频率选择表面吸波特性的直接图解法分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁性能可调的有耗频率选择表面电磁吸波结构是宽频微波吸波结构候选体系,已成为微波吸收结构研究热点之一,备受关注。本文提出适用于宽频吸波结构体系分析与优化的直接图解法。应用直接图解法来研究Salisbury屏和Jaumann吸收体的电磁响应特性和吸波机制。并建立了典型单谐振点频率选择表面图形单层与双层吸波结构的理想阻抗匹配模型,用于指导宽频吸波结构设计。进一步,采用直接图解法研究了基于有源频率选择表面的智能吸波结构的吸波特性,来指导智能吸波结构优化设计和分析。
     采用Smith圆图和等效电路直接图解法分析了Salisbury屏的工作原理,同时考察了Salisbury屏各结构参数对吸波带宽的影响。研究结果表明,Salisbury屏的设计厚度可以通过介质板的介电常数来调整。当介质板的介电常数增大时可以相应减小Salisbury屏的设计厚度,但是伴随吸收峰变窄,带宽变小
     采用Smith圆图和等效电路直接图解法优化设计了Jaumann吸收体,同时考察了Jaumann吸收体各结构参数对吸波带宽的影响。研究结果表明,通过合理添加Jaumann吸波体的层数,可以使吸波体导纳曲线更加集中,从而获得更宽带的吸波效果。10mm厚度的Jaumann吸收体在4-16GHz范围内反射率低于-8dB,其吸波性能明显优于同厚度的Salisbury屏。
     设计了由方环和圆环单谐振点频率选择表面图形构成的单层宽带吸波体。借助Smith圆图和等效电路直接图解法发现其阻抗匹配遵循以下规律:当接地介质板电纳的零点中心频率与频率选择表面图形的谐振点相接近;频率选择表面图形的谐振点电导在合理范围之间;端点频率电纳与接地介质板电纳相接近时,可以通过接地介质板和频率选择表面图形的电纳部分相互抵消来得到宽频吸波效果。5mm厚的单层吸波体反射率低于-8db的频带为4GHz~18GHz,远远大于相同厚度下的Salisbury屏,优化Jaumann屏和商用非磁性单层结构吸波体。
     对于由方环和圆环单谐振点频率选择表面图形构成的双层宽带吸波体来说,其阻抗匹配应当遵循以下规律:当接地介质板电纳的零点中心频率与两组频率选择表面图形的谐振点相接近;上、下层频率选择表面图形谐振点电导控制在合理范围之间;上层介质隔离板能够旋转合适的角度到达上层频率选择表面导纳曲线附近半圆并与其匹配最终到达Smith圆图的中心位置时,可以得到宽频吸波效果。10mm厚双层吸波体从3.3GHz频点开始可以获得低于-8dB的吸波带宽,远远大于相同厚度下的Salisbury屏,优化Jaumann屏和商用非磁性双层结构吸波体。
     研究表明,智能吸波结构可以通过有源频率选择表面的加载来实现。利用这个特点,在组合型频率选择表面中集成PIN二极管形成阵列,通过改变激励PIN二极管的偏置电压,即可以实现吸波体反射特性的动态改变。借助等效电路直接图解法的优化设计,通过改变有源频率选择表面的等效参数,进一步调节吸波体阻抗匹配状况,实现了在2-18GHz频段宽频可调的智能吸波结构。
The adjustable electromagnetic absorbing structure has made considerable progress in the last years. In particular, attention is paid to the lossy frequency selective suface (FSS) to chose it one of candidate systems to realize broadband wave absorbing structure. At first the graphical method for analysis and optimization design of broadband wave absorbing structure is presented. The graphical method is employed to analyse the electromegnetic properties and absorbing principle of Salisbury screen and Jaumann absorber. And then a single and double layer optimal broadband impedance match model based on the single resonance FSSs has been established for the design of broadband wave absorbing structure. Futhermore. the absorbing principle of smart absorbing materials based on active FSSs have been extensively analysised by graphical method for analysis and optimization design of smart absorbing structure.
     The principles of the Salisbury screen and the influences of the structure parameters to the wave absorbing performance has been studied by Smith chart method and equivalent circuit method. The results indicated that the thickness of the Salisbury screen could be adjusted by the permittivity of the dielectric substrates. If the permittivity of the dielectric substrates increased, the thickness of the Salisbury screen would decrease and the absorption peak would narrow, the bandwidth would decrease.
     The Jaumann absorber was analysised by Smith chart method and equivalent circuit method. The results revealed that the Jaumann absorber could be designed to produce a larger bandwidth, particularly as more layers were added. A further compression of the final curve was seen because more layers were added. The Jaumann absorber allow obtaining remarkable performance (-8dB in the band from4GHz to16GHz) with an overall thickness of10mm. This performance is superior to Salisbury screen with the same thickness.
     A single layer broadband electromagnetic absorbers using square loop and circular loop shaped FSSs were designed by Smith chart method and equivalent circuit method. The impedance match law was found as follows:When the null center frequency susceptance of the ground plane is nearly equal to the resonance of the FSSs; resonance conductance of the FSSs remain within a fairly reasonable range; the endpoint frequency susceptance of the FSSs is nearly equal to the susceptance of the ground dielectric plane, the susceptance of the FSSs and the ground dielectric plane to a large degree cancel each other leading to a small reflection. The single layer absorber allow obtaining remarkable performance (-8dB in the band from4GHz to18GHz) with an overall thickness of5mm. This performance is superior to Salisbury screen, optimized Jaumann screen and the available commercially non-magnetic single layer structures with the same thickness.
     For the double layer broadband electromagnetic absorbers using square loop and circular loop shaped FSSs, the impedance match law was found as follows; When the null center frequency susceptance of the ground plane is nearly equal to the resonance of the two sets of FSSs; resonance conductance of the up-down layer FSSs remain within a fairly reasonable range;The process curve transform through the up layer dielectric slab and obtain the next curve near the admittance curve of the up FSSs. The final match between the curve and admittance of the up layer FSSs yeilding to a broadband absorbing property. The double layer absorber allow obtaining remarkable performance (-8dB in the band greater than3.3GHz) with an overall thickness of10mm. This performance is superior to Salisbury screen, optimized Jaumann screen and the available commercially non-magnetic double layer structures with the same thickness.
     The research indicated that the smart absorbing materials could be designed by loading the active FSSs. A tunable absorbers comprised of a new combination shaped FSSs printed on a dielectric substrate loaded with PIN diodes were demonstrated. Through at different voltages to control the diodes, the reflectivity characteristics of the structure can be varied. A qualitative analysis by the equivalent circuit method is carried out on the parameters of the tunable absorbers. Though the impedance match, the structure can be turned to provide a variable reflectivity response over a band of frequencies from2GHz to18GHz.
引文
[1]康青.新型微波吸收材料.北京:科学出版社,2006.291-304.
    [2]崔玉理,贺鸿珠.吸波材料的研究现状及趋势.上海建材,2011,1:21-23.
    [3]Munk B A. Frequency selective surface:theory and design. New York:Wiley, 2000.1-53.
    [4]Wu T K. Frequency selective surface and grid arrays. New York:Wiley,1995.
    [5]Munk B A. Finite antenna arrays and FSS. New York:Wiley,2003.1-13.
    [6]侯新宇.复杂介质加载频率选择表面研究及其在雷达罩中的应用:[博士论文].西安:西北工业大学,1998.
    [7]邢丽英.含电路模拟结构吸波复合材料研究:[博士论文].北京:北京航空航天大学,2003.
    [8]Lu Z H, Liu P G, Huang X J. A novel three-dimensional frequency selective structure. IEEE Antennas and Wireless Propagation Letters,2012,11:588-591.
    [9]侯新宇,张澎,卢俊,等.一种双曲率雷达罩的频率选择表面分片设计.弹箭与制导学报,2006,26(1):123-125.
    [10]李小秋,高劲松,赵晶丽,等.一种适用于雷达罩的频率选择表面新单元研究.物理学报,2008,57(6):3803-3806.
    [11]Kelvin. Popular lectures.1881,1:185.
    [12]Brillouin L. Wave propogation in periodic structures. New York:Dover,2003.
    [13]Jacobs R A. Increased rates of convergence through learning rate adaptation. Neural Neworks,1988,4(1):295-308.
    [14]邓志东,等.利用线性激励的自适应变步长快速BP算法.模式识别与人工智能,1993,6(4):319-320.
    [15]Kieburtz R B, Ishimaru A. Scatting by a periodically apertured conducting screen. IEEE Transactions on Antennas and Propagation,1961,9(11):506-514.
    [16]Ott R H, Kouyournjian R G, Peters J L. Scattering by a two-dimensional periodically array of narrow plates. Radio Science,1967,2(11):1347-1359.
    [17]Chen C C. Scattering by a two-dimensional periodic array of conducting plates. IEEE Transactions on Antennas and Propagation,1970,18(5):660-665.
    [18]Chen C C. Transmission through a conducting screen perforated periodically with apertures. IEEE Transactions on Microwave Theory and Techniques,1970, 18(9):627-632.
    [19]Montgomery C G. Vibrational specific heat enhancement from force-Constant variations in amorphous solids. Journal of Low Temperature Physics,1980, 39(1):13-20.
    [20]Montgomery C G, Dicke R H, Purcell E M. Principles of microwave circuits. New York:McGraw-Hill,1948.
    [21]Munk B A. Metamaterials:critique and alternatives. New York:Wiley,2009. 71-92.
    [22]Henderson L W. The scattering of planar arrays of arbitrary shaped slot and/or wire elements in a stratified dielectric medium:[Ph.D. Dissertation]. Columbus: Ohio State University,1983.
    [23]Denison D R, Scharstein R W. Decomposition of the scattering by a finite linear array into periodic and edge components. Microwave and Optical Technology Letters,1995,9:338-343.
    [24]Shubert K A, Munk B A. Matching properties of arbitrarily large dielectric covered phased arrays. IEEE Transactions on Antennas and Propagation,1983, 31:54-59.
    [25]Chan C H, Mittra R. On the analysis of frequency-selective surfaces using subdomain basis functions. IEEE Transactions on Antennas and Propagation, 1990,38(1):40-50.
    [26]Mittra R, Chan C H, CWIK T. Techniques for analyzing frequency selective surfaces-a review. IEE Proceedings,1988,76(12):1593-1615.
    [27]Tsao C H, Mittra R. Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses. IEEE Transactions on Antennas and Propagation,1984,32(5):478-486.
    [28]Cwik T, Mittra R. The cascade connections of planar periodic surfaces and lossy dielectric layers to form an arbitrary periodic screen. IEEE Transactions on Antennas and Propagation,1987,35(12):1397-1405.
    [29]Mittra R, Hall R, Tsao C H. Spectral-domain analysis of circular patch frequency selective surfaces. IEEE Transactions on Antennas and Propagation,1984,32(5): 533-536.
    [30]Hall R, Mittra R. Scattering from a periodic array of resistive strips. IEEE Transactions on Antennas and Propagation,1985,33(9):1009-1011.
    [31]Hall R C, Mittra R, Mitzner K M. Analysis of multilayered periodic structures using generalized scattering matrix theory. IEEE Transactions on Antennas and Propagation,1988,36(4):511-517.
    [32]Berral R R, Medina F, Mesa F, Vigueras M G. Quasi-analytical modeling of transmission reflection in strip/slit gratings loaded with dielectric slabs. IEEE Transactions on Microwave Theory and Techniques,2012,60(3):405-418.
    [33]Yang R, Berral R R, Medina F, Hao Y. Analytical model for the transmission of electromagnetic waves through arrays of slits in perfect conductors and lossy metal screens. Journal of Applied Physics,2011,109(10):103107-1-11.
    [34]Berral R R, Mesa F, Medina F. Circuit model for a periodic array of slits sandwiched between two dielectric slabs. Applied Physics Letter,2010,96(16): 161104-1-3.
    [35]Chang T K, Langley R J, Parker E A. An active square loop frequency selective surface. IEEE Microwave and Guided Wave Letters,1993,3(10):387-388.
    [36]Vardaxoglou J C, Lockyer D S. Modified FSS response from two sided and closely coupled arrays. Electronic Letters,1994,30(22):1818-1819.
    [37]Lockyer D S, Vardaxoglou J C. Reconfigurable FSS from two layers of slotted dipole arrays. Electronic Letters,1996,32(6):512-513.
    [38]Chuprin D. Parker E A, Batchelor J C. Convoluted double square single layer FSS with close band spacing. Electronic Letters,2000,36(10):1830-1831.
    [39]Savia S B, Parker E A. Superdense FSS with wide reflection band and rapid rolloff. Electronic Letters,2002,38(25):1688-1689.
    [40]Savia S B, Parker E A. Equivalent circuit model for superdense linear dipole FSS. IEE Proceedings,2003,150(1):37-42.
    [41]Costa F, Monorchio A, Manara G. Efficient analysis of frequency selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine,2012,54 (4):35-48.
    [42]Ohira M, Deguchi H, Shigesawa H, et al. Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry refinement technique. IEEE Transactions on Antennas and Propagation,2004, 52(11):2925-2931.
    [43]Boeringer D W, Werner D H. Particle swarm optimizations versus genetic algorithms for phased array synthesis. IEEE Transactions on Antennas and Propagation,2004,52(3):771-779.
    [44]沙莎.碟形单元电磁带隙结构研究:[硕士论文].镇江:江苏科技大学,2010.
    [45]马金平,等.频率选择表面及其在隐身领域的应用.隐身技术,1998,1:39.
    [46]黄爱萍,冯则坤,聂建华,何华辉.干涉型多层吸波材料研究.材料导报,2003,17(4):21-24.
    [47]杨卓,薛正辉,李伟明.平面波展开结合矩量法分析频率选择表面.电波科学学报,2009,24(2):314-317.
    [48]侯新宇,崔尧,张玉英,王旭刚,刘海军.应用等效电路模型的频率选择表面有效分析.西北工业大学学报,2006,24(6):687-689.
    [49]张耀锋.频率选择表面分析与优化设计:[硕士论文].西安:西北工业大学,2003.
    [50]崔尧.基于带通雷达罩应用的频率选择表面分析与仿真:[硕士论文].西安:西北工业大学,2006.
    [51]方维海.左手介质周期结构散射特性的研究:[博士论文].合肥:中国科学技术大学,2009.
    [52]Langley R J, Parker E A. Equivalent circuit model for arrays of square loops. Electronics letters,1982,18(7):294-296.
    [53]Langley R J, Drinkwater A J. Improved empirical model for the Jerusalem cross. IEE Proceedings,1982,129(1):1-6.
    [54]Langley R J, Parker E A. Double-square frequency-selective surfaces and their equivalent circuit. Electronics letters,1983,19(17):675-677.
    [55]Parker E A, Hamdy S M A, Langley R J. Modes of resonance of the jerusalem cross in frequency-selective surfaces. IEE Proceedings,1983,130(3):203-208.
    [56]Callaghan P, Parker E A, Langley R J. Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces. IEE Proceedings, 1991,138(5):448-454.
    [57]Langley R J. A dual-frequency band waveguide using FSS. IEEE Microwave and Guided Wave Letters,1993,3(1):9-10.
    [58]Prakash V V S, Mittra R. Technique for analyzing cascaded frequency selective surface screens with dissimilar lattice geometries. IEEE Microwaves Antennas and Propagation,2003,150(1):23-27.
    [59]Schimert T R, Brouns A J, Mittra R, et al. Investigation of millimeter-wave scattering from frequency selective surfaces. IEEE Transactions on Microwave Theory and Techniques,1991,39(2):315-322.
    [60]Ma J F, Mittra R, Huang N T. Analysis of multiple FSS screens of unequal periodicity using an efficient cascading technique. IEEE Transactions on Antennas and Propagation,2005,53(4):1401-1414.
    [61]Chakravarty S, Mittra R, Williams N R. Application of a micro-genetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics. IEEE Transactions on Antennas and Propagation,2002,50(3):284-296.
    [62]李绪平.频率选择表面及分形结构在其中的应用:[硕士论文].西安:西安电子科技大学,2006.
    [63]Chakravarty S, Mittra R. Design of a frequency selective surface (FSS) with very low cross-polarization discrimination via the parallel micro-genetic algorithm (PMGA). IEEE Transactions on Antennas and Propagation,2003, 51(7):1664-1668.
    [64]Jorgenson R E, Mittra R. Efficient calculation of the free-space periodic green's function. IEEE Transactions on Antennas and Propagation,1990,38(5): 633-642.
    [65]Chan C H, Mittra R. Analysis of a classical cylindrical multiconductor transmission lines using an iterative approach. IEEE Transactions on Microwave Theory and Techniques,1987,35(4):415-424.
    [66]Gao Q, Yan D B, Fu Y Q, Yuan N C. Loaded frequency selective surface. Microwave and Optical Technology Letters,2005,47(1):47-49.
    [67]肖飞.计算电磁学中时域有限差分方法的研究:[博士论文].成都:电子科技大学,2005.
    [68]刘荧.辅助场时域有限差分法及其在平面周期性结构电磁分析特性中的应用:[博士论文].长沙:国防科学技术大学,2000.
    [69]冯海森.基于时域有限差分法的频率选择表面研究:[硕士论文].大连:大连理工大学,2008.
    [70]李源.基于FDTD方法的频率选择表面特性分析:[硕士论文].西安:西北工业大学,2004.
    [71]Gao Q, Yan D B, Fu Y Q, Yuan N C. A novel radar-absorbing-material based on EBG structure. Microwave and Optical Technology Letters,2005,47(3): 228-230.
    [72]Harms P, Mittra R, Ko W. Implementation of the periodic boundary condition in the finite difference time domain algorithm for FSS structures. IEEE Transactions on Antennas and Propagation,1994,42(9):1317-1324.
    [73]Sun W M, Liu K F, Balanis C A. Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method. IEEE Transactions on Antennas and Propagation,1996,44(6):798-805.
    [74]杨悦.频率选择表面吸波复合材料和结构的有限元分析及设计:[硕士论文].北京:北京交通大学,2007.
    [75]薛元松.应用于平面频率选择表面的有限元边界积分法:[硕士论文].西安:西北工业大学,2007.
    [76]Eibert T F, Erdemli Y E, Volakis J L. Hybrid finite element-fast spectral domain multilayer boundary integral modeling of doubly periodic structures. IEEE Transactions on Antennas and Propagation,2003,51(9):2517-2520.
    [77]高强.无源电磁周期结构及其应用研究:[博士论文].长沙:国防科学技术大学,2006.
    [78]路平.采用矩量法分析频率选择表面的电磁散射特性:[硕士论文].大连:大连理工大学,2008.
    [79]Kipp R A, Chan C H. A numerically efficient technique for the method of moments solution for planar periodic structures in layered media. IEEE Transactions on Microwave Theory and Techniques,1994,42(4):635-643.
    [80]Caroglanian A, Webb K J. Curved and planar frequeney seleetive surfaces with arbitrary illumination. Antennas and Propagation Society International Symposium Digest,1989,2:1060-1063.
    [81]Philips B, Parker E A, Langley R J. Ray tracing analysis of the transmission performance of curved FSS. IEE Proceedings,1995,3:193-200.
    [82]Wait J R. Reflection at arbitrary incidence from a parallel wire grid. Applied Scientific Research,1954,4:393-400.
    [83]Lee S W, Zarrillon G, Law C L. Simple formulas for transmission through periodic metal grids or plates. IEEE Transactions on Antennas and Propagation, 1982,30(5):904-909.
    [84]哈林登著,王尔杰译.计算电磁场的矩量法.北京:国防工业出版社,1981,6-20.
    [85]王鹏.有源FSS微波吸收体设计与吸波性能研究:[硕士论文].武汉:华中科技大学,2011.
    [86]Jin J M. The finite element method in electromagnetics (2nd ed.). New York: Wiley,2002.
    [87]金建铭著,王建国译.电磁场有限元方法.西安:西安电子科技大学出版社.1998.
    [88]张晟,刘晓莉,杨青,等.机载雷达罩曲面频率选择表面阵图形制作研究.电子工艺技术,1999,20(6):224-227.
    [89]吕明云,祝明,王焕青,等.复杂曲面频率选择表面加工系统研究.航空学报,2005,26(4):524-527.
    [90]Cui T J, Smith D R, Liu R P. Metamaterials:theory, design, and applications. New York:Springer,2010.
    [91]Capo lino F. Theory and phenomena of metamaterials. Florida:Taylor and Francis Group,2009.
    [92]Caloz C, Itoh T. Electromagnetic metamaterials:transmission line theory and microwave applications. New York:Willy,2006.
    [93]Bayatpur F. Metamaterial-inspired frequency-selective surfaces:[Ph.D. Dissertation]. Michigan:The University of Michigan,2009.
    [94]Shen X P, Cui T J, Zhao J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber. Optics Express,2011,19(10):9401-9407.
    [95]Chin J Y, Gollub J N, Mock J J, Liu R P, Harrison C, Smith D R, Cui T J. An efficient broadband metamaterial wave retarder. Optics Express,2009,17(9): 7640-7646.
    [96]Mei Z L, Cui T J. Experimental realization of a broadband bend structure using gradient index metamaterials. Optics Express,2009,17(20):18354-18362.
    [97]Liu H T, Cheng H F, Chu Z Y, Zhang D Y. Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches. Materials and Design,2007,28:2166-2171.
    [98]Pang Y Q, Cheng H F, Zhou Y J, Wang J. Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces. Journal of Physics D:Applied Physics,2012,45:215104.
    [99]孙良奎,程海峰,周永江,王军,庞永强.一种基于超材料的吸波材料的设计与制备.物理学报,2011,60(10):108901-1-5.
    [100]Pang Y Q, Cheng H F. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates. Optics Express,2012,20(11): 12515-12520.
    [101]Yang J, Shen Z X. A Thin and broadband absorber using double-square loops. IEEE Antennas and Wireless Propagation Letters,2007,6:388-391.
    [102]Genovesi S, Costa F, Monorchio A. Low-profile arraywith reduced radar cross section by using hybrid frequency selective surfaces. IEEE Transactions on Antennas and Propagation,2012,60(5):2327-2335.
    [103]Costa F, Genovesi S, Monorchio A. A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays. Progress In Electromagnetics Research,2012,126:317-332.
    [104]Tennant A, Chambers B. A single-layer tunable microwave absorber using an active FSS. IEEE Antennas and Wireless Propagation Letters,2004,14(1): 46-47.
    [105]Chambers B, Tennant A. The phase-switched screen. IEEE Antennas and Propagation Magazine,2004,46(6):23-37.
    [106]Tennant A, Chambers B. Adaptive radar absorbing structure with PIN diode controlled active FSS. Smart Materials and Structure,2004,13(1):122-125.
    [107]Zhu B, Feng Y J, Zhao J M, Huang C, Jiang T. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Applied Physics Letters,2010,97:051906-1-3.
    [108]Taylor P S, Parker E A, Batchelor J C. Experimental phase plate employing a phase modulated active frequency selective surface. Microwave and Optical Technology Letter,2010,52(10):2300-2302.
    [109]Taylor P S, Parker E A, Batchelor J C. An active annular ring frequency selective surface. IEEE Transactions on Antennas and Propagation,2011,59(9): 3265-3271.
    [110]Jazi M N, Denidni T A. Agile radiation-pattern antenna based on active cylindrical frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters,2010,9:387-388.
    [111]Jazi M N, Denidni T A. Frequency selective surfaces and their applications for nimble-radiation pattern antennas. IEEE Transactions on Antennas and Propagation,2010,58(7):2227-2237.
    [112]Hand T, Cummer S. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antennas and Wireless Propagation Letters,2007,6: 401-404.
    [113]Hand T. Design and applications of frequency tunable and reconfigurable metamaterials:[Ph.D. Dissertation]. North Carolina:Duke University,2009.
    [114]Tharp J S, Lail B A, Munk B A, Boreman G D. Design and demonstration of an infrared meander line phase retarder. IEEE Transactions on Antennas and Propagation,2007,55(11):2983-2988.
    [115]卢子炎,唐宗熙,张彪.用自由空间法测量材料复介电常数的研究.航空材料学报,2006,26(2):62-66.
    [116]裴志斌,顾超,屈绍波,等.自由空间法测试超材料的电磁参数.空军工程大学学报:自然科学版,2008,9(5):86-90.
    [117]徐德忠,翟宏.微波吸收材料发射率测量.宇航计测技术,2001,21(5):1-2.
    [118]何燕飞.复合多层结构吸波材料的制备与吸波性能研究:[博士学位论文].武汉:华中科技大学,2007.
    [119]王鲜.片状合金磁粉吸收剂制备与电磁性能研究:[博士学位论文].武汉:华中科技大学,2007.
    [120]冯林,阮颖铮,雷平.低RCS滤波反射面天线技术.电子科学学刊,1993,15(5):506-511.
    [121]Dornheim M A. Aviation Week Issue on Space Technology.1993,23-24.
    [122]Parker E A, Batchelor J C, Chiang R, Williamson A G, et al. Frequency selectively screened office incorporating convoluted FSS window. Elecreonics Letters,2010,46(5):317-318.
    [123]Sanz-Izquierdo B, Robertson J B, Parker E A, Batchelor J C. Minimal size of operation of fractal FSS. IEEE Antennas and Propagation Society International Symposium,2009,1-4.
    [124]Kiani G I, Ford K L, Olsson L G, et al. Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings. IEEE Transactions on Antennas and Propagation,2010,58(2):581-584.
    [125]Costa F, Monorchio A, Vastante G P. Tunable high-impedance surface with a reduced number of varactors. IEEE Antennas and Wireless Propagation Letters, 2011,10:11-13.
    [126]Costa F, Monorchio A, Talarico S, et al. An active high-impedance surface for low-profile tunable and steerable antennas. IEEE Antennas and Wireless Propagation Letters,2008,7:676-680.
    [127]Edalati A, Denidni T A. High-gain reconfigurable sectoral antenna using an active cylindrical FSS structure. IEEE Transactions on Antennas and Propagation,2011,59(7):2464-2472.
    [128]Hiekey G S, Wu T K. A four frequeney seleetive surface spacecraft subreflector antenna. Mierowave Journal,1996,3:240-252.
    [129]The OSU Autonomous Vehicle Website, Ohio State University Center for Intelligent Traffic Researeh(CITR). http://eewww.eng.ohio-state.edu/citr/Demo 97/osu-av.html.
    [130]赵芳芳,曹群生.频率选择表面在节能玻璃中的应用研究.微波学报,2011,27(5):37-39.
    [131]卢俊,搞劲松,孙连春.频率选择表面及其在隐身技术中的应用.材料科学与技术,2003,9:1-4.
    [132]Ulrich R. Far-infrared properties of metallic mesh and its complement structure. infrared physics,1967,7:35-37.
    [133]Durschlag M S, Detemple T A. Far-IR optical properties of freestanding and dielectrically backed metal meshes. Appilied Optics,1983,20:37-55.
    [134]Monacelli B, Pryor J B, Munk B A, K Dale, Boreman G D. Infrared frequency selective surface based on circuit-analog square loop design. IEEE Transactions on Antennas and Propagation,2005,53(2):745-752.
    [135]Miller W H, Bernard G D, Allen J L. The optics of insect compound eyes. Science,1968,162:760-767.
    [136]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.北京:化学工业出版社,2006.57-62.
    [137]邢丽英.隐身材料.北京:化学工业出版社,2004.3-10.
    [138]姚俊,王小强.航天用吸波材料的制备及研究进展.当代化工,2012,41(2):170-172.
    [139]陶宇,陶志萍.雷达隐身技术的研究现状及其展望.材料导报,2011,25(6):40-45.
    [140]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展.飞航导弹,2008,7:58-61.
    [141]朱立群,古琮.薄型多层雷达吸波材料结构设计与发展.表面技术,2007,36(3):49-52,73.
    [142]高强,银燕,闰敦豹,等.基于光子晶体的电磁吸收材料.红外与毫米波学报,2006,25(2):143-146.
    [143]刘海韬,程海峰,楚增勇,曹义.频率选择表面(FSS)在雷达吸波材料中的应用及最新进展.材料导报,2005,19(9):30-30.
    [144]卢俊,倪牟翠,孙连春.红外与微波波段的周期电磁带隙结构.长春理工大学学报,2003,26(2):41-42.
    [145]Salisbury W W. Absorbent body of electromagnetic waves. United States Patent 2599944,1952.
    [146]Laird Technologies Company. http://www.lairdtech.com/Products/EMI-Solution-s/Specialty-EMI-Solutions/Microwave-Absorbers/,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700