K. Amiya. Preparation of amorphous Fe-Si-B and Co-Si-B alloy wires by a melt extraction method and their mechanical and magnetic properties[J]. Materials Transactions. 1995, 36(7): 802-809
    [25] A. Cramer, G. Gerbeth. Melt extraction of short metallic filaments: Fiber formation process revisited[J]. Journal of Materials Processing Technology. 2008, 204: 103-110
    [26] Huan Wang, Dawei Xing, Jianfei Sun. Fabrication and characterization of melt-extracted Co-based[J]. Metallurgical and Materials Transactions A. 2010, 42A: 1103-1108
    [27]张伦勇.熔体抽拉金属玻璃纤维基本工艺规律[D].哈尔滨:哈尔滨工业大学, 2007: 30-33
    [28] Daniel Bonn, Jens Eggers. Wetting and spreading[J]. Reviews of Modern Physics. 2009, 81: 739-805
    [29] T. D. Blake. The physics of moving wetting lines[J]. Journal of Colloid and Interface Science. 2006, 299: 1-13
    [30] N. Eustathopoulos, M. G.Nicholas, B. Drevet. Wettability at high temperatures [M]. UK, Elsevier Science Ltd, 1999: 190-195
    [31] J. J. Hoyt, E. B. Webb. High temperature wetting: insights from atomistic simulations[J]. Current Opinion in Solid State and Materials Science, 2005, 9:174-180
    [32] R. A. Hayes, J. Ralston. The dynamics of wetting processes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 93: 15-23
    [33] F. B. Wyart. Dynamics of partial wetting[J]. Advances in Colloid and Interface Science. 1992, 39: 1-11
    [34]郭同翠,刘明新,熊伟.动态接触角研究[J].石油勘探与开发. 2004, 31: 36-39
    [35] Wang Xiaodong, Peng Xiaofeng. Hysteresis of contact angle at liquid-solid interface[J]. Journal of Engineering Thermophysics. 2002: 67-70
    [36]王晓东,彭晓峰.接触角测试技术及粗糙表面上接触角的滞后性Ⅱ:粗糙不锈钢表面接触角的滞后性[J].应用基础与工程科学学报. 2003, 11(3): 296-303
    [37]王晓东,彭晓峰,王补宣.动态湿润与动态接触角研究进展[J].应用基础与工程科学学报. 2003, 11(4): 396-404
    [38]王晓东,彭晓峰,王补宣.动态湿润与动态接触角的实验[J].航空动力学报. 2005, 20(2): 214-218
    [39] Maringer. Formation of filaments directly from an unconfined source of molten material[P]. American: 4124664, 1978
    [40]郭海东. Co基合金熔体的粘滞性行为[D].哈尔滨:哈尔滨工业大学, 2008: 29-31
    [41] A Y. Belenkii, S. N. Zolotarev. Theoretical analysis of fluid dynamics and heat transfer in the single roller rapid solidification method[J]. International Journal of Rapid Solidification. 1991, 6: 41-54
    [42]黄诗英.单辊急冷法形成非晶态薄带的动力学方程组及其验证Ⅲ[J].仪表材料. 1985, 18(4): 160-164
    [43] G.. Lotze, G.. Stephani. Fundamentals of fibre formation during melt extraction[J]. Materials Science and Engineering. 1991, 133: 680-683
    [44] S. Kavesh. Principles of Fabrication[J]. Metallic Glasses. 1978: 36-73
    [45] K. Takeshita, P. H. Shigu. Thermal contact during the cooling by the single roller chill block casting[J]. Transactions of the Japan Institute of Metals. 1986, 27(6): 454-462
    [46] V. T. Borisov, A. F. Prokoshin. Thermal model of amorphous fibers formation on disc edge[J]. Stal. 2003, 8: 77-80
    [47] K. K. Palekha. Solidification of molten material on a rotating disk in production of dispersed materials[J]. Powder Metallurgy and Metal Ceramics. 1992, 31(1): 18-22
    [48]黄诗英.单辊急冷法形成非晶态薄带的动力学方程组及其验证Ⅰ[J].仪表材料. 1985, 16(2): 92-99
    [49]周志明,唐丽文.单辊旋铸CuFe15合金的冷却速度模拟[J].金属铸锻焊技术. 2009, 38(19): 10-12
    [50]黄照华.单辊熔体快淬凝固工艺的数学物理分析[J]. 2006年全国核材料学术交流会论文集. 2006:411-415
    [51]惠希东,胡壮麒.单辊法制备非晶合金中的传热与熔体流动数值模拟[J] .金属学报,1999, 35(11): 1206-1210
    [52] Heping Liu. Numerical simulation of initial development of fluid flow and heat transfer in planar flow casting process[J]. Metallurgical and Materials Transactions B, 2009, 40B: 411-429
    [53]巴发海,沈宁福.平面流铸快速凝固过程的数值模拟研究进展[J].材料科学与工程, 2001, 19(4): 97-104
    [54]曾祥辉.熔滴沉积过程中与基板碰撞及凝固的数值模拟研究[D].西安:西北工业大学, 2007: 19-20
    [55]杨官平,曹德平.基于流函数与流体运动分解的流线可视化模型[J].中国科技信息, 2008, 6: 270-272
    [56] J. R. Welty, C. E. Wicks. Fundamentals of momentum, heat, and mass transfer [M]. John Wiley & Sons, 2008: 110-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700