超声致Sn-20%Pb合金熔体电阻变化与凝固组织的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明,超声预处理可显著细化镁合金、铝合金以及Sn-Pb等低熔点合金的凝固组织。超声细化技术的本质在于声空化及声流作用导致的非线型效应导致类合金凝固行为的变化,从而实现组织细化。金属合金凝固行为包括形核和长大两个过程,对凝固行为的影响应该与熔体微观结构的变化相关。电阻是金属熔体结构的敏感性物理性质,可以反映金属熔体的结构变化。为理解超声是否对熔体结构产生影响从而导致凝固行为变化最终导致凝固组织细化,因此,为国家自然基金项目“超声致镁合金熔体凝固行为与熔体电阻率变化的相关性研究”的一部分,本文对超声处理条件对Sn-20%Pb合金熔体电阻的影响进行系统测量,并对相应的凝固组织进行观察,试图建立超声导致的熔体电阻变化与凝固组织之间的相关性,从而揭示金属凝固组织超声细化的微观机理。研究取得如下主要结论:
     (1)通过对超声处理前后Sn-20%Pb合金熔体电阻的实时连续检测,超声处理时合金熔体电阻显著降低(称为瞬时电阻变化量|ΔR|),超声停止后仍然保持一个较小的电阻降(称为残留电阻变化量|Δr|),且此电阻降需在经历一段时间(Δt2)方可回复至超声处理前状态。研究表明,|ΔR|反映了超声作用时声空化过程和声流效应对电阻的影响,而|Δr|反映了超声空化效应对熔体微观结构的改变程度,Δt2反映的是超声处理的有效时间;
     (2)超声功率和超声处理温度对Sn-20%Pb合金熔体电阻的|ΔR|和|Δr|影响显著,提高超声功率或提高处理温度,|ΔR|和|Δr|均增加;而处理时间对|ΔR|影响很小适当延长处理时间,|Δr|有所增加,但处理时间过长则不再有明显变化;
     (3)通过对超声处理的有效时间Δt2的比较表明,提高超声功率或处理温度以及延长超声处理时间,Sn-20%Pb合金的Δt2均显著延长,其中330℃熔体经800W超声处理5min后的At2达到155min;
     (4)通过对不同组成的Pb-Sn合金熔体电阻的测量表明,Sn含量增加相同超声处理条件所致的熔体电阻变化值|ΔR|和|Δrl均显著增加,这表明超声处理高Sn的Pb-Sn合金熔体时超声空化易于发生且其对熔体结构的改变也较容易;
     (5)通过对Sn-20%Pb合金熔体降温过程熔体电阻的连续检测表明,凝固过程施加超声,合金的初始凝固温度发生改变,初始凝固温度随超声功率增加先增加后降低;
     (6)通过组织观察及与|Δr|的关联表明,超声预处理显著细化Sn-20%Pb合金熔体的凝固组织,且|Δr|与凝固组织晶粒尺寸d之间存在函数关系,表明|Δr|可以良好表征熔体结构变化,而超声导致的熔体结构是凝固组织细化的根本原因。因此,在电阻变化数据充分积累后将可通过|Δrl预测熔体的凝固组织,这对超声预处理的熔体凝固组织控制至关重要。
A mass of researches indicate that ultrasonic pretreatment can significantly refine the solidification structure of the low melting point alloy, such as Mg, Al, and Sn-Pb alloys. The essence of ultrasound refining technique is the Nonlinear effect caused by sound cavitation and sound flow Metal alloy solidification behavior include two process of nucleation and growth. The influence of solidification behavior should be related to the microstructural changes. Resistance, a sensitive physical quantity to the micro structural, can reflect the structural changes. So we can understand the effects of ultrasound on the solidification behavior of the mechanism by observing the changes of resistance. In this article, as a part of National Science Foundation project "the relational research between ultrasound on solidification behavior of Mg alloy melt and melt resistivity changes", the resistance changes of Sn-20%Pb under ultrasound processing conditions were measured comprehensively and the corresponding solidifying structure was observed, influence of the system and the corresponding solidification organization, trying to build up to observe the ultrasonic melt resistance changes and solidified the correlation between the organization, and the refinement of mechanism of metal solidification organization after ultrasound trentment are revealed The main conclusions are as follows:
     (1) The melt resistance significantly reduced(AR) under Ultrasound treatment, remains small resistance drop(Ar) after ultrasonic stop and need time (Δt2) back to the original state before ltrasound treatment. Research shows that |ΔR| reflects the influence of the cavitation and sound flow effect to resistance under ultrasonic treatment,|Δr| reflects the melt micro structural change caused by ultrasonic cavitation effect,Δt2 reflects the valid time under ultrasound treatment;
     (2) Ultrasonic power and ultrasonic processing temperature influence significantly AR andΔr (?)f Sn-20%Pb alloy melt resistance. Improving ultrasound power or increasing processing temperature makes|ΔR| and |Δr increased; And the influence of processing time to |ΔR| is very small. Extending the processing time increased |Δr| a little that no longer changes after a period of time.
     (3) Through the comparison of the ultrasonic treated valid timeΔt2, improving ultrasound power or processing temperature and extending the ultrasound processing time, madeΔt2 of Sn-20% Pb alloy significantly extend, of which theΔt2 was up to 155 min at 330℃and ultrasound treated 5 min at 800 W;
     (4) The resistance measurements of different Sn-Pb alloy melt composition show that the increase of Sn content made |ΔR| and |Δr| increased significantly. In other words, under the ultrasonic treatment on high Sn alloy melt,ultrasonic cavitation occurred easily and the melt structure could be changed easily as well;
     (5) Continuous melt resistance measurement of Sn-20%Pb alloy at cooling process show that, The initial solidification temperature of alloy changed on the process of solidification,the initial solidification temperature went up and down with ultrasonic power increase;
     (6) The observation of relationship between organization and |Δr| in the heating process show that ultrasonic pretreatment could refine significantly coagulation organization of Sn-20% Pb alloy melt. In the heat preservation process |Δr| and solidified organization grain size had a function relation. The melt structure change caused by Ultrasound is the root cause of the refining solidification structure. Therefore, if the resistivity data accumulated fully, we can use |Δr| to forecast the melt solidification organization. This is very important to the ultrasonic pretreatment melt solidifying structure.
引文
1.崔建忠,巴启先,班春燕,乐启炽.轻合金电磁冶金[M],沈阳:东北大学出版社.2005,158.
    2.班春燕,巴启先,崔建忠,等.脉冲电流作用下LY12铝合金的微观结构和合金元素分布[J],物理学报,2004,50(10):2028-2031.
    3. Kishida Y,Takeda K,Miyoshino I,et al.Anisotropic effect of magnetohydro-dynamics on metal solidification[J],ISIJ International,1990,30(1):34-40.
    4. Crossley F A,Fisher R D,Metcalfe A G. Viscous shear as an agent for grain refinement in cast metal[J], Trans Metll Soc AIME,1921(221):419-420.
    5. Nakada M,Shiohara Y,Flemings M C.Modification of solidification structures by pulse electric discharging[J].ISIJ International 1990,30(1):27-33.
    6. R.Goldman.Ultrasonic technology[M],New York:Reinhold,1962.
    7.孟秀凤,孙勇,赵磊,彭明军,李玉阁.功率超声在液态金属成型方面作用及应用[J],南方金属.2007(4):1-3
    8.潘进,杨德明,尹新方,万红.复合材料进展[M],北京:航空工业出版社,1994.
    9.冯若.超声手册[M],南京:南京大学出版社,2001.
    10. Y.Okahata and H.Nogachi,Chem.Lett.,1983,1517
    11. H.Kikura,G.Yamanaka,M.Aritomi.Effect of measurement volume size on turbulent flow measurement using ultrasonic Doppler method[J].Experiments in Fluids,2004,36: 187-196.
    12. Ohno A.The Solidification of Metals[M],Chijin Shokan Co.Ltd,1986,50-104.
    13.马立群,舒光冀,陈峰.金属熔体在超声场中凝固的研究[J],材料科学与工程,1995,13(4):2-7.
    14. R.S.Juang,S.H.Lin,C.H.Cheng.Liquid-phase adsorption and desorption of phenol onto activated carbons with ultrasound[J].Ultrasonics Sonochemistry,2006,13:251-260.
    15. K.Josef.Ultrasonic testing of materials[M],New York:Springer-Verlag,1983.
    16.下地光雄.液态金属[M],北京:科学出版社,1987.
    17.边秀芳,王伟明,李辉等.金属熔体结构[M],上海:上海交通大学出版社,2003.
    18.邓延波,耿浩然等.基于液态结构变化的金属熔体结构敏感物性的研究进展[J],金属世界,2010(1):49-52.
    19.李先芬.熔体结构转变及其对凝固的影响[M],合肥:合肥工业大学出版社,2007.
    20.庄国波,徐为博.表面张力测定的几种方法[J],江苏广播电视大学学报,1994(4):60-63.
    21.王强,李言祥.液态金属电阻率及热电势的测量[J],材料导报,2001,15(11):10-12.
    22. E.G.Richardson.Ultrasonic physics[M],Amsterdam:Elsevier press,1962.
    23. Adams,P.D. and Leach,J.S.L.1967,Phys,Rev,156,178.
    24. Mera.Y.,Kita.Y. and Adachi,A.1972.Technol,Repts.Osaka Univ,22,445.
    25.张志强,乐启炽.超声处理对Mg-9A1二元镁合金Mg17Al12相形貌影响[J],稀有金属材料与工程,2008,37(1):173
    26.张志强,乐启炽,崔建忠.高温超声对Mg-Ca合金凝固组织的影响[J],稀有金属材料与工程,2008,37(3):436.
    27.郭峰.镁合金凝固组织的超声细化极致及工艺研究[D],南昌:南昌大学,2008.
    28.冯伟骏.功率超声对Pb-Sn合金凝固行为的影响[D],大连:大连理工大学,2004.
    29.李廷举,冯伟骏.功率超声对Pb-Sn合金凝固行为的影响[J],铸造,2004,53(5):376-378.
    30.余瑾,李强,祖方遒等.二元合金PbBi电阻率随温度的异常变化[J],合肥:合肥工业大学学报,2006,29(2).
    31.益汛,李先芬等.液态InSn4911和1nSn70合金熔点附近电阻率的反常变化[J],合肥:合肥工业大学学报,2008,31(1):82-85.
    32.李杰,葛成玲,王建军等.不同超声引入方式对金属熔体凝固组织的影响[J],铸造技术,2010,31(12):1621-1624.
    33.王广厚.团簇物理的新进展[J],物理学进展,1994,14(2):121-171.
    34. Bjornholm,S.Comtemp Phys.31(1990)309.
    35.冯端,金国钧.凝聚态物理学新论[M],上海:上海科学技术出版社,1992,286.
    36. Waseda Y.The structure of Non-crystalline Materials:Liquid and Amorphous Solid[M]New York:McGRAW-HILL,1980.
    37. Pooleph,Grande T,Angell CA,et al.Polymorphic phase transitions in liquids and glasses[J],Science,1997,275:322.
    38. Kita Y,Van Zytceldjb,Mdrtita Z et al.Covalency in liquid Si and liquid transition-metal-Si alloys:X-ray diffraction studies[J],Journal of Physics:Condensed Matter,1994,6:811.
    39. T.G.Leighton.Bubble population phenomenon in acoustic cavitation[J],Ultrasonics Sonochemistry 1995,2:1233-1237.
    40. C.Virone,H.J.M.Kramer,G.M.V.Rosmalen,et al.Primary nucleation induduced by ultrasonic cavitation[J],Journal of Crystal Growth,2006,294:9-15.
    41. I M.Sivakumar,A.Towata,K.Yasui,et al.A new ultrasonic cavitation approach for the synthesis of zinc ferrite nanocrystals[J],Current Applied physics,2006,6:591.
    42.关绍康.熔体热经历对快凝铝铁基合金中相形成的影响机制[J],铸造,1997,11:20-23.
    43.陈光,傅恒志.非平衡凝固新型金属材料[M],北京:科学出版社,2004.
    44.程素娟.金属熔体原子团簇的微观热收缩现象[D],济南:山东大学,2004.
    45.甘飞.金属团簇碰撞重组过程的分子动力学模拟研究[D],重庆:重庆大学,2004.
    46.崔忠圻,谭耀春.金属学与热处理[M],北京:机械工业出版社,2007.
    47.上海交通大学铸造教研组.现代铸造测试技术[M],上海:上海科学技术文献出版社,1983.
    48.同济大学数学教研室.高等数学(第三版,上册)[M],北京:高等教育出版社,1988.
    49.胡汉起.金属凝固原理[M],北京:机械工业出版社,2000,100.
    50. V.Abramov,O.abramov,B.straumal,W.Gust.Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultrasonictreatment[J],Material&Design,1998, 18(4):323-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700